// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2008-2014 Bruno Lalande, Paris, France. // Copyright (c) 2008-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2009-2014 Mateusz Loskot, London, UK. // This file was modified by Oracle on 2014. // Modifications copyright (c) 2014, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include // Helper geometry (projected point on line) #include namespace boost { namespace geometry { namespace strategy { namespace distance { /*! \brief Strategy for distance point to segment \ingroup strategies \details Calculates distance using projected-point method, and (optionally) Pythagoras \author Adapted from: http://geometryalgorithms.com/Archive/algorithm_0102/algorithm_0102.htm \tparam CalculationType \tparam_calculation \tparam Strategy underlying point-point distance strategy \par Concepts for Strategy: - cartesian_distance operator(Point,Point) \note If the Strategy is a "comparable::pythagoras", this strategy automatically is a comparable projected_point strategy (so without sqrt) \qbk{ [heading See also] [link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)] } */ template < typename CalculationType = void, typename Strategy = pythagoras > class projected_point { public : // The three typedefs below are necessary to calculate distances // from segments defined in integer coordinates. // Integer coordinates can still result in FP distances. // There is a division, which must be represented in FP. // So promote. template struct calculation_type : promote_floating_point < typename strategy::distance::services::return_type < Strategy, Point, PointOfSegment >::type > {}; public : template inline typename calculation_type::type apply(Point const& p, PointOfSegment const& p1, PointOfSegment const& p2) const { assert_dimension_equal(); typedef typename calculation_type::type calculation_type; // A projected point of points in Integer coordinates must be able to be // represented in FP. typedef model::point < calculation_type, dimension::value, typename coordinate_system::type > fp_point_type; // For convenience typedef fp_point_type fp_vector_type; /* Algorithm [p: (px,py), p1: (x1,y1), p2: (x2,y2)] VECTOR v(x2 - x1, y2 - y1) VECTOR w(px - x1, py - y1) c1 = w . v c2 = v . v b = c1 / c2 RETURN POINT(x1 + b * vx, y1 + b * vy) */ // v is multiplied below with a (possibly) FP-value, so should be in FP // For consistency we define w also in FP fp_vector_type v, w, projected; geometry::convert(p2, v); geometry::convert(p, w); geometry::convert(p1, projected); subtract_point(v, projected); subtract_point(w, projected); Strategy strategy; boost::ignore_unused_variable_warning(strategy); calculation_type const zero = calculation_type(); calculation_type const c1 = dot_product(w, v); if (c1 <= zero) { return strategy.apply(p, p1); } calculation_type const c2 = dot_product(v, v); if (c2 <= c1) { return strategy.apply(p, p2); } // See above, c1 > 0 AND c2 > c1 so: c2 != 0 calculation_type const b = c1 / c2; multiply_value(v, b); add_point(projected, v); return strategy.apply(p, projected); } }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template struct tag > { typedef strategy_tag_distance_point_segment type; }; template struct return_type, P, PS> : projected_point::template calculation_type {}; template struct comparable_type > { // Define a projected_point strategy with its underlying point-point-strategy // being comparable typedef projected_point < CalculationType, typename comparable_type::type > type; }; template struct get_comparable > { typedef typename comparable_type < projected_point >::type comparable_type; public : static inline comparable_type apply(projected_point const& ) { return comparable_type(); } }; template struct result_from_distance, P, PS> { private : typedef typename return_type, P, PS>::type return_type; public : template static inline return_type apply(projected_point const& , T const& value) { Strategy s; return result_from_distance::apply(s, value); } }; // Get default-strategy for point-segment distance calculation // while still have the possibility to specify point-point distance strategy (PPS) // It is used in algorithms/distance.hpp where users specify PPS for distance // of point-to-segment or point-to-linestring. // Convenient for geographic coordinate systems especially. template struct default_strategy < point_tag, segment_tag, Point, PointOfSegment, cartesian_tag, cartesian_tag, Strategy > { typedef strategy::distance::projected_point < void, typename boost::mpl::if_ < boost::is_void, typename default_strategy < point_tag, point_tag, Point, PointOfSegment, cartesian_tag, cartesian_tag >::type, Strategy >::type > type; }; template struct default_strategy < segment_tag, point_tag, PointOfSegment, Point, cartesian_tag, cartesian_tag, Strategy > { typedef typename default_strategy < point_tag, segment_tag, Point, PointOfSegment, cartesian_tag, cartesian_tag, Strategy >::type type; }; } // namespace services #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS }} // namespace strategy::distance }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP