// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2015. // Modifications copyright (c) 2015, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_AREA_HUILLER_HPP #define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_AREA_HUILLER_HPP #include #include #include namespace boost { namespace geometry { namespace strategy { namespace area { /*! \brief Area calculation by spherical excess / Huiller's formula \ingroup strategies \tparam PointOfSegment point type of segments of rings/polygons \tparam CalculationType \tparam_calculation \author Barend Gehrels. Adapted from: - http://webdocs.cs.ualberta.ca/~graphics/books/GraphicsGems/gemsiv/sph_poly.c - http://tog.acm.org/resources/GraphicsGems/gemsiv/sph_poly.c - http://williams.best.vwh.net/avform.htm \note The version in Graphics Gems IV (page 132-137) didn't account for polygons crossing the 0 and 180 meridians. The fix for this algorithm can be found in Graphics Gems V (pages 45-46). See: - http://kysmykseka.net/koti/wizardry/Game%20Development/Programming/Graphics%20Gems%204.pdf - http://kysmykseka.net/koti/wizardry/Game%20Development/Programming/Graphics%20Gems%205.pdf \note This version works for convex and non-convex polygons, for 180 meridian crossing polygons and for polygons with holes. However, some cases (especially 180 meridian cases) must still be checked. \note The version which sums angles, which is often seen, doesn't handle non-convex polygons correctly. \note The version which sums longitudes, see http://hdl.handle.net/2014/40409, is simple and works well in most cases but not in 180 meridian crossing cases. This probably could be solved. \note This version is made for spherical equatorial coordinate systems \qbk{ [heading Example] [area_with_strategy] [area_with_strategy_output] [heading See also] [link geometry.reference.algorithms.area.area_2_with_strategy area (with strategy)] } */ template < typename PointOfSegment, typename CalculationType = void > class huiller { typedef typename boost::mpl::if_c < boost::is_void::type::value, typename select_most_precise < typename coordinate_type::type, double >::type, CalculationType >::type calculation_type; protected : struct excess_sum { calculation_type sum; // Distances are calculated on unit sphere here strategy::distance::haversine distance_over_unit_sphere; inline excess_sum() : sum(0) , distance_over_unit_sphere(1) {} inline calculation_type area(calculation_type radius) const { return - sum * radius * radius; } }; public : typedef calculation_type return_type; typedef PointOfSegment segment_point_type; typedef excess_sum state_type; inline huiller(calculation_type radius = 1.0) : m_radius(radius) {} inline void apply(PointOfSegment const& p1, PointOfSegment const& p2, excess_sum& state) const { if (! geometry::math::equals(get<0>(p1), get<0>(p2))) { calculation_type const half = 0.5; calculation_type const two = 2.0; calculation_type const four = 4.0; calculation_type const pi = geometry::math::pi(); calculation_type const two_pi = geometry::math::two_pi(); calculation_type const half_pi = geometry::math::half_pi(); // Distance p1 p2 calculation_type a = state.distance_over_unit_sphere.apply(p1, p2); // Sides on unit sphere to south pole calculation_type b = half_pi - geometry::get_as_radian<1>(p2); calculation_type c = half_pi - geometry::get_as_radian<1>(p1); // Semi parameter calculation_type s = half * (a + b + c); // E: spherical excess, using l'Huiller's formula // [tg(e / 4)]2 = tg[s / 2] tg[(s-a) / 2] tg[(s-b) / 2] tg[(s-c) / 2] calculation_type excess = four * atan(geometry::math::sqrt(geometry::math::abs(tan(s / two) * tan((s - a) / two) * tan((s - b) / two) * tan((s - c) / two)))); excess = geometry::math::abs(excess); // In right direction: positive, add area. In left direction: negative, subtract area. // Longitude comparisons are not so obvious. If one is negative and other is positive, // we have to take the dateline into account. calculation_type lon_diff = geometry::get_as_radian<0>(p2) - geometry::get_as_radian<0>(p1); if (lon_diff <= 0) { lon_diff += two_pi; } if (lon_diff > pi) { excess = -excess; } state.sum += excess; } } inline return_type result(excess_sum const& state) const { return state.area(m_radius); } private : /// Radius of the sphere calculation_type m_radius; }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template struct default_strategy { typedef strategy::area::huiller type; }; // Note: spherical polar coordinate system requires "get_as_radian_equatorial" /***template struct default_strategy { typedef strategy::area::huiller type; };***/ } // namespace services #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS }} // namespace strategy::area }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_AREA_HUILLER_HPP