// Copyright 2004 The Trustees of Indiana University. // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Authors: Douglas Gregor // Peter Gottschling // Andrew Lumsdaine #ifndef BOOST_PARALLEL_DISTRIBUTION_HPP #define BOOST_PARALLEL_DISTRIBUTION_HPP #ifndef BOOST_GRAPH_USE_MPI #error "Parallel BGL files should not be included unless has been included" #endif #include #include #include #include #include #include #include #include #include namespace boost { namespace parallel { template class variant_distribution { public: typedef typename ProcessGroup::process_id_type process_id_type; typedef typename ProcessGroup::process_size_type process_size_type; typedef SizeType size_type; private: struct basic_distribution { virtual ~basic_distribution() {} virtual size_type block_size(process_id_type, size_type) const = 0; virtual process_id_type in_process(size_type) const = 0; virtual size_type local(size_type) const = 0; virtual size_type global(size_type) const = 0; virtual size_type global(process_id_type, size_type) const = 0; virtual void* address() = 0; virtual const void* address() const = 0; virtual const std::type_info& type() const = 0; }; template struct poly_distribution : public basic_distribution { explicit poly_distribution(const Distribution& distribution) : distribution_(distribution) { } virtual size_type block_size(process_id_type id, size_type n) const { return distribution_.block_size(id, n); } virtual process_id_type in_process(size_type i) const { return distribution_(i); } virtual size_type local(size_type i) const { return distribution_.local(i); } virtual size_type global(size_type n) const { return distribution_.global(n); } virtual size_type global(process_id_type id, size_type n) const { return distribution_.global(id, n); } virtual void* address() { return &distribution_; } virtual const void* address() const { return &distribution_; } virtual const std::type_info& type() const { return typeid(Distribution); } private: Distribution distribution_; }; public: variant_distribution() { } template variant_distribution(const Distribution& distribution) : distribution_(new poly_distribution(distribution)) { } size_type block_size(process_id_type id, size_type n) const { return distribution_->block_size(id, n); } process_id_type operator()(size_type i) const { return distribution_->in_process(i); } size_type local(size_type i) const { return distribution_->local(i); } size_type global(size_type n) const { return distribution_->global(n); } size_type global(process_id_type id, size_type n) const { return distribution_->global(id, n); } operator bool() const { return distribution_; } void clear() { distribution_.reset(); } template T* as() { if (distribution_->type() == typeid(T)) return static_cast(distribution_->address()); else return 0; } template const T* as() const { if (distribution_->type() == typeid(T)) return static_cast(distribution_->address()); else return 0; } private: shared_ptr distribution_; }; struct block { template explicit block(const LinearProcessGroup& pg, std::size_t n) : id(process_id(pg)), p(num_processes(pg)), n(n) { } // If there are n elements in the distributed data structure, returns the number of elements stored locally. template SizeType block_size(SizeType n) const { return (n / p) + ((std::size_t)(n % p) > id? 1 : 0); } // If there are n elements in the distributed data structure, returns the number of elements stored on processor ID template SizeType block_size(ProcessID id, SizeType n) const { return (n / p) + ((ProcessID)(n % p) > id? 1 : 0); } // Returns the processor on which element with global index i is stored template SizeType operator()(SizeType i) const { SizeType cutoff_processor = n % p; SizeType cutoff = cutoff_processor * (n / p + 1); if (i < cutoff) return i / (n / p + 1); else return cutoff_processor + (i - cutoff) / (n / p); } // Find the starting index for processor with the given id template std::size_t start(ID id) const { std::size_t estimate = id * (n / p + 1); ID cutoff_processor = n % p; if (id < cutoff_processor) return estimate; else return estimate - (id - cutoff_processor); } // Find the local index for the ith global element template SizeType local(SizeType i) const { SizeType owner = (*this)(i); return i - start(owner); } // Returns the global index of local element i template SizeType global(SizeType i) const { return global(id, i); } // Returns the global index of the ith local element on processor id template SizeType global(ProcessID id, SizeType i) const { return i + start(id); } private: std::size_t id; //< The ID number of this processor std::size_t p; //< The number of processors std::size_t n; //< The size of the problem space }; // Block distribution with arbitrary block sizes struct uneven_block { typedef std::vector size_vector; template explicit uneven_block(const LinearProcessGroup& pg, const std::vector& local_sizes) : id(process_id(pg)), p(num_processes(pg)), local_sizes(local_sizes) { BOOST_ASSERT(local_sizes.size() == p); local_starts.resize(p + 1); local_starts[0] = 0; std::partial_sum(local_sizes.begin(), local_sizes.end(), &local_starts[1]); n = local_starts[p]; } // To do maybe: enter local size in each process and gather in constructor (much handier) // template // explicit uneven_block(const LinearProcessGroup& pg, std::size_t my_local_size) // If there are n elements in the distributed data structure, returns the number of elements stored locally. template SizeType block_size(SizeType) const { return local_sizes[id]; } // If there are n elements in the distributed data structure, returns the number of elements stored on processor ID template SizeType block_size(ProcessID id, SizeType) const { return local_sizes[id]; } // Returns the processor on which element with global index i is stored template SizeType operator()(SizeType i) const { BOOST_ASSERT (i >= (SizeType) 0 && i < (SizeType) n); // check for valid range size_vector::const_iterator lb = std::lower_bound(local_starts.begin(), local_starts.end(), (std::size_t) i); return ((SizeType)(*lb) == i ? lb : --lb) - local_starts.begin(); } // Find the starting index for processor with the given id template std::size_t start(ID id) const { return local_starts[id]; } // Find the local index for the ith global element template SizeType local(SizeType i) const { SizeType owner = (*this)(i); return i - start(owner); } // Returns the global index of local element i template SizeType global(SizeType i) const { return global(id, i); } // Returns the global index of the ith local element on processor id template SizeType global(ProcessID id, SizeType i) const { return i + start(id); } private: std::size_t id; //< The ID number of this processor std::size_t p; //< The number of processors std::size_t n; //< The size of the problem space std::vector local_sizes; //< The sizes of all blocks std::vector local_starts; //< Lowest global index of each block }; struct oned_block_cyclic { template explicit oned_block_cyclic(const LinearProcessGroup& pg, std::size_t size) : id(process_id(pg)), p(num_processes(pg)), size(size) { } template SizeType block_size(SizeType n) const { return block_size(id, n); } template SizeType block_size(ProcessID id, SizeType n) const { SizeType all_blocks = n / size; SizeType extra_elements = n % size; SizeType everyone_gets = all_blocks / p; SizeType extra_blocks = all_blocks % p; SizeType my_blocks = everyone_gets + (p < extra_blocks? 1 : 0); SizeType my_elements = my_blocks * size + (p == extra_blocks? extra_elements : 0); return my_elements; } template SizeType operator()(SizeType i) const { return (i / size) % p; } template SizeType local(SizeType i) const { return ((i / size) / p) * size + i % size; } template SizeType global(SizeType i) const { return global(id, i); } template SizeType global(ProcessID id, SizeType i) const { return ((i / size) * p + id) * size + i % size; } private: std::size_t id; //< The ID number of this processor std::size_t p; //< The number of processors std::size_t size; //< Block size }; struct twod_block_cyclic { template explicit twod_block_cyclic(const LinearProcessGroup& pg, std::size_t block_rows, std::size_t block_columns, std::size_t data_columns_per_row) : id(process_id(pg)), p(num_processes(pg)), block_rows(block_rows), block_columns(block_columns), data_columns_per_row(data_columns_per_row) { } template SizeType block_size(SizeType n) const { return block_size(id, n); } template SizeType block_size(ProcessID id, SizeType n) const { // TBD: This is really lame :) int result = -1; while (n > 0) { --n; if ((*this)(n) == id && (int)local(n) > result) result = local(n); } ++result; // std::cerr << "Block size of id " << id << " is " << result << std::endl; return result; } template SizeType operator()(SizeType i) const { SizeType result = get_block_num(i) % p; // std::cerr << "Item " << i << " goes on processor " << result << std::endl; return result; } template SizeType local(SizeType i) const { // Compute the start of the block std::size_t block_num = get_block_num(i); // std::cerr << "Item " << i << " is in block #" << block_num << std::endl; std::size_t local_block_num = block_num / p; std::size_t block_start = local_block_num * block_rows * block_columns; // Compute the offset into the block std::size_t data_row = i / data_columns_per_row; std::size_t data_col = i % data_columns_per_row; std::size_t block_offset = (data_row % block_rows) * block_columns + (data_col % block_columns); // std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl; return block_start + block_offset; } template SizeType global(SizeType i) const { // Compute the (global) block in which this element resides SizeType local_block_num = i / (block_rows * block_columns); SizeType block_offset = i % (block_rows * block_columns); SizeType block_num = local_block_num * p + id; // Compute the position of the start of the block (globally) SizeType block_start = block_num * block_rows * block_columns; std::cerr << "Block " << block_num << " starts at index " << block_start << std::endl; // Compute the row and column of this block SizeType block_row = block_num / (data_columns_per_row / block_columns); SizeType block_col = block_num % (data_columns_per_row / block_columns); SizeType row_in_block = block_offset / block_columns; SizeType col_in_block = block_offset % block_columns; std::cerr << "Local index " << i << " is in block at row " << block_row << ", column " << block_col << ", in-block row " << row_in_block << ", in-block col " << col_in_block << std::endl; SizeType result = block_row * block_rows + block_col * block_columns + row_in_block * block_rows + col_in_block; std::cerr << "global(" << i << "@" << id << ") = " << result << " =? " << local(result) << std::endl; BOOST_ASSERT(i == local(result)); return result; } private: template std::size_t get_block_num(SizeType i) const { std::size_t data_row = i / data_columns_per_row; std::size_t data_col = i % data_columns_per_row; std::size_t block_row = data_row / block_rows; std::size_t block_col = data_col / block_columns; std::size_t blocks_in_row = data_columns_per_row / block_columns; std::size_t block_num = block_col * blocks_in_row + block_row; return block_num; } std::size_t id; //< The ID number of this processor std::size_t p; //< The number of processors std::size_t block_rows; //< The # of rows in each block std::size_t block_columns; //< The # of columns in each block std::size_t data_columns_per_row; //< The # of columns per row of data }; class twod_random { template struct random_int { explicit random_int(RandomNumberGen& gen) : gen(gen) { } template T operator()(T n) const { uniform_int distrib(0, n-1); return distrib(gen); } private: RandomNumberGen& gen; }; public: template explicit twod_random(const LinearProcessGroup& pg, std::size_t block_rows, std::size_t block_columns, std::size_t data_columns_per_row, std::size_t n, RandomNumberGen& gen) : id(process_id(pg)), p(num_processes(pg)), block_rows(block_rows), block_columns(block_columns), data_columns_per_row(data_columns_per_row), global_to_local(n / (block_rows * block_columns)) { std::copy(make_counting_iterator(std::size_t(0)), make_counting_iterator(global_to_local.size()), global_to_local.begin()); random_int rand(gen); std::random_shuffle(global_to_local.begin(), global_to_local.end(), rand); } template SizeType block_size(SizeType n) const { return block_size(id, n); } template SizeType block_size(ProcessID id, SizeType n) const { // TBD: This is really lame :) int result = -1; while (n > 0) { --n; if ((*this)(n) == id && (int)local(n) > result) result = local(n); } ++result; // std::cerr << "Block size of id " << id << " is " << result << std::endl; return result; } template SizeType operator()(SizeType i) const { SizeType result = get_block_num(i) % p; // std::cerr << "Item " << i << " goes on processor " << result << std::endl; return result; } template SizeType local(SizeType i) const { // Compute the start of the block std::size_t block_num = get_block_num(i); // std::cerr << "Item " << i << " is in block #" << block_num << std::endl; std::size_t local_block_num = block_num / p; std::size_t block_start = local_block_num * block_rows * block_columns; // Compute the offset into the block std::size_t data_row = i / data_columns_per_row; std::size_t data_col = i % data_columns_per_row; std::size_t block_offset = (data_row % block_rows) * block_columns + (data_col % block_columns); // std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl; return block_start + block_offset; } private: template std::size_t get_block_num(SizeType i) const { std::size_t data_row = i / data_columns_per_row; std::size_t data_col = i % data_columns_per_row; std::size_t block_row = data_row / block_rows; std::size_t block_col = data_col / block_columns; std::size_t blocks_in_row = data_columns_per_row / block_columns; std::size_t block_num = block_col * blocks_in_row + block_row; return global_to_local[block_num]; } std::size_t id; //< The ID number of this processor std::size_t p; //< The number of processors std::size_t block_rows; //< The # of rows in each block std::size_t block_columns; //< The # of columns in each block std::size_t data_columns_per_row; //< The # of columns per row of data std::vector global_to_local; }; class random_distribution { template struct random_int { explicit random_int(RandomNumberGen& gen) : gen(gen) { } template T operator()(T n) const { uniform_int distrib(0, n-1); return distrib(gen); } private: RandomNumberGen& gen; }; public: template random_distribution(const LinearProcessGroup& pg, RandomNumberGen& gen, std::size_t n) : base(pg, n), local_to_global(n), global_to_local(n) { std::copy(make_counting_iterator(std::size_t(0)), make_counting_iterator(n), local_to_global.begin()); random_int rand(gen); std::random_shuffle(local_to_global.begin(), local_to_global.end(), rand); for (std::vector::size_type i = 0; i < n; ++i) global_to_local[local_to_global[i]] = i; } template SizeType block_size(SizeType n) const { return base.block_size(n); } template SizeType block_size(ProcessID id, SizeType n) const { return base.block_size(id, n); } template SizeType operator()(SizeType i) const { return base(global_to_local[i]); } template SizeType local(SizeType i) const { return base.local(global_to_local[i]); } template SizeType global(ProcessID p, SizeType i) const { return local_to_global[base.global(p, i)]; } template SizeType global(SizeType i) const { return local_to_global[base.global(i)]; } private: block base; std::vector local_to_global; std::vector global_to_local; }; } } // end namespace boost::parallel #endif // BOOST_PARALLEL_DISTRIBUTION_HPP