/* [auto_generated] boost/numeric/odeint/external/mkl/mkl_operations.hpp [begin_description] Wrapper classes for intel math kernel library types. Get a free, non-commercial download of MKL at http://software.intel.com/en-us/articles/non-commercial-software-download/ [end_description] Copyright 2010-2011 Mario Mulansky Copyright 2011-2013 Karsten Ahnert Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_EXTERNAL_MKL_MKL_OPERATIONS_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_EXTERNAL_MKL_MKL_OPERATIONS_HPP_INCLUDED #include #include #include /* exemplary example for writing bindings to the Intel MKL library * see test/mkl for how to use mkl with odeint * this is a quick and dirty implementation showing the general possibility. * It works only with containers based on double and sequential memory allocation. */ namespace boost { namespace numeric { namespace odeint { /* only defined for doubles */ struct mkl_operations { //template< class Fac1 , class Fac2 > struct scale_sum2; template< class F1 = double , class F2 = F1 > struct scale_sum2 { typedef double Fac1; typedef double Fac2; const Fac1 m_alpha1; const Fac2 m_alpha2; scale_sum2( const Fac1 alpha1 , const Fac2 alpha2 ) : m_alpha1( alpha1 ) , m_alpha2( alpha2 ) { } template< class T1 , class T2 , class T3 > void operator()( T1 &t1 , const T2 &t2 , const T3 &t3) const { // t1 = m_alpha1 * t2 + m_alpha2 * t3; // we get Containers that have size() and [i]-access const int n = t1.size(); //boost::numeric::odeint::copy( t1 , t3 ); if( &(t2[0]) != &(t1[0]) ) { cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 ); } cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 ); cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 ); //daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one ); } }; template< class F1 = double , class F2 = F1 , class F3 = F2 > struct scale_sum3 { typedef double Fac1; typedef double Fac2; typedef double Fac3; const Fac1 m_alpha1; const Fac2 m_alpha2; const Fac3 m_alpha3; scale_sum3( const Fac1 alpha1 , const Fac2 alpha2 , const Fac3 alpha3 ) : m_alpha1( alpha1 ) , m_alpha2( alpha2 ) , m_alpha3( alpha3 ) { } template< class T1 , class T2 , class T3 , class T4 > void operator()( T1 &t1 , const T2 &t2 , const T3 &t3 , const T4 &t4 ) const { // t1 = m_alpha1 * t2 + m_alpha2 * t3 + m_alpha3 * t4; // we get Containers that have size() and [i]-access const int n = t1.size(); //boost::numeric::odeint::copy( t1 , t3 ); if( &(t2[0]) != &(t1[0]) ) { cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 ); } cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 ); cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 ); //daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one ); cblas_daxpy( n , m_alpha3 , &(t4[0]) , 1 , &(t1[0]) , 1 ); } }; template< class F1 = double , class F2 = F1 , class F3 = F2 , class F4 = F3 > struct scale_sum4 { typedef double Fac1; typedef double Fac2; typedef double Fac3; typedef double Fac4; const Fac1 m_alpha1; const Fac2 m_alpha2; const Fac3 m_alpha3; const Fac4 m_alpha4; scale_sum4( const Fac1 alpha1 , const Fac2 alpha2 , const Fac3 alpha3 , const Fac4 alpha4 ) : m_alpha1( alpha1 ) , m_alpha2( alpha2 ) , m_alpha3( alpha3 ) , m_alpha4( alpha4 ) { } template< class T1 , class T2 , class T3 , class T4 , class T5 > void operator()( T1 &t1 , const T2 &t2 , const T3 &t3 , const T4 &t4 , const T5 &t5 ) const { // t1 = m_alpha1 * t2 + m_alpha2 * t3 + m_alpha3 * t4 + m_alpha4 * t5; // we get Containers that have size() and [i]-access const int n = t1.size(); //boost::numeric::odeint::copy( t1 , t3 ); if( &(t2[0]) != &(t1[0]) ) { cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 ); } cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 ); cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 ); //daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one ); cblas_daxpy( n , m_alpha3 , &(t4[0]) , 1 , &(t1[0]) , 1 ); cblas_daxpy( n , m_alpha4 , &(t5[0]) , 1 , &(t1[0]) , 1 ); } }; template< class F1 = double , class F2 = F1 , class F3 = F2 , class F4 = F3 , class F5 = F4 > struct scale_sum5 { typedef double Fac1; typedef double Fac2; typedef double Fac3; typedef double Fac4; typedef double Fac5; const Fac1 m_alpha1; const Fac2 m_alpha2; const Fac3 m_alpha3; const Fac4 m_alpha4; const Fac5 m_alpha5; scale_sum5( const Fac1 alpha1 , const Fac2 alpha2 , const Fac3 alpha3 , const Fac4 alpha4 , const Fac5 alpha5 ) : m_alpha1( alpha1 ) , m_alpha2( alpha2 ) , m_alpha3( alpha3 ) , m_alpha4( alpha4 ) , m_alpha5( alpha5 ) { } template< class T1 , class T2 , class T3 , class T4 , class T5 , class T6 > void operator()( T1 &t1 , const T2 &t2 , const T3 &t3 , const T4 &t4 , const T5 &t5 , const T6 &t6 ) const { // t1 = m_alpha1 * t2 + m_alpha2 * t3 + m_alpha3 * t4 + m_alpha4 * t5 + m_alpha5 * t6; // we get Containers that have size() and [i]-access const int n = t1.size(); //boost::numeric::odeint::copy( t1 , t3 ); if( &(t2[0]) != &(t1[0]) ) { cblas_dcopy( n , &(t2[0]) , 1 , &(t1[0]) , 1 ); } cblas_dscal( n , m_alpha1 , &(t1[0]) , 1 ); cblas_daxpy( n , m_alpha2 , &(t3[0]) , 1 , &(t1[0]) , 1 ); //daxpby( &n , &m_alpha2 , &(t3[0]) , &one , &m_alpha1 , &(t1[0]) , &one ); cblas_daxpy( n , m_alpha3 , &(t4[0]) , 1 , &(t1[0]) , 1 ); cblas_daxpy( n , m_alpha4 , &(t5[0]) , 1 , &(t1[0]) , 1 ); cblas_daxpy( n , m_alpha5 , &(t6[0]) , 1 , &(t1[0]) , 1 ); } }; }; } // odeint } // numeric } // boost #endif // BOOST_NUMERIC_ODEINT_EXTERNAL_MKL_MKL_OPERATIONS_HPP_INCLUDED