/* [auto_generated] boost/numeric/odeint/stepper/base/symplectic_rkn_stepper_base.hpp [begin_description] Base class for symplectic Runge-Kutta-Nystrom steppers. [end_description] Copyright 2011-2013 Karsten Ahnert Copyright 2011-2013 Mario Mulansky Copyright 2012 Christoph Koke Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED #include #include #include #include #include #include #include #include #include namespace boost { namespace numeric { namespace odeint { template< size_t NumOfStages , unsigned short Order , class Coor , class Momentum , class Value , class CoorDeriv , class MomentumDeriv , class Time , class Algebra , class Operations , class Resizer > class symplectic_nystroem_stepper_base : public algebra_stepper_base< Algebra , Operations > { public: typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type; typedef typename algebra_stepper_base_type::algebra_type algebra_type; typedef typename algebra_stepper_base_type::operations_type operations_type; const static size_t num_of_stages = NumOfStages; typedef Coor coor_type; typedef Momentum momentum_type; typedef std::pair< coor_type , momentum_type > state_type; typedef CoorDeriv coor_deriv_type; typedef state_wrapper< coor_deriv_type> wrapped_coor_deriv_type; typedef MomentumDeriv momentum_deriv_type; typedef state_wrapper< momentum_deriv_type > wrapped_momentum_deriv_type; typedef std::pair< coor_deriv_type , momentum_deriv_type > deriv_type; typedef Value value_type; typedef Time time_type; typedef Resizer resizer_type; typedef stepper_tag stepper_category; #ifndef DOXYGEN_SKIP typedef symplectic_nystroem_stepper_base< NumOfStages , Order , Coor , Momentum , Value , CoorDeriv , MomentumDeriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type; #endif typedef unsigned short order_type; static const order_type order_value = Order; typedef boost::array< value_type , num_of_stages > coef_type; symplectic_nystroem_stepper_base( const coef_type &coef_a , const coef_type &coef_b , const algebra_type &algebra = algebra_type() ) : algebra_stepper_base_type( algebra ) , m_coef_a( coef_a ) , m_coef_b( coef_b ) , m_dqdt_resizer() , m_dpdt_resizer() , m_dqdt() , m_dpdt() { } order_type order( void ) const { return order_value; } /* * Version 1 : do_step( system , x , t , dt ) * * This version does not solve the forwarding problem, boost.range can not be used. */ template< class System , class StateInOut > void do_step( System system , const StateInOut &state , time_type t , time_type dt ) { typedef typename odeint::unwrap_reference< System >::type system_type; do_step_impl( system , state , t , state , dt , typename is_pair< system_type >::type() ); } /** * \brief Same function as above. It differs only in a different const specifier in order * to solve the forwarding problem, can be used with Boost.Range. */ template< class System , class StateInOut > void do_step( System system , StateInOut &state , time_type t , time_type dt ) { typedef typename odeint::unwrap_reference< System >::type system_type; do_step_impl( system , state , t , state , dt , typename is_pair< system_type >::type() ); } /* * Version 2 : do_step( system , q , p , t , dt ); * * For Convenience * * The two overloads are needed in order to solve the forwarding problem. */ template< class System , class CoorInOut , class MomentumInOut > void do_step( System system , CoorInOut &q , MomentumInOut &p , time_type t , time_type dt ) { do_step( system , std::make_pair( detail::ref( q ) , detail::ref( p ) ) , t , dt ); } /** * \brief Same function as do_step( system , q , p , t , dt ). It differs only in a different const specifier in order * to solve the forwarding problem, can be called with Boost.Range. */ template< class System , class CoorInOut , class MomentumInOut > void do_step( System system , const CoorInOut &q , const MomentumInOut &p , time_type t , time_type dt ) { do_step( system , std::make_pair( detail::ref( q ) , detail::ref( p ) ) , t , dt ); } /* * Version 3 : do_step( system , in , t , out , dt ) * * The forwarding problem is not solved in this version */ template< class System , class StateIn , class StateOut > void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt ) { typedef typename odeint::unwrap_reference< System >::type system_type; do_step_impl( system , in , t , out , dt , typename is_pair< system_type >::type() ); } template< class StateType > void adjust_size( const StateType &x ) { resize_dqdt( x ); resize_dpdt( x ); } /** \brief Returns the coefficients a. */ const coef_type& coef_a( void ) const { return m_coef_a; } /** \brief Returns the coefficients b. */ const coef_type& coef_b( void ) const { return m_coef_b; } private: // stepper for systems with function for dq/dt = f(p) and dp/dt = -f(q) template< class System , class StateIn , class StateOut > void do_step_impl( System system , const StateIn &in , time_type /* t */ , StateOut &out , time_type dt , boost::mpl::true_ ) { typedef typename odeint::unwrap_reference< System >::type system_type; typedef typename odeint::unwrap_reference< typename system_type::first_type >::type coor_deriv_func_type; typedef typename odeint::unwrap_reference< typename system_type::second_type >::type momentum_deriv_func_type; system_type &sys = system; coor_deriv_func_type &coor_func = sys.first; momentum_deriv_func_type &momentum_func = sys.second; typedef typename odeint::unwrap_reference< StateIn >::type state_in_type; typedef typename odeint::unwrap_reference< typename state_in_type::first_type >::type coor_in_type; typedef typename odeint::unwrap_reference< typename state_in_type::second_type >::type momentum_in_type; const state_in_type &state_in = in; const coor_in_type &coor_in = state_in.first; const momentum_in_type &momentum_in = state_in.second; typedef typename odeint::unwrap_reference< StateOut >::type state_out_type; typedef typename odeint::unwrap_reference< typename state_out_type::first_type >::type coor_out_type; typedef typename odeint::unwrap_reference< typename state_out_type::second_type >::type momentum_out_type; state_out_type &state_out = out; coor_out_type &coor_out = state_out.first; momentum_out_type &momentum_out = state_out.second; m_dqdt_resizer.adjust_size( coor_in , detail::bind( &internal_stepper_base_type::template resize_dqdt< coor_in_type > , detail::ref( *this ) , detail::_1 ) ); m_dpdt_resizer.adjust_size( momentum_in , detail::bind( &internal_stepper_base_type::template resize_dpdt< momentum_in_type > , detail::ref( *this ) , detail::_1 ) ); // ToDo: check sizes? for( size_t l=0 ; lm_algebra.for_each3( coor_out , coor_in , m_dqdt.m_v , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) ); momentum_func( coor_out , m_dpdt.m_v ); this->m_algebra.for_each3( momentum_out , momentum_in , m_dpdt.m_v , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) ); } else { coor_func( momentum_out , m_dqdt.m_v ); this->m_algebra.for_each3( coor_out , coor_out , m_dqdt.m_v , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) ); momentum_func( coor_out , m_dpdt.m_v ); this->m_algebra.for_each3( momentum_out , momentum_out , m_dpdt.m_v , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) ); } } } // stepper for systems with only function dp /dt = -f(q), dq/dt = p, time not required but still expected for compatibility reasons template< class System , class StateIn , class StateOut > void do_step_impl( System system , const StateIn &in , time_type /* t */ , StateOut &out , time_type dt , boost::mpl::false_ ) { typedef typename odeint::unwrap_reference< System >::type momentum_deriv_func_type; momentum_deriv_func_type &momentum_func = system; typedef typename odeint::unwrap_reference< StateIn >::type state_in_type; typedef typename odeint::unwrap_reference< typename state_in_type::first_type >::type coor_in_type; typedef typename odeint::unwrap_reference< typename state_in_type::second_type >::type momentum_in_type; const state_in_type &state_in = in; const coor_in_type &coor_in = state_in.first; const momentum_in_type &momentum_in = state_in.second; typedef typename odeint::unwrap_reference< StateOut >::type state_out_type; typedef typename odeint::unwrap_reference< typename state_out_type::first_type >::type coor_out_type; typedef typename odeint::unwrap_reference< typename state_out_type::second_type >::type momentum_out_type; state_out_type &state_out = out; coor_out_type &coor_out = state_out.first; momentum_out_type &momentum_out = state_out.second; // m_dqdt not required when called with momentum_func only - don't resize // m_dqdt_resizer.adjust_size( coor_in , detail::bind( &internal_stepper_base_type::template resize_dqdt< coor_in_type > , detail::ref( *this ) , detail::_1 ) ); m_dpdt_resizer.adjust_size( momentum_in , detail::bind( &internal_stepper_base_type::template resize_dpdt< momentum_in_type > , detail::ref( *this ) , detail::_1 ) ); // ToDo: check sizes? // step 0 this->m_algebra.for_each3( coor_out , coor_in , momentum_in , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[0] * dt ) ); momentum_func( coor_out , m_dpdt.m_v ); this->m_algebra.for_each3( momentum_out , momentum_in , m_dpdt.m_v , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[0] * dt ) ); for( size_t l=1 ; lm_algebra.for_each3( coor_out , coor_out , momentum_out , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_a[l] * dt ) ); momentum_func( coor_out , m_dpdt.m_v ); this->m_algebra.for_each3( momentum_out , momentum_out , m_dpdt.m_v , typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , m_coef_b[l] * dt ) ); } } template< class StateIn > bool resize_dqdt( const StateIn &x ) { return adjust_size_by_resizeability( m_dqdt , x , typename is_resizeable::type() ); } template< class StateIn > bool resize_dpdt( const StateIn &x ) { return adjust_size_by_resizeability( m_dpdt , x , typename is_resizeable::type() ); } const coef_type m_coef_a; const coef_type m_coef_b; resizer_type m_dqdt_resizer; resizer_type m_dpdt_resizer; wrapped_coor_deriv_type m_dqdt; wrapped_momentum_deriv_type m_dpdt; }; /********* DOXYGEN *********/ /** * \class symplectic_nystroem_stepper_base * \brief Base class for all symplectic steppers of Nystroem type. * * This class is the base class for the symplectic Runge-Kutta-Nystroem steppers. Symplectic steppers are usually * used to solve Hamiltonian systems and they conserve the phase space volume, see * en.wikipedia.org/wiki/Symplectic_integrator. * Furthermore, the energy is conserved * in average. In detail this class of steppers can be used to solve separable Hamiltonian systems which can be written * in the form H(q,p) = H1(p) + H2(q). q is usually called the coordinate, while p is the momentum. The equations of motion * are dq/dt = dH1/dp, dp/dt = -dH2/dq. * * ToDo : add formula for solver and explanation of the coefficients * * symplectic_nystroem_stepper_base uses odeints algebra and operation system. Step size and error estimation are not * provided for this class of solvers. It derives from algebra_stepper_base. Several `do_step` variants are provided: * * - `do_step( sys , x , t , dt )` - The classical `do_step` method. The sys can be either a pair of function objects * for the coordinate or the momentum part or one function object for the momentum part. `x` is a pair of coordinate * and momentum. The state is updated in-place. * - `do_step( sys , q , p , t , dt )` - This method is similar to the method above with the difference that the coordinate * and the momentum are passed explicitly and not packed into a pair. * - `do_step( sys , x_in , t , x_out , dt )` - This method transforms the state out-of-place. `x_in` and `x_out` are here pairs * of coordinate and momentum. * * \tparam NumOfStages Number of stages. * \tparam Order The order of the stepper. * \tparam Coor The type representing the coordinates q. * \tparam Momentum The type representing the coordinates p. * \tparam Value The basic value type. Should be something like float, double or a high-precision type. * \tparam CoorDeriv The type representing the time derivative of the coordinate dq/dt. * \tparam MomemtnumDeriv The type representing the time derivative of the momentum dp/dt. * \tparam Time The type representing the time t. * \tparam Algebra The algebra. * \tparam Operations The operations. * \tparam Resizer The resizer policy. */ /** * \fn symplectic_nystroem_stepper_base::symplectic_nystroem_stepper_base( const coef_type &coef_a , const coef_type &coef_b , const algebra_type &algebra ) * \brief Constructs a symplectic_nystroem_stepper_base class. The parameters of the specific Nystroem method and the * algebra have to be passed. * \param coef_a The coefficients a. * \param coef_b The coefficients b. * \param algebra A copy of algebra is made and stored inside explicit_stepper_base. */ /** * \fn symplectic_nystroem_stepper_base::order( void ) const * \return Returns the order of the stepper. */ /** * \fn symplectic_nystroem_stepper_base::do_step( System system , const StateInOut &state , time_type t , time_type dt ) * \brief This method performs one step. The system can be either a pair of two function object * describing the momentum part and the coordinate part or one function object describing only * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state * is updated in-place. * * \note boost::ref or std::ref can be used for the system as well as for the state. So, it is correct * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , make_pair( std::ref( q ) , std::ref( p ) ) , t , dt )`. * * \note This method solves the forwarding problem. * * \param system The system, can be represented as a pair of two function object or one function object. See above. * \param state The state of the ODE. It is a pair of Coor and Momentum. The state is updated in-place, therefore, the * new value of the state will be written into this variable. * \param t The time of the ODE. It is not advanced by this method. * \param dt The time step. */ /** * \fn symplectic_nystroem_stepper_base::do_step( System system , CoorInOut &q , MomentumInOut &p , time_type t , time_type dt ) * \brief This method performs one step. The system can be either a pair of two function object * describing the momentum part and the coordinate part or one function object describing only * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state * is updated in-place. * * \note boost::ref or std::ref can be used for the system. So, it is correct * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , q , p , t , dt )`. * * \note This method solves the forwarding problem. * * \param system The system, can be represented as a pair of two function object or one function object. See above. * \param q The coordinate of the ODE. It is updated in-place. Therefore, the new value of the coordinate will be written * into this variable. * \param p The momentum of the ODE. It is updated in-place. Therefore, the new value of the momentum will be written info * this variable. * \param t The time of the ODE. It is not advanced by this method. * \param dt The time step. */ /** * \fn symplectic_nystroem_stepper_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt ) * \brief This method performs one step. The system can be either a pair of two function object * describing the momentum part and the coordinate part or one function object describing only * the momentum part. In this case the coordinate is assumed to be trivial dq/dt = p. The state * is updated out-of-place. * * \note boost::ref or std::ref can be used for the system. So, it is correct * to write `stepper.do_step( make_pair( std::ref( fq ) , std::ref( fp ) ) , x_in , t , x_out , dt )`. * * \note This method NOT solve the forwarding problem. * * \param system The system, can be represented as a pair of two function object or one function object. See above. * \param in The state of the ODE, which is a pair of coordinate and momentum. The state is updated out-of-place, therefore the * new value is written into out * \param t The time of the ODE. It is not advanced by this method. * \param out The new state of the ODE. * \param dt The time step. */ /** * \fn symplectic_nystroem_stepper_base::adjust_size( const StateType &x ) * \brief Adjust the size of all temporaries in the stepper manually. * \param x A state from which the size of the temporaries to be resized is deduced. */ } // namespace odeint } // namespace numeric } // namespace boost #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_SYMPLECTIC_RKN_STEPPER_BASE_HPP_INCLUDED