/* [auto_generated] boost/numeric/odeint/stepper/extrapolation_stepper.hpp [begin_description] extrapolation stepper [end_description] Copyright 2009-2015 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_STEPPER_EXTRAPOLATION_STEPPER_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_STEPPER_EXTRAPOLATION_STEPPER_HPP_INCLUDED #include #include #include // for min/max guidelines #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace numeric { namespace odeint { template < unsigned short Order, class State, class Value = double, class Deriv = State, class Time = Value, class Algebra = typename algebra_dispatcher< State >::algebra_type, class Operations = typename operations_dispatcher< State >::operations_type, class Resizer = initially_resizer > #ifndef DOXYGEN_SKIP class extrapolation_stepper : public explicit_error_stepper_base< extrapolation_stepper< Order, State, Value, Deriv, Time, Algebra, Operations, Resizer >, Order, Order, Order - 2, State, Value, Deriv, Time, Algebra, Operations, Resizer > #else class extrapolation_stepper : public explicit_error_stepper_base #endif { private: // check for Order being odd BOOST_STATIC_ASSERT_MSG( ( ( Order % 2 ) == 0 ) && ( Order > 2 ), "extrapolation_stepper requires even Order larger than 2" ); public: #ifndef DOXYGEN_SKIP typedef explicit_error_stepper_base< extrapolation_stepper< Order, State, Value, Deriv, Time, Algebra, Operations, Resizer >, Order, Order, Order - 2, State, Value, Deriv, Time, Algebra, Operations, Resizer > stepper_base_type; #else typedef explicit_error_stepper_base< extrapolation_stepper< ... >, ... > stepper_base_type; #endif typedef typename stepper_base_type::state_type state_type; typedef typename stepper_base_type::value_type value_type; typedef typename stepper_base_type::deriv_type deriv_type; typedef typename stepper_base_type::time_type time_type; typedef typename stepper_base_type::algebra_type algebra_type; typedef typename stepper_base_type::operations_type operations_type; typedef typename stepper_base_type::resizer_type resizer_type; #ifndef DOXYGEN_SKIP typedef typename stepper_base_type::stepper_type stepper_type; typedef typename stepper_base_type::wrapped_state_type wrapped_state_type; typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type; typedef std::vector< value_type > value_vector; typedef std::vector< value_vector > value_matrix; typedef std::vector< size_t > int_vector; typedef std::vector< wrapped_state_type > state_table_type; typedef modified_midpoint< state_type, value_type, deriv_type, time_type, algebra_type, operations_type, resizer_type > midpoint_stepper_type; #endif // DOXYGEN_SKIP typedef unsigned short order_type; static const order_type order_value = stepper_base_type::order_value; static const order_type stepper_order_value = stepper_base_type::stepper_order_value; static const order_type error_order_value = stepper_base_type::error_order_value; const static size_t m_k_max = ( order_value - 2 ) / 2; extrapolation_stepper( const algebra_type &algebra = algebra_type() ) : stepper_base_type( algebra ), m_interval_sequence( m_k_max + 1 ), m_coeff( m_k_max + 1 ), m_table( m_k_max ) { for ( unsigned short i = 0; i < m_k_max + 1; i++ ) { m_interval_sequence[i] = 2 * ( i + 1 ); m_coeff[i].resize( i ); for ( size_t k = 0; k < i; ++k ) { const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] ); m_coeff[i][k] = static_cast< value_type >( 1 ) / ( r * r - static_cast< value_type >( 1 ) ); // coefficients for extrapolation } } } template < class System, class StateIn, class DerivIn, class StateOut, class Err > void do_step_impl( System system, const StateIn &in, const DerivIn &dxdt, time_type t, StateOut &out, time_type dt, Err &xerr ) { // std::cout << "dt: " << dt << std::endl; // normal step do_step_impl( system, in, dxdt, t, out, dt ); static const value_type val1( 1.0 ); // additionally, perform the error calculation stepper_base_type::m_algebra.for_each3( xerr, out, m_table[0].m_v, typename operations_type::template scale_sum2< value_type, value_type >( val1, -val1 ) ); } template < class System, class StateInOut, class DerivIn, class Err > void do_step_impl_io( System system, StateInOut &inout, const DerivIn &dxdt, time_type t, time_type dt, Err &xerr ) { // normal step do_step_impl_io( system, inout, dxdt, t, dt ); static const value_type val1( 1.0 ); // additionally, perform the error calculation stepper_base_type::m_algebra.for_each3( xerr, inout, m_table[0].m_v, typename operations_type::template scale_sum2< value_type, value_type >( val1, -val1 ) ); } template < class System, class StateIn, class DerivIn, class StateOut > void do_step_impl( System system, const StateIn &in, const DerivIn &dxdt, time_type t, StateOut &out, time_type dt ) { m_resizer.adjust_size( in, detail::bind( &stepper_type::template resize_impl< StateIn >, detail::ref( *this ), detail::_1 ) ); size_t k = 0; m_midpoint.set_steps( m_interval_sequence[k] ); m_midpoint.do_step( system, in, dxdt, t, out, dt ); for ( k = 1; k <= m_k_max; ++k ) { m_midpoint.set_steps( m_interval_sequence[k] ); m_midpoint.do_step( system, in, dxdt, t, m_table[k - 1].m_v, dt ); extrapolate( k, m_table, m_coeff, out ); } } template < class System, class StateInOut, class DerivIn > void do_step_impl_io( System system, StateInOut &inout, const DerivIn &dxdt, time_type t, time_type dt ) { // special care for inout m_xout_resizer.adjust_size( inout, detail::bind( &stepper_type::template resize_m_xout< StateInOut >, detail::ref( *this ), detail::_1 ) ); do_step_impl( system, inout, dxdt, t, m_xout.m_v, dt ); boost::numeric::odeint::copy( m_xout.m_v, inout ); } template < class System, class StateInOut, class DerivIn > void do_step_dxdt_impl( System system, StateInOut &x, const DerivIn &dxdt, time_type t, time_type dt ) { do_step_impl_io( system , x , dxdt , t , dt ); } template < class System, class StateIn, class DerivIn, class StateOut > void do_step_dxdt_impl( System system, const StateIn &in, const DerivIn &dxdt, time_type t, StateOut &out, time_type dt ) { do_step_impl( system , in , dxdt , t , out , dt ); } template < class StateIn > void adjust_size( const StateIn &x ) { resize_impl( x ); m_midpoint.adjust_size( x ); } private: template < class StateIn > bool resize_impl( const StateIn &x ) { bool resized( false ); for ( size_t i = 0; i < m_k_max; ++i ) resized |= adjust_size_by_resizeability( m_table[i], x, typename is_resizeable< state_type >::type() ); return resized; } template < class StateIn > bool resize_m_xout( const StateIn &x ) { return adjust_size_by_resizeability( m_xout, x, typename is_resizeable< state_type >::type() ); } template < class StateInOut > void extrapolate( size_t k, state_table_type &table, const value_matrix &coeff, StateInOut &xest ) /* polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf uses the obtained intermediate results to extrapolate to dt->0 */ { static const value_type val1 = static_cast< value_type >( 1.0 ); for ( int j = k - 1; j > 0; --j ) { stepper_base_type::m_algebra.for_each3( table[j - 1].m_v, table[j].m_v, table[j - 1].m_v, typename operations_type::template scale_sum2< value_type, value_type >( val1 + coeff[k][j], -coeff[k][j] ) ); } stepper_base_type::m_algebra.for_each3( xest, table[0].m_v, xest, typename operations_type::template scale_sum2< value_type, value_type >( val1 + coeff[k][0], -coeff[k][0] ) ); } private: midpoint_stepper_type m_midpoint; resizer_type m_resizer; resizer_type m_xout_resizer; int_vector m_interval_sequence; // stores the successive interval counts value_matrix m_coeff; wrapped_state_type m_xout; state_table_type m_table; // sequence of states for extrapolation }; /******** DOXYGEN *******/ /** * \class extrapolation_stepper * \brief Extrapolation stepper with configurable order, and error estimation. * * The extrapolation stepper is a stepper with error estimation and configurable * order. The order is given as template parameter and needs to be an _odd_ * number. The stepper is based on several executions of the modified midpoint * method and a Richardson extrapolation. This is essentially the same technique * as for bulirsch_stoer, but without the variable order. * * \note The Order parameter has to be an even number greater 2. */ } } } #endif