/*============================================================================= Phoenix V1.2.1 Copyright (c) 2001-2002 Joel de Guzman MT code Copyright (c) 2002-2003 Martin Wille Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ==============================================================================*/ #ifndef CLASSIC_PHOENIX_CLOSURES_HPP #define CLASSIC_PHOENIX_CLOSURES_HPP /////////////////////////////////////////////////////////////////////////////// #include #include #ifdef PHOENIX_THREADSAFE #include #include #endif /////////////////////////////////////////////////////////////////////////////// namespace phoenix { #if BOOST_WORKAROUND(BOOST_MSVC, >= 1400) #pragma warning(push) #pragma warning(disable:4512) //assignment operator could not be generated #endif /////////////////////////////////////////////////////////////////////////////// // // Adaptable closures // // The framework will not be complete without some form of closures // support. Closures encapsulate a stack frame where local // variables are created upon entering a function and destructed // upon exiting. Closures provide an environment for local // variables to reside. Closures can hold heterogeneous types. // // Phoenix closures are true hardware stack based closures. At the // very least, closures enable true reentrancy in lambda functions. // A closure provides access to a function stack frame where local // variables reside. Modeled after Pascal nested stack frames, // closures can be nested just like nested functions where code in // inner closures may access local variables from in-scope outer // closures (accessing inner scopes from outer scopes is an error // and will cause a run-time assertion failure). // // There are three (3) interacting classes: // // 1) closure: // // At the point of declaration, a closure does not yet create a // stack frame nor instantiate any variables. A closure declaration // declares the types and names[note] of the local variables. The // closure class is meant to be subclassed. It is the // responsibility of a closure subclass to supply the names for // each of the local variable in the closure. Example: // // struct my_closure : closure { // // member1 num; // names the 1st (int) local variable // member2 message; // names the 2nd (string) local variable // member3 real; // names the 3rd (double) local variable // }; // // my_closure clos; // // Now that we have a closure 'clos', its local variables can be // accessed lazily using the dot notation. Each qualified local // variable can be used just like any primitive actor (see // primitives.hpp). Examples: // // clos.num = 30 // clos.message = arg1 // clos.real = clos.num * 1e6 // // The examples above are lazily evaluated. As usual, these // expressions return composite actors that will be evaluated // through a second function call invocation (see operators.hpp). // Each of the members (clos.xxx) is an actor. As such, applying // the operator() will reveal its identity: // // clos.num() // will return the current value of clos.num // // *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB) // introduced and initilally implemented the closure member names // that uses the dot notation. // // 2) closure_member // // The named local variables of closure 'clos' above are actually // closure members. The closure_member class is an actor and // conforms to its conceptual interface. member1..memberN are // predefined typedefs that correspond to each of the listed types // in the closure template parameters. // // 3) closure_frame // // When a closure member is finally evaluated, it should refer to // an actual instance of the variable in the hardware stack. // Without doing so, the process is not complete and the evaluated // member will result to an assertion failure. Remember that the // closure is just a declaration. The local variables that a // closure refers to must still be instantiated. // // The closure_frame class does the actual instantiation of the // local variables and links these variables with the closure and // all its members. There can be multiple instances of // closure_frames typically situated in the stack inside a // function. Each closure_frame instance initiates a stack frame // with a new set of closure local variables. Example: // // void foo() // { // closure_frame frame(clos); // /* do something */ // } // // where 'clos' is an instance of our closure 'my_closure' above. // Take note that the usage above precludes locally declared // classes. If my_closure is a locally declared type, we can still // use its self_type as a paramater to closure_frame: // // closure_frame frame(clos); // // Upon instantiation, the closure_frame links the local variables // to the closure. The previous link to another closure_frame // instance created before is saved. Upon destruction, the // closure_frame unlinks itself from the closure and relinks the // preceding closure_frame prior to this instance. // // The local variables in the closure 'clos' above is default // constructed in the stack inside function 'foo'. Once 'foo' is // exited, all of these local variables are destructed. In some // cases, default construction is not desirable and we need to // initialize the local closure variables with some values. This // can be done by passing in the initializers in a compatible // tuple. A compatible tuple is one with the same number of // elements as the destination and where each element from the // destination can be constructed from each corresponding element // in the source. Example: // // tuple init(123, "Hello", 1000); // closure_frame frame(clos, init); // // Here now, our closure_frame's variables are initialized with // int: 123, char const*: "Hello" and int: 1000. // /////////////////////////////////////////////////////////////////////////////// namespace impl { /////////////////////////////////////////////////////////////////////// // closure_frame_holder is a simple class that encapsulates the // storage for a frame pointer. It uses thread specific data in // case when multithreading is enabled, an ordinary pointer otherwise // // it has get() and set() member functions. set() has to be used // _after_ get(). get() contains intialisation code in the multi // threading case // // closure_frame_holder is used by the closure<> class to store // the pointer to the current frame. // #ifndef PHOENIX_THREADSAFE template struct closure_frame_holder { typedef FrameT frame_t; typedef frame_t *frame_ptr; closure_frame_holder() : frame(0) {} frame_ptr &get() { return frame; } void set(frame_t *f) { frame = f; } private: frame_ptr frame; // no copies, no assignments closure_frame_holder(closure_frame_holder const &); closure_frame_holder &operator=(closure_frame_holder const &); }; #else template struct closure_frame_holder { typedef FrameT frame_t; typedef frame_t *frame_ptr; closure_frame_holder() : tsp_frame() {} frame_ptr &get() { if (!tsp_frame.get()) tsp_frame.reset(new frame_ptr(0)); return *tsp_frame; } void set(frame_ptr f) { *tsp_frame = f; } private: boost::thread_specific_ptr tsp_frame; // no copies, no assignments closure_frame_holder(closure_frame_holder const &); closure_frame_holder &operator=(closure_frame_holder const &); }; #endif } // namespace phoenix::impl /////////////////////////////////////////////////////////////////////////////// // // closure_frame class // /////////////////////////////////////////////////////////////////////////////// template class closure_frame : public ClosureT::tuple_t { public: closure_frame(ClosureT const& clos) : ClosureT::tuple_t(), save(clos.frame.get()), frame(clos.frame) { clos.frame.set(this); } template closure_frame(ClosureT const& clos, TupleT const& init) : ClosureT::tuple_t(init), save(clos.frame.get()), frame(clos.frame) { clos.frame.set(this); } ~closure_frame() { frame.set(save); } private: closure_frame(closure_frame const&); // no copy closure_frame& operator=(closure_frame const&); // no assign closure_frame* save; impl::closure_frame_holder& frame; }; /////////////////////////////////////////////////////////////////////////////// // // closure_member class // /////////////////////////////////////////////////////////////////////////////// template class closure_member { public: typedef typename ClosureT::tuple_t tuple_t; closure_member() : frame(ClosureT::closure_frame_holder_ref()) {} template struct result { typedef typename tuple_element< N, typename ClosureT::tuple_t >::rtype type; }; template typename tuple_element::rtype eval(TupleT const& /*args*/) const { using namespace std; BOOST_ASSERT(frame.get() != 0); return (*frame.get())[tuple_index()]; } private: impl::closure_frame_holder &frame; }; /////////////////////////////////////////////////////////////////////////////// // // closure class // /////////////////////////////////////////////////////////////////////////////// template < typename T0 = nil_t , typename T1 = nil_t , typename T2 = nil_t #if PHOENIX_LIMIT > 3 , typename T3 = nil_t , typename T4 = nil_t , typename T5 = nil_t #if PHOENIX_LIMIT > 6 , typename T6 = nil_t , typename T7 = nil_t , typename T8 = nil_t #if PHOENIX_LIMIT > 9 , typename T9 = nil_t , typename T10 = nil_t , typename T11 = nil_t #if PHOENIX_LIMIT > 12 , typename T12 = nil_t , typename T13 = nil_t , typename T14 = nil_t #endif #endif #endif #endif > class closure { public: typedef tuple< T0, T1, T2 #if PHOENIX_LIMIT > 3 , T3, T4, T5 #if PHOENIX_LIMIT > 6 , T6, T7, T8 #if PHOENIX_LIMIT > 9 , T9, T10, T11 #if PHOENIX_LIMIT > 12 , T12, T13, T14 #endif #endif #endif #endif > tuple_t; typedef closure< T0, T1, T2 #if PHOENIX_LIMIT > 3 , T3, T4, T5 #if PHOENIX_LIMIT > 6 , T6, T7, T8 #if PHOENIX_LIMIT > 9 , T9, T10, T11 #if PHOENIX_LIMIT > 12 , T12, T13, T14 #endif #endif #endif #endif > self_t; typedef closure_frame closure_frame_t; closure() : frame() { closure_frame_holder_ref(&frame); } typedef actor > member1; typedef actor > member2; typedef actor > member3; #if PHOENIX_LIMIT > 3 typedef actor > member4; typedef actor > member5; typedef actor > member6; #if PHOENIX_LIMIT > 6 typedef actor > member7; typedef actor > member8; typedef actor > member9; #if PHOENIX_LIMIT > 9 typedef actor > member10; typedef actor > member11; typedef actor > member12; #if PHOENIX_LIMIT > 12 typedef actor > member13; typedef actor > member14; typedef actor > member15; #endif #endif #endif #endif #if !defined(__MWERKS__) || (__MWERKS__ > 0x3002) private: #endif closure(closure const&); // no copy closure& operator=(closure const&); // no assign #if !defined(__MWERKS__) || (__MWERKS__ > 0x3002) template friend class closure_member; template friend class closure_frame; #endif typedef impl::closure_frame_holder holder_t; #ifdef PHOENIX_THREADSAFE static boost::thread_specific_ptr & tsp_frame_instance() { static boost::thread_specific_ptr the_instance; return the_instance; } static void tsp_frame_instance_init() { tsp_frame_instance(); } #endif static holder_t & closure_frame_holder_ref(holder_t* holder_ = 0) { #ifdef PHOENIX_THREADSAFE #ifndef BOOST_THREAD_PROVIDES_ONCE_CXX11 static boost::once_flag been_here = BOOST_ONCE_INIT; #else static boost::once_flag been_here; #endif boost::call_once(been_here, tsp_frame_instance_init); boost::thread_specific_ptr &tsp_frame = tsp_frame_instance(); if (!tsp_frame.get()) tsp_frame.reset(new holder_t *(0)); holder_t *& holder = *tsp_frame; #else static holder_t* holder = 0; #endif if (holder_ != 0) holder = holder_; return *holder; } mutable holder_t frame; }; #if BOOST_WORKAROUND(BOOST_MSVC, >= 1400) #pragma warning(pop) #endif } // namespace phoenix #endif