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Abstract

A key step in experiments using DNA microarrays is locating
the thousands of individual spots in a scanned array image.
Each spot provides quantitative information about a distinct
DNA sequence, so it is imperative that spots be found and
quantitated accurately. Spot finding is complicated by varia-
tions in the positions and sizes of spots and by the presence
of artifacts and background noise in microarray images.
We describeDapple, a new spot finding implementation for
microarrays on glass slides. Dapple finds spots using mor-
phological information which is robust to both variation and
artifacts. It achieves high spot finding throughput and ac-
curacy by learning to evaluate the quality of candidate spots
from examples supplied by the user. Dapple’s techniques are
useful for improving the accuracy of data acquisition from
DNA microarrays.

Availability : Dapple runs on UNIX-like systems
using the Qt GUI toolkit for X. The C++ source
code and a prebuilt Linux binary are available at
http://www.cs.washington.edu/homes/jbuhler/dapple/.

1 Introduction

The DNA microarray [15, 13] is a popular and effective
method for assaying the expression of large numbers of
genes at once. Arrays have been used to interrogate expres-
sion of hundreds or thousands of genes simultaneously, both
in yeast [4] and in human cells [14]. Gene expression data
derived from arrays may be used for gene clustering [7], tis-
sue differentiation [1], and other analyses.

If gene expression levels derived from microarrays are to
be used for analytical purposes, they must be quantitatively
accurate. A comprehensive quality control and assessment
process for microarray data must contend with numerous
sources of experimental error. We will address one partic-
ular error source: the difficulty of identifying the locations
and extents of labeled DNA spots in a scanned microarray
image. We call this issue thespot finding problem.

Solving the spot finding problem is crucial to making ac-
curate expression measurements because errors in spot find-
ing, the first step in processing microarray data, propagate to
all subsequent analyses. Three constraints combine to make
the problem difficult. First, the spot finder must be robust to
substantial uncertainties in spot size and position caused by
variations in the amount of DNA on each spot and in the lo-
cation where it is spotted. Second, the finder must cope with
both diffuse image noise and discrete image artifacts arising
from airborne particles or nonuniform washing of the array
surface. Image artifacts in particular may be as large and
bright as one or even several adjacent spots. Third, the spot
finder must be efficient and effective when applied to large
numbers of spots.

A single experiment may utilize tens of arrays (105 spots),
while a very high-throughput user, such as a pharmaceutical
company, might produce tens of thousands of arrays (108

spots) per year. Effective processing of such large numbers
of spots demands that a spot finder be highly accurate with-
out requiring visual inspection of most spots by a human in-

vestigator. To automate detection of spot finding errors and
spots of poor quality, current implementations require the
user to specify explicit thresholds of various attributes, such
as brightness, which separate acceptable from unacceptable
spots. Choosing good thresholds manually for multiple at-
tributes is time-consuming and may not achieve the desired
result. A better solution is to have the spot finder automat-
ically learn the investigator’s concept of when a found spot
is correct and of acceptable quality.

This paper describesDapple, a new program for finding
and quantitating spots on microarray images which departs
from previously described implementations in two ways.
First, Dapple’s spot finder takes advantage of consistent spot
morphology (i.e. circularity) to increase its robustness both
to image noise and to variability in spot position and size.
Second, the program learns the investigator’s concept of spot
quality by example, using a classifier which can be trained
on manually classified examples of the spot finder’s output.
Once trained, the classifier is used to direct the automated
spot finder to reprocess parts of the image on which the spot
finder has likely erred. We have found these methods effec-
tive in constructing a practical solution to the spot finding
problem.

The rest of this report is organized as follows. We first
specify the spot finding problem in more detail and dis-
cuss previous spot finding implementations for microarrays.
We then describe Dapple’s methods and show results which
demonstrate their effectiveness. Finally, we briefly recount
our practical experience with Dapple and conclude with sug-
gestions for future improvements to our methods.

2 The Spot Finding Problem

Dapple was developed to quantitate images from compar-
ative gene expression experiments using two-color fluores-
cently labeled cDNA microarrays on glass. The arrays used
to develop Dapple were produced using the Molecular Dy-
namics Generation II arraying system; subsequently, we
have successfully applied the program to higher-density MD
Generation III arrays as well as arrays produced with other
equipment. Below, we briefly review the characteristics of
the original Generation II arrays, which except for lower
spotting density are typical of the arrays used today.

A microarray is a collection of DNA spots deposited on
the surface of a glass slide. Each spot contains many copies
of a single DNA sequence such as a gene. In a compara-
tive gene expression experiment, the array is incubated with
two cDNA probes, each of which is a mixture of cDNA’s
derived from the expressed mRNA of a distinct cell pop-
ulation. Each probe is labeled with a different fluorescent
dye. Labeled cDNA molecules hybridize to spots on the ar-
ray containing their complementary sequences, in numbers
proportional to their concentrations in the probe populations.
After hybridization, the amount of bound, labeled cDNA on
each spot is inferred from the amount of fluorescence emit-
ted when the spot is stimulated with a laser. Typically, we
are interested only in theratio of cDNA concentrations in
the two probes for each spotted sequence, since the mea-
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sured fluorescent intensities are not calibrated to absolute
amounts of DNA.

In practice, an entire slide is scanned by the laser to pro-
duce a largearray imagewhich contains the images of all
the spots on an array, laid out in rectilineargrids. The
spots occupy a relatively small fraction of the image area, so
they must be individually found and isolated from the image
background prior to quantitation. This spot finding prob-
lem is generally solved as follows: identify the locations of
all grids on the array image; subdivide each grid into small
rectangles containing at most one spot each; and finally lo-
cate the spot, if any, in each rectangle. We refer to the image
rectangles containing individual spots asvignettes.

A single microarray produced by the Generation II system
occupies an area of approximately 6×1 cm, containing up
to 1536 DNA spots organized in six 16×16 grids. Inter-spot
separation within each grid is on the order of 500µm. More
recent systems increase the spotting density and number of
spots per array by a factor of three to ten. The fluorescent
intensities for each dye are measured separately, producing
a two-channel image. Intensities are scanned at a linear res-
olution of ten microns per pixel, with a dynamic range of
roughly 105.

2.1 Sources of Variation and Noise

The major sources of uncertainty in spot finding on microar-
rays are variable spot size and position, variation of the im-
age background, and discrete image artifacts.

Spots vary significantly in size and position within their
vignettes despite the use of precise robotic tools to lay them
out. The six grids on each array are spotted simultaneously
by repeatedly dipping six pins, each in a solution containing
a different DNA sequence, and transferring drops of solution
from the pin tips to the slide surface. The relative placement
of adjacent grids is therefore determined by the spacing be-
tween adjacent pins, which may vary by 100µm or more.
The pin laying out any one grid is slightly offset after each
spotting to separate adjacent spots; variations in the sizes of
these offsets can cause inter-spot distances to vary by 30-50
µm. Differences in the sizes of transferred drops cause indi-
vidual spots to vary between 30 and 150µm in radius – the
same order of magnitude as the positional uncertainties.

Identifying spots, even with position and size variations,
would be easy if they were always presented against a uni-
form low image background. In practice, however, the nat-
ural fluorescence of the glass slide and any non-specifically
bound DNA or dye molecules add a substantial noise floor to
the image. This diffuse noise exhibits considerable variabil-
ity in intensity both within and between vignettes. It is about
10% as bright on average as the most highly fluorescent
spots but can be almost as bright as dimmer spots, making
them hard to distinguish from background variations. This
phenomenon is especially frustrating because dim spots of-
ten correspond to interesting genes which are unfortunately
expressed at low copy number.

Microarrays are also afflicted with discrete image artifacts
such as highly fluorescent dust particles, unattached dye, salt

A B C

Figure 1: examples of spots affected by microarray image
artifacts. Each spot is visible near the center of its vignette;
darker pixels indicate higher intensities. (A) spot with bright
dust particles; (B) spot with two round artifacts composed of
unattached fluorescent dye; (C) spot partially obscured by a
large stain. Each image is 500×500µm and was extracted
from an MD Generation II array image.

deposits from evaporated solvents, and fibers or other air-
borne debris. Examples of some of these artifacts are shown
in Figure 1. Such artifacts appear in 10-15% of vignettes at
random, even after thorough cleaning of the slide, and (as
the figure illustrates) can easily be brighter and sometimes
larger than nearby spots. Their heterogeneous brightness,
shape, and size make them hard to detect and remove au-
tomatically, especially in the presence of spots which are
themselves of variable size and brightness. Bright artifacts
complicate spot finding because finders sometimes mistake
them for spots.

The need to overcome position and size variations while
dealing robustly with image noise and artifacts is a principal
source of complexity in solving the spot finding problem.

2.2 Previous Work in Microarray Spot Finders

Several implementations of spot finding have been described
for microarrays, both on rigid slides and on flexible mem-
branes. Below, we review some essential features of these
implementations as compared to Dapple. Other implemen-
tations may be found in commercial array analysis packages
but have not been publicly documented.

Granjeaud and colleagues implemented the HDG pro-
gram [9] to quantitate radiolabeled arrays spotted on nylon
membranes. Their approach is similar to previous work in
locating protein spots on 2D PAGE gels, such as the Melanie
II system [2]. HDG, like Melanie II, identifies candidate
spots by tracing their edges. Spot morphology on mem-
branes is quite variable, so edges may be of arbitrary shape
and may even be locally concave. HDG does not use the ge-
ometry of the array to direct its search for spots; candidate
spots may be found anywhere on the image in any arrange-
ment. Only after this search are spots filtered based on a
template of their expected positions, which may be warped
interactively by the user to fit the image. HDG’s lack of
positional bias in spot finding is appropriate for membrane-
based arrays because it is robust to nonlinear deformations
of the membrane which commonly occur during image ac-
quisition.

The DeArray package, described by Chen and col-
leagues [3], imposes a much stronger position bias on spot
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finding than HDG but is similarly agnostic about spot mor-
phology. DeArray was developed for arrays on rigid glass
slides; these slides do not suffer the distortions of mem-
branes, so the program can safely divide an array image into
rectilinear grids of vignettes and process each vignette sep-
arately. DeArray’s spot finder initially divides each vignette
into rough spot and background regions using a circular tem-
plate of fixed position and size, but it then refines the spot
into an arbitrary, possibly disconnected set of bright pixels.
The cutoff intensity between the bright spot and dim back-
ground pixels is chosen so that a small set of pixels sampled
from the spot is significantly brighter than an equal-sized
sample from the background, as measured by the Mann-
Whitney-Wilcoxon test. The initial template is used only to
prevent pixels near the edges of the vignette from appearing
in the spot’s sample during the cutoff computation.

Dapple adopts not only the positional bias appropriate to
arrays on glass but also a strong morphological bias towards
circular spots, which contrasts with both HDG and DeAr-
ray. We can exploit morphological information in our spot
finder because our arraying system, unlike those used with
the other spot finders described here, produces spots with re-
liably circular outlines. For our arrays, a morphology-based
spot finder proved better able to cope with spot position and
size variations because intensity-based segmentation often
failed to correct its initial rough guess at the location and
extent of a spot. Morphology also proved a more reliable
means to distinguish spots from equally bright but heteroge-
neously shaped image artifacts.

We believe that the consistently-shaped spots necessary
for a morphology-based finder are typical of most commer-
cially produced arraying systems, though not of the popular
design developed at Stanford University [6]. The difference
may be that our spotting protocol dries deposited drops on
the slide more slowly, minimizing known problems of un-
even solute deposition [5].

Dapple also departs from previously described spot find-
ers in its use of an example-based classifier to decide
whether candidate spots have been found correctly and are
usable for further analysis. Previous spot finders, includ-
ing both programs described above and Eisen’s ScanAlyze
software [6], require the investigator to parameterize their
spot classifiers explicitly, e.g. “reject all spots whose inten-
sities are less than three times their local background.” Sat-
isfactory parameterizations are often arrived at only by an
extended process of trial and error, especially when multi-
ple image attributes are available for classification (ten at-
tributes in the case of ScanAlyze). In contrast, Dapple’s
classifier is parameterized by example: the user manually
classifies a training set of candidate spots qualitatively ac-
cording to their perceived accuracy, after which the software
adjusts its classifier to best reproduce the user’s judgment
as expressed on the training set. Parameterization by exam-
ple, a basic technique of machine learning [11], provides a
convenient and powerful way for an investigator to specify
complex concepts of spot quality without explicitly deter-
mining classification thresholds for image attribute values.

3 Implementation of Dapple

Dapple first divides an array into its constituent grids, which
are placed using the known array geometry and refined so
as to roughly center spots within their vignettes. Each vi-
gnette is then analyzed in one or more passes to separate its
spot from the image background. A single pass proposes a
candidate spot by identifying a strong circular edge in the
vignette’s image. The proposed spot is evaluated based on
its location and brightness; if accepted, it is kept for eventual
quantitation. Otherwise, the vignette is modified to remove
the rejected candidate edge and analyzed again to find a new
candidate.

3.1 Initial Segmentation into Grids

Dapple uses the geometry of a microarray – number and
relative spacing of grids, plus arrangement and spacing of
spots within each grid – to divide an array image into vi-
gnettes which contain individual spots. The array’s geom-
etry is fixed by robotic spotting apparatus at the time it is
spotted on a slide. The primary complexities in grid place-
ment are that the inter-grid spacing is only approximately
accurate, as discussed above, and that the actual array of
spots does not occur in a fixed position relative to the image
origin.

Dapple acquires a corner of the array by asking the user
to click on a specified spot with the mouse. This initial
placement plus the known geometry place the grids approx-
imately correctly but may err by as much as one full inter-
spot distance for some grids. Each grid is therefore indi-
vidually adjusted so that its spots are on average centered
with respect to their vignettes. Because spots have not yet
been found, the center of each spot is approximated by its vi-
gnette’scenter of intensity, analogous to the center of mass.
For an imageI with pixel intensitiesI(x, y), the center of
intensity inx is the expectation

x =

∑
x,y xI(x, y)∑
x,y I(x, y)

(1)

An analogous expectation yields the center iny. In prac-
tice, the center is computed only from pixels above the me-
dian vignette intensity to avoid biasing it toward the center
of the vignette. We could improve our estimates of the vi-
gnette centers by iterating the process several times, com-
puting new centers of intensity after each movement of the
grids; in practice, however, one iteration of centering, com-
bined with a fast local optimization over all small offsets of
the resulting grids, is sufficient to center all grids accurately.
The entire process typically requires no manual intervention
after the initial click.

After initial segmentation, the image under each grid is
median filtered to remove point artifacts, notably small but
very bright dust particles. The filtered images are used for
subsequent spot finding.
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Figure 2: an intensity cross-section of a typical spot (solid
line) overlaid with its negative second derivative (dashed
line; only regions greater than zero are shown). The neg-
ative second derivative is maximized at the upper edge of
the spot.

3.2 Identification of Spots

Dapple finds spots by detecting their edges. Specifically, it
detects the sharp edge which generally occurs in a spot’s
intensity profile at the point where it flattens out after ris-
ing steeply above the image background. Figure 2 shows
an intensity cross section of a typical spot which illustrates
this transition. The edge corresponds to a strong local max-
imum in the profile’s negative second derivative, shown by
the dashed line.

The signed magnitude of the second derivative at every
point in the vignette image is given by the Laplacian, defined
for a continuous two-dimensional imageI as

∇2I =
∂2I

∂x2
+
∂2I

∂y2

We compute a standard four-neighbor second-difference ap-
proximation to the Laplacian on our discrete images. The
pixel-wise negationL = −∇2I of the Laplacian image ex-
hibits a local maximum in a ring corresponding to the outline
of the circular spot, as shown in Figure 3B.

A spot actually has two edges, both visible in Figure 2 –
a lower edge, where it begins to rise above the background,
and the aforementioned upper edge, where it flattens out at
high intensity. The lower edge corresponds to a maximum
of thenon-negated second derivative and could theoretically
be used for spot finding. However, we found that the lower
edge was typically less sharply defined than the upper edge
and so was less reliable for determining a spot’s location and
radius.

To detect a ring of high intensity in the Laplacian image
L, we apply matched filtering by convolution with a series
of annular filters, one of which is shown in Figure 3C. Each
filter Mr responds to a ring of radius approximatelyr in

Figure 3: the spot finding process. (A) a vignette image con-
taining a spot; (B) the negative LaplacianL of the image,
which highlights the spot’s edge; (C) a circular filterMr (r
= 11 pixels) which matches the spot’s radius; (D) the 2D cor-
relation ofMr at all offsets againstL, which is maximized
at the spot’s center.

L. Mr is a ring of unit-intensity pixels on a zero-intensity
background; we give this ring a Gaussian edge, which is
equivalent to smoothing the image Laplacian slightly to al-
low for minor misregistration of the spot with the filter. The
response of each filterMr is computed for each offset of the
filter against the vignette image by a discrete 2D correlation.
Let n × n (n odd) be the common size of the imageL and
filter Mr, and letm = n−1

2 ; then the correlation ofL with
Mr is given by

Cp,q =
m∑

i=−m

m∑
j=−m

L(i, j)Mr(i− p, j − q) (2)

Here, the image center is at coordinates(0, 0), andCp,q is
thecorrelation scoreobserved when the filter is centered on
pixel p, q of the image. As Figure 3D shows,Cp,q is max-
imized when the center of the filter is aligned to the center
of the spot. The highest correlation score over all filtersMr

occurs when the radiusr most closely matches that of the
spot.

Several important facts about the above procedure should
be noted. First, each filter is normalized to unit energy so as
not to bias the finder toward larger spots. However, the im-
age isnot normalized, intentionally biasing in favor of can-
didate spots with the strongest edges, which in practice also
tend to be brightest. Second, a filter may give a strong re-
sponse even to an incomplete circular edge, which provides
robustness in locating partial or obscured spots. Finally, the
2D real correlation of Equation 2 may be implemented effi-
ciently for all p, q at once using a real/complex fast Fourier
transform (FFT). We use the FFTW library [8], which auto-
matically generates code for platform-optimized 2D FFT’s.

Our complete spot finder requires two FFT’s and one
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pointwise complex multiplication per filterMr for each spot
tested. For a range of ten radii over a 50×50-pixel vignette,
the finder requires 0.043 seconds to process one channel of
a vignette image on an Intel Pentium III/550 processor1. Be-
cause it treats each vignette separately, the spot finder could
easily be parallelized to work on several vignettes at once.

Dapple supports both single-channel and dual-channel
scanned images. When quantitating dual-channel images,
we find spots in each channel of the image separately. Can-
didate spots from the two channels are averaged to yield a
single spot only if they are determined to be of the same
quality by our classifier; otherwise, the higher-quality spot
dominates. We could instead find each spot in the sum of the
two channel images, which would halve the amount of com-
putation required but could potentially obscure spots which
are visible in only one channel.

Our spot finding algorithm permits multiple passes over
the same vignette. If a candidate spot is found to be of poor
quality, the pixels it covers may be set to zero in the Lapla-
cian image, removing its edge from further consideration.
The search procedure may then be run again on the modi-
fied Laplacian image to propose a new spot. We chose to
search multiple times rather than store multiple high-scoring
candidates from one search because the top few correlation
scores usually specify slightly offset versions of the same
putative spot. The additional candidates are rarely useful if
the highest-scoring candidate is rejected.

3.3 Classification of Spots by Quality

Dapple classifies candidate spots by quality to identify mis-
takes made by the spot finding algorithm as well as vignettes
with marginal or nonexistent spots. The classifier is intended
to reflect a human investigator’s qualitative judgment, so it
assigns the classesAcceptandRejectto spots that would re-
spectively be accepted for quantitation or rejected as wrong
or unsuitable if inspected visually by the user. Such a clas-
sifier can be trained on a collection of candidate spots which
have been manually accepted or rejected.

Our classifier uses two image features, which we call the
b-scoreand p-score, to determine a spot’s class. The b-
score and p-score respectively measure a spot’sbrightness
and itsposition, i.e. its distance from the center of its vi-
gnette. We chose these two features from a larger set of
candidates based on their consistent selection by a decision-
tree learning package [12] trained on a collection of hand-
classified spots. High b-scores and low p-scores were found
to correlate strongly with manual spot acceptance.

For a spots, the precise definitions of the b-score and p-
score are as follows:

• Let m be the median intensity of all pixels insides, and
let F be the cumulative distribution function of all pixel
intensities in the vignette which are not ins. Then the b-
score ofs is given byF (m), the fraction of background
pixel intensities less thanm.

1At higher densities, spots are typically smaller; processing one
channel of a 28x28 spot takes roughly 6.7 milliseconds on the same
processor.

• The p-score is the Euclidean distance between the cen-
ter of s and the center of its vignette, normalized by the
vignette’s shortest dimension.

We improve the utility of Dapple’s classifier by introduc-
ing a third class calledShow, intermediate in quality be-
tweenAcceptand Reject. Spots which fall in classShow
are not rejected but are flagged as questionable for visual in-
spection by the user. The utility of classShowstems from
the following observation about the classification loss func-
tion L used by human investigators: the cost in user time
and effort of checking and correcting a questionable spot by
eye (L(Show | Acceptor Reject)) is typically less than the
costsL(Accept| Reject) andL(Reject| Accept) of letting
the program silently accept or reject a spot incorrectly.Show
spots, provided that their number is small, can thus be a rea-
sonable and even desirable alternative to false acceptance or
rejection. We implement this observation by explicitly spec-
ifying unequal costs for different types of classification error
during training.

Dapple’s classifier topology is shown in Figure 4. This
topology is similar to several proposed by the aforemen-
tioned decision tree learner which were highly accurate on
the training data and performed well under cross-validation.
The classifier has four real parameters, indicated by the la-
beled lines in the figure: valuesbh andbl determine the class
boundaries along the b-score axis, while valuespl andph
determine the corresponding boundaries on the p-score axis.
The topology shown here is hard-coded into the program,
but the four parameters may be retrained by the investigator
from a new training set of candidate spots, which can eas-
ily be produced using Dapple’s built-in facility for gathering
training data from arrays. A fixed classifier topology with
variable parameters is an engineering tradeoff which mini-
mizes implementation complexity while still allowing users
to modify the classifier to handle changing spot properties
arising from different arraying protocols.

We train the classifier by choosing values for its four pa-
rameters that minimize the total cost (according to the loss
functionL) of any errors it makes on the training set. The
user suppliesL by assigning real-valued costs to each type
of misclassification. By increasing or decreasing the cost
of classifying a spot asShow, an investigator may trade off
the number of spots marked for inspection against the clas-
sifier’s accuracy on the remaining spots.

Näıvely, optimizing the classifier’s parameters exactly
with respect toL requiresO(n4) time forn training exam-
ples, since the examples’ attribute values determineO(n2)
possible values of the two separating lines for each of two
attributes. In fact, by exploiting a well-chosen decomposi-
tion of the objective function, we can reduce training time to
O(n2) while using onlyO(n) space. This algorithm is de-
scribed in more detail in the Appendix. In practice, we can
train the classifier in under one second even with more than
1500 examples.
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Figure 4: the topology of Dapple’s classifier, shown as a
division of the plane whose coordinates are the two image
attributes b-score and p-score defined in the text. The four
parameters labeling the region boundaries are chosen to op-
timize classification accuracy on a training set.

4 Results

We tested Dapple’s performance on a collection of six mi-
croarrays, each produced by spotting amplified sequences
from 1536 open reading frames of the yeastS. cerevisiae.
The arrays were hybridized in three separate experiments
using cDNA probes made with mRNA from three different
yeast strains. Each experiment used two arrays, giving a
total of 4608 expression measurements made in duplicate.
All arrays showed a large range of spot intensities, includ-
ing many vignettes with no observable signal, as well as a
variety of image artifacts.

4.1 Classifier AccuracyvsManual Classification

We trained Dapple’s classifier by manually assigning qual-
ities to candidate spots from 512 vignettes taken from one
of our arrays. For each image channel of each vignette, we
visually inspected and manually classified spots proposed
by our finder until either a proposed spot was accepted or
three spots were proposed and rejected. The resulting train-
ing set contained 1621 candidate spots, of which 45% were
accepted and the rest rejected.

We used the training set to parameterize Dapple’s clas-
sifier as described. The classification loss functionL im-
plemented the strategy outlined above, penalizing incorrect
acceptance or rejection an order of magnitude more strongly
than classifying a spot asShow. We assigned the largest
cost to acceptance of a putative spot that was manually re-
jected. False acceptances were considered the most serious
errors because we had no way to detect them after quantita-
tion and had difficulty finding them by eye among many ac-
cepted spots. Under different conditions, we might instead
have chosen to penalize false rejections more strongly than
false acceptances; for instance, if each spot were replicated

Figure 5: error rates of automated classifiervs a manually
classified standard on the training set and three test sets. The
black portion of each bar denotes candidate spots incorrectly
classified asAcceptor Reject; the gray portion, spots classi-
fied asShow.

several times, ratios from false acceptances could probably
be discarded as outliers, but false rejections would provide
no information at all.

To test whether the classifier could accurately reproduce
manual spot classifications, we manually classified candi-
date spots from three sets of 256 vignettes, each drawn from
a different experiment. Our test sets respectively contained
788, 1047, and 927 candidates. Test set 1 was drawn from
the same experiment (but not the same array) used for train-
ing, while test sets 2 and 3 were drawn from the other two
experiments.

Figure 5 shows the classifier’s accuracy on its training set
and each of the three test sets. On all three test sets, Dapple’s
automated classification matched our manual classification
for more than 95% of candidate spots. Of the spots which
were classified differently by Dapplevs manual classifica-
tion, Dapple classified more than half asShow(top portion
of each bar in the figure); hence, the actual rate of false ac-
ceptance or rejection was even lower – no more than 2.05%
in the worst case. These results indicate that Dapple’s classi-
fier can indeed learn and accurately reproduce visually based
spot quality decisions, and that theShowclass, combined
with a judiciously chosen classification loss function, is ef-
fective in reducing the number of spots that are incorrectly
accepted or rejected outright.

The classifier performed best on test set 1, whose spots
most closely resembled those of the training set. The errors
observed for test sets 2 and 3, though more frequent, were
still relatively rare overall, which suggests that overtraining
of the classifier was not a serious problem. The number of
spurious acceptances and rejections in these sets was kept
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low by theShowclass, which widened the classifier’s mar-
gin betweenAcceptandRejectand so improved its general-
ization performance on these classes.

Of the thirty-one candidate spots in our test sets which
were misclassified and were not markedShow, only five
were manually rejected spots that were incorrectly accepted.
We manually rejected these objects based on their small size
and, in some cases, because they were clearly part of a large,
irregularly-shaped artifact. The twenty-six incorrectly re-
jected spots were harder to characterize, but most were of
near-background intensity or occurred in vignettes with ar-
tifacts bright enough to bias the spots’ b-scores far down-
wards. These errors reveal our classifier’s limits, but they
seem rare and heterogeneous enough that adapting the clas-
sifier to detect them would likely be difficult without harm-
ing its ability to generalize to new arrays.

4.2 Design of Overall Performance Test

We tested Dapple’s spot finder and classifier together to de-
termine whether our methods are capable of accurate spot
finding. To investigate overall accuracy, we developed a test-
ing scheme based on measuring the quantitative consistency
of ratios obtained from pairs of identical spots.

To quantitate a spot, we estimated the ratior of fluores-
cent intensities in its two channels by the formula

r =
µf1 −mb1

µf2 −mb2

Here,µfi is the mean intensity of the foreground (all pixels
inside the spot) for image channeli, whilembi, the estimated
background level, is the median intensity of all pixels in the
vignette which are at least five pixels away from the spot.
Our background estimate attempts to find the mean back-
ground intensity excluding biases from bright artifacts and
any residual intensity from the outer edge of the spot. After
excluding these biases, we observed that background pixel
intensities are distributed roughly symmetrically, so that the
median robustly estimates the background mean.

The best quantitative test of Dapple’s performance would
be to measure its absolute error in quantitating spots whose
intensity ratios were known accurately in advance. We did
not have arrays of such spots available to us, so we chose
instead to measure theconsistencyof Dapple’s quantitated
ratios on pairs of duplicate spots, i.e. spots made with the
same DNA and hybridized against the same probes during a
single experiment. The two spots of a duplicate pair ideally
should yield the same ratio, though in practice some varia-
tion is introduced by errors in spotting and by varying local
conditions of the slide surface and hybridization bath. Our
six test arrays contained 4608 pairs of duplicate spots.

Our measure of ratio consistency on a pair of spots was
the Z-score, which is defined for two ratiosr1 and r2 as
follows:

Z(r1, r2) =
|r1 − r2|
r1 + r2

Two identical ratios yield aZ-score of 0, while large ab-
solute differences between ratios produceZ-scores which
asymptotically approach 1. TheZ-score is the same (up to a

constant factor) as the standard errorσ
µ applied to a sample

of size two.
To establish baseline estimates of quantitative consis-

tency, we implemented the following simple spot finding
algorithm: using the sum of the two image channels, find
the vignette’s center of intensity as defined by Equation 1,
then draw a circle of constant radius around that center. This
baseline finder served two purposes. First, it tended to per-
form well on bright spots with no artifacts, so we were able
to check Dapple’s consistency against that of the baseline
finder on such spots. Second, the baseline finder is essen-
tially the procedure implemented by at least one other spot
finding package used in our laboratory, so any evidence that
Dapple improves on the baseline was of interest to us.

To control for the effects of initial grid placement, me-
dian filtering, and quantitation, we implemented the base-
line finder as a drop-in replacement for Dapple’s finder
while keeping the other steps of the computation the same.
We used a uniform radius of nine pixels for the baseline
finder, which was large enough to cover the majority of most
spots without including large areas of the image background.
Where it was necessary to assign independent qualities to
spots produced by the baseline finder, we accepted any spot
which had a mean intensity more than one standard devi-
ation above the background mean (estimated as above by
mbi) in each of the two image channels. This procedure also
reflects the methods of other spot finding packages previ-
ously used in our lab.

4.3 Results of Overall Performance Test

We investigated three aspects of Dapple’s performance ver-
sus the baseline finder: consistency on pairs of high-quality
spots, rate of false positives, and rate of false negatives.
False positives are alleged high-quality spots which are actu-
ally spot finding errors, while false negatives are actual spots
which are not found. Results from all these tests suggest that
Dapple performed at least as well as, and often better than,
the baseline finder on our arrays.

4.3.1 Consistency on High-Quality Spots

To test Dapple’s consistency on high-quality spots, we se-
lected all pairs of spots for which neither spot in the pair
was rejected (in either channel) by Dapple’s classifier. There
were 2933 such spot pairs across our three pairs of duplicate
arrays. Figure 6 compares theZ-scores of all these pairs as
found by Dapple to the corresponding scores when the pairs
were found using the baseline finder. The spot finders were
roughly equivalent in terms of consistency; however, Dap-
ple demonstrated a somewhat better median consistency (Z
= 0.101, versus 0.110 for the baseline finder). To determine
if the observed difference in consistency was significant, we
compared theZ-scores from the two finders using the Mann-
Whitney-Wilcoxon test [10], a non-parametric statistical test
to decide whether the values from one distribution are on av-
erage higher or lower than those from another. We found that
Dapple’sZ-scores were significantly lower on average than
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Figure 6: comparison of consistency scores for pairs of
spots accepted by Dapple’s spot finder. Overall, Dapple’s
Z-scores were significantly better than those of the baseline
finder (p = 0.0034,N = 2933).

those of the baseline finder (p = 0.0034,N = 2933), indicat-
ing that Dapple’s spot finder achieved slightly better overall
quantitative consistency.

Dapple’s improvement in consistency over the baseline
finder may be attributed to two sources. First, our spot
finder’s ability to pick accurate spot sizes allowed it to cover
larger spots completely, while the baseline was restricted to
predicting spots with a smaller fixed radius. Having more
pixels from which to quantitate reduced the variance of es-
timated intensity ratios. Second, we observed that the base-
line finder frequently placed spots off-center with respect to
the true spot, usually because the vignette contained diffuse
noise or an artifact that biased the center-of-intensity com-
putation. Occasionally, image noise or an artifact caused the
spot reported by the baseline finder to be completely dis-
joint from the visible spot. Dapple’s spot finder, which was
designed to be resistant to such noise, did not produce signif-
icant numbers of off-center spots on our test arrays, largely
because such spots were caught and corrected by the classi-
fier whenever they were proposed.

Our results must be presented with the caveat thatconsis-
tent quantitation is not the same asaccuratequantitation:
consistent ratios could still be consistently incorrect. We
tested the consistency of our spot finder only because we
had no way to test its absolute accuracy. However, three
observations suggest that Dapple’s improved consistency is
not the result of systematic error. First, both Dapple and the
baseline finder were evaluated with the same quantitation
method, so any observed differences must be due to the two
methods’ differing choices of spot sizes and locations. Sec-
ond, we found that Dapple’s choices of spots were visually
accurate in both position and size, so its improved consis-
tency does not reflect systematically incorrect spot finding.

Finally, the intensity ratios measured for the spots found
by Dapple and the baseline finder were generally in close
agreement, providing additional evidence that Dapple did
not cause large systematic differences in quantitation. For
the 5688 vignettes included in our consistency test, 93% of
spots found by Dapple and the baseline finder had ratios
which agreed to within 20%, while 80% of vignettes gave
spots whose ratios agreed to within 10%.

4.3.2 Analysis of Potential False Positives

As Figure 6 shows, Dapple did accept a number of spot
pairs which had poor consistency (highZ). To investigate
why these spots showed such high variability, we visually
inspected the subset of our 2933 pairs whose Dapple-derived
ratios gaveZ-scores greater than13 , corresponding to more
than a factor of two difference between the ratios in each
pair. This subset contained 151 spot pairs.

Of the spot pairs investigated, eleven (7%) contained clear
false positives: one of the two spots was in fact an image ar-
tifact, such as unattached dye or DNA, that was too bright
and too well-centered to be rejected. These false positives
are consistent with the observed limitations of Dapple’s clas-
sifier. The remaining 140 spot pairs contained two visually
apparent spots which Dapple found correctly. A few of these
spots had overlying artifacts that could account for their de-
viant ratios, but most were likely either too close to back-
ground intensity for accurate quantitation or were affected
by experimental variation.

Eighty-eight of the 151 pairs inspected (58%) contained
at least one spot which had been flagged for visual inspec-
tion (i.e. had at least one channel of classShow). These
spots were usually flagged because of low intensity rela-
tive to background, so a conservative investigator might have
chosen to discard them before quantitation.

4.3.3 Analysis of Potential False Negatives

Approximately 1% of all vignettes tested contained objects
which we believe to be spots that were not found by Dapple’s
spot finder. The majority of these probable false negatives
did not follow our arrays’ normal circular spot morphology;
the rest were in vignettes with unusually bright artifacts and
dim spots. In all of these cases, Dapple claimed that the vi-
gnette had no spot because its spot finder never proposed the
correct spot to its classifier. These false negatives illustrate
the limits of morphology-based spot finding on our arrays.

The baseline finder was better able to locate spots with un-
usual morphologies when they were the only objects in their
vignettes; however, its performance was limited by a ten-
dency to be confused by image noise. We inspected twenty-
six pairs of vignettes whose candidate spots were both ac-
cepted by the baseline finder but for which Dapple rejected
all candidates in at least one vignette. Only four of these
pairs yielded examples where the baseline finder was able to
detect a spot which Dapple had missed; in the other twenty-
two cases, at least one spot claimed by the baseline finder
was in fact an image artifact. Thus, most of these poten-
tial false negatives for Dapple turned out instead to be false
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positives for the baseline finder.

5 Experience with Dapple in the Lab

After conducting the experiments outlined above, we be-
gan using Dapple to quantitate Molecular Dynamics Gen-
eration III arrays, which are spotted at roughly three times
the density of Generation II arrays. Our spot finder con-
tinued to perform well on the higher-density arrays because
the typical spot morphology remains unchanged. Our clas-
sifier remained accurate after we retrained its parameters us-
ing examples taken from the new arrays. More recently, we
have adapted Dapple to work with a custom-designed ar-
rayer built by Steve Laskey of the Institute for Systems Bi-
ology, which uses an ink-jet printer head to deposit spots on
a slide.

User responses to Dapple’s schemes for example-based
training and classification have been positive. Investigators
have reported that an hour invested in providing examples to
train the spot classifier on one array produces quite satisfac-
tory classifications for later arrays. The classification pro-
cess, in conjunction with a graphical interface which indi-
cates spot qualities as colored flags next to each spot found,
is effective in limiting the amount of time spent inspecting
an array for defects and spot finding errors.

A surprisingly popular feature of our interface is the abil-
ity to manually redraw the boundaries of individual spots
which were found incorrectly. Although this feature is used
only infrequently, investigators often cite it as one of their
favorite things about Dapple. Based on this feedback, we
encourage authors of other spot finding software to provide
easy manual correction capabilities to their users.

Our experience with Dapple has pointed to three practical
shortcomings which have been or should be addressed. First,
the MD Generation II arrayer turned out to be unusually pre-
cise in aligning the two channels of a two-color array image.
More recent arrayers often produce misregistered channel
images, which causes difficulties when we try to combine
the images for grid placement and spot classification. In
response to this problem, we have modified Dapple’s user
interface to allow manual correction of any misregistration.
Future work should aim to correct misregistration automati-
cally.

A second difficulty observed as array densities have in-
creased is the problem of correctly placing grids on the ar-
ray image. Dapple’s automated grid placement does not ac-
count for large-scale spatial variations in background inten-
sity, with the result that a large bright streak on the array
can occasionally cause grids to be misplaced by up to a full
spot width. We are investigating how to account for such de-
fects without substantially harming the performance of the
grid placement engine. It may be that for high throughput
arraying, the best solution is for the arrayer to place bright
guide spots at the corners of each grid, thereby making grid
placement a trivial problem.

Finally, Dapple’s practice of using spot position in clas-
sifying quality may need to be abandoned at very high spot
densities. In high-density arrays, the same absolute varia-

tions in a spot’s position are much larger relative to the vi-
gnette size; thus, a candidate spot’s distance from its vignette
center (i.e. its p-score) conveys less information about its
quality. While this problem does not invalidate the success
of our overall classification approach, it suggests that future
work should include a search for image features which are
more informative than p-scores at higher densities.

6 Conclusions and Future Directions

Dapple’s performance on our test data shows that it success-
fully implements our design considerations for spot finding
in microarrays. Its spot finder is able to use morpholog-
ical information to correctly identify the location and ex-
tent of most spots, even when they are of low intensity and
in the presence of diverse image artifacts. Dapple’s classi-
fier can learn to replicate qualitative visual judgments about
spot quality using examples instead of explicitly specified
values of image attributes. The classifier can detect almost
all likely failures of the spot finder, which allows it both to
prevent spot finding errors from propagating to subsequent
analyses and to mark a few spots of uncertain quality for in-
spection by the investigator. Our successful implementation
of morphology-based spot finding and classification of spot
qualities by example suggests that these techniques could be
valuable as part of a highly automated, high-throughput sys-
tem for microarray analysis.

Our spot finding techniques were well-suited to almost all
spots but had difficulty with a small number of acceptable
spots which did not fit the expected morphology. Such dif-
ficult spots are frequent enough to warrant the use of a non-
morphology-based back-up spot finder to deal with them.
We found that spots with unusual morphologies tended to
be of relatively low intensity, so a sensitive intensity-based
spot finder such that used by Chenet alwould likely perform
especially well in these cases. A high-throughput spot finder
should benefit from using multiple, independent methods
with different strengths to deal with occasional spot hetero-
geneity.

The design of Dapple’s spot finder and classifier was
guided by our desire to mimic a human investigator’s abil-
ity to locate spots on an array, both because existing spot
finding software encourages visual inspection of spots and
because the accuracy of our methods could be assessed vi-
sually. One side effect of our design is that Dapple finds
spots which can be seen but cannot be accurately quanti-
tated, usually because they are of near-background intensity.
Dapple’s rudimentary quantitation scheme can no doubt be
improved; however, we believe that spot finding and quality-
assessment systems must ultimately be trained against a
quantitative standard of accuracy, e.g. an array hybridized
against standard probes with known intensity ratios. Our ar-
raying facility has recently begun to produce such arrays in
numbers sufficient for training. We anticipate that our meth-
ods will continue to work even when quantitation, rather
than the investigator’s eye, becomes the ultimate determi-
nant of success.
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A Appendix: Efficient Induction of Classifier

In this appendix we describe the algorithm used to choose
optimal values for our classifier’s four parametersbl ≤ bh
andpl ≤ ph with respect to a training setT of instances
t. Each instance has a true classc(t) ranging over the set
{A,S,R} and two real-valued attributesb(t) andp(t). The
classifier assignst a classc′(t) based on its attribute values.
We seek parameter values which minimize the total loss

L =
∑
t∈T
L(c′(t) | c(t))

For simplicity, we assume that no two instances share the
same value of either attribute.

WLOG, each of the classifier’s four parameters can take
on only the|T | distinct values corresponding to the attribute
values of the training instances. We can computeL for all
values of a single parameter in timeO(|T |) by treating the
parameter as a separating line in the plane defined byb(t)
andp(t): simply sweep the line over this plane, updatingL
in constant time whenever the line passes a training instance.
These observations immediately yield aO(|T |4) algorithm
to computeL for every4-tuple of parameter values. For a
reduced problem with only two parameters, the same con-
siderations yield anO(|T |2) enumeration algorithm.

We now derive a minimization algorithm for the full four-
parameter problem that runs in timeO(|T |2). To achieve
this bound, we divide the objective functionL, which de-
pends on all four parameters, into three parts which depend
on only two parameters each. We then reassemble the parts
to find parameter values which minimizeL.

Define the following functions of an instancet:

α(t) = L(A | c(t))
σ(t) = L(S | c(t))
ρ(t) = L(R | c(t))

Let `(t) be the function on instances induced by the labeled
partition of the feature space shown in Figure 7, which mir-
rors our classifier’s topology. If an instancet falls in a given
region of the partition,̀ (t) is defined to be the function
which labels that region applied tot. `(t) is simply the
classification loss fort given the four parameter values, and
L =

∑
t∈T `(t).

Now consider the three functionsf(t), g(t), andh(t) in-
duced by the three labeled partitions of Figure 8. It is not

phpl

bh

bl

(t)

Figure 7: partition for the functioǹ(t), which computes the
classification loss for an instancet as a function of the four
classifier parameters.

hard to see that, for any fixed 4-tuple of parameter values
and any instancet,

f(t) + g(t) + h(t) = `(t) + 2ρ(t) (3)

Let F =
∑
t∈T f(t), and similarly defineG andH. Sum-

ming both sides of Equation 3 over allt ∈ T gives

F +G+H = L+ c (4)

wherec is a constant which depends only the training set, not
on the values of the four parameters. Thus, by minimizing
the left-hand side of Equation 4 with respect to the classi-
fier’s parameters, we also minimize the objective function
L. The functionsF , G, andH depend on only two param-
eters each; hence, we can tabulate theirdistinctvalues over
all 4-tuples of parameter values in timeO(|T |2).

It remains to show how to combine the three functionsF ,
G, andH in quadratic time to find the global minimum of
their sum over all parameter values. In what follows, we
explicitly annotate functions with the classifier parameters
on which they depend. We first define functionsG∗ andH∗

as follows:

G∗(pl, bh) = min
bl≤bh

G(pl, bl) (5)

H∗(pl, bh) = min
ph≥pl

H(ph, bh) (6)

The O(|T |2) possible values ofG∗ can be computed in
quadratic time from the values ofG by the inductive rule

G∗(pl, bh) = min [G(pl, bh), G∗(pl, bprev)]
where bprev is the largest observedb(t) less thanbh. A
similar rule computesH∗ from H. Finally, we minimize
F +G+H by observing that

min
pl≤ph,bh≥bl

F (pl, bh) +G(pl, bl) +H(ph, bh)

= min
pl,bh

[
F (pl, bh)+ min

bh≥bl
G(pl, bl)+ min

pl≤ph
H(ph, bh)

]
= min

pl,bh
F (pl, bh) +G∗(pl, bh) +H∗(pl, bh)
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Figure 8: partitions for the functionsf(t), g(t), andh(t). For anyt, the sum of these three functions is`(t) + 2ρ(t).

The final minimization requires timeO(|T |2) given all val-
ues of F , G∗, and H∗, which is sufficient to achieve
quadratic time overall. The values ofpl and bh are the
argmin of this minimization, while the values ofbl andph
are the argmins in Equations 5 and 6 respectively for the
chosenpl andbh.

We note that by interleaving the tabulation ofG, G∗, H,
andH∗ and keeping the track of the minimum-cost param-
eter values seen so far, we can implement the minimization
with onlyO(|T |) working space. In practice, we have found
this algorithm to be extremely efficient for training Dapple’s
classifier even on more than 1500 examples.

References

[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish,
S. Ybarra, D. Mack, and A. J. Levine. Broad pat-
terns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by oligonu-
cleotide arrays.Proceedings of the National Academy
of Sciences, 96:6745–50, 1999.

[2] R. D. Appel, J. R. Vargas, P. M. Palagi, D. Walther,
and D. F. Hochstrasser. Melanie II – a third-generation
software package for analysis of two-dimensional elec-
trophoresis images. II: algorithms.Electrophoresis,
18(15):2735–48, 1997.

[3] Y. Chen, E. R. Dougherty, and M. L. Bittner. Ratio-
based decisions and the quantitative analysis of cDNA
microarray images. Journal of Biomedical Optics,
2(4):364–74, 1997.

[4] S. Chu, J. DeRisi, M. Eisen, J. Mulholland,
D. Bottstein, P. O. Brown, and I. Herskowitz. The tran-
scriptional program of sporulation in budding yeast.
Science, 282:699–705, 1998.

[5] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber,
S. R. Nagel, and T. A. Witten. Capillary flow as the
cause of ring stains from dried liquid drops.Nature,
389(23):827–9, 1997.

[6] M. B. Eisen and P. O. Brown. DNA arrays for analysis
of gene expression.Methods in Enzymology, 303:179–
205, 1999.

[7] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Bot-
stein. Cluster analysis and display of genome-wide
expression patterns. Proceedings of the National
Academy of Sciences, 95(25):14863–8, 1998.

[8] M. Frigo and S. G. Johnson. FFTW: an adaptive soft-
ware architecture for the FFT. InProceedings of IEEE
International Conference on Acoustics, Speech, and
Signal Processing, volume 3, pages 1381–4, Seattle,
WA, 1998.

[9] S. Granjeaud, C. Nguyen, D. Rocha, R. Luton, and
B. R. Jordan. From hybridization image to numerical
values: a practical, high throughput quantification sys-
tem for high density filter hybridization.Genetic Anal-
ysis: Biomolecular Engineering, 12:151–62, 1996.

[10] R. V. Hogg and A. T. Craig.Introduction to Mathemat-
ical Statistics. Macmillan Publishing Co. Inc., New
York, NY, 4 edition, 1978.

[11] T. M. Mitchell. Machine Learning. WCB McGraw-
Hill, Boston, MA, 1997.

[12] S. K. Muirthy, S. Kasif, and S. Salzberg. A system for
induction of oblique decision trees.Journal of Artifi-
cial Intelligence Research, 2:1–33, 1994.

[13] C. Nguyen, D. Rocha, S. Granjeaud, M. Baldit,
K. Bernard, P. Naquet, and B. R. Jordan. Differ-
ential gene expression in the murine thymus assayed
by quantitative hybridization of arrayed cDNA clones.
Genomics, 29:207–16, 1995.

[14] C. M. Perou, S. S. Jeffrey, M. van de Rijn, C. A. Rees,
M. B. Eisen, D. T. Ross, A. Pergamenschikov, C. F.
Williams, S. X. Zhu, J. C. Lee, D. Lashkari, D. Shalon,
P. O. Brown, and D. Botstein. Distinctive gene expres-
sion patterns in human mammary epithelial cells and
breast cancers.Proceedings of the National Academy
of Sciences, 96(16):9212–7, 1999.

[15] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown.
Quantitative monitoring of gene expression patterns

11



with a complementary DNA microarray. Science,
270:467–70, 1995.

12


