Gap Resolution

v. 1.2.0
Problem:
Genomes that are assembled using the Newbler assembler contain gaps due to repetitive regions. These repetitive regions are not handled well by Newbler, and thus collapse into individual contigs, creating gaps.

Goal:

Gap Resolution is a software package that is used to help automate the process of closing these gaps. The general strategy for gap resolution is as follows:

1. For each gap, identify read pairs from contigs found on different scaffolds. Short anchor sequences are determine flanking the gap for downstream validation.

3. If a defined number of mate pairs reside in a contig that is outside of the scaffold, assume that contig is a repeat and create a consensus sequence of that contig. If the repeat contig fits inside the gap, shred the contig and add the fragments to the list of reads to be assembled.

2. Assemble the reads in the contigs that are adjacent to the gaps and reads obtained from contigs outside the scaffold.

 SHAPE

4. Determine if assembly is closed. If so, validate assembly. The following criteria are used to determine if the assembly is valid:

i) Validate anchor distance. The left and right anchors are aligned to the contigs of the assembly. If the anchors reside on the same contig and the distance is within the gap size (-gsize option) +/- standard deviation, the anchor distance is considered to be valid. Otherwise, the anchor distance is invalid. Alignments of the anchors to the assembly contigs are filtered by percent identity and the alignment length.

ii) Validate read pairing. For each read pair, determine the library insert size by mapping the read to the it's corresponding sff file (via 454's sffinfo script) and determining the library insert sizes and standard deviations x a multiplier using the sffinfo.txt and libinfo.txt files. Read pairs are considered valid only if they meet all of the following criteria: a) the read pairs are located on the same contig and their distance are within the library insert size +/- standard deviation * a multiplier, b) the orientation of the reads point towards each other, then that read pair is deemed valid, and c) the percent of the valid read pairs to invalid read pairs is >= 90%.

iii) Validate consensus quality. If the anchors reside on the same contig of the assembly, the average quality between the anchors is determined and must be >= 30 to be considered valid. Otherwise, the consensus quality is invalid.

5. If the gap is not closed, design primer reactions.

 SHAPE

6. Iterate as necessary.

Output:

The main output of Gap Resolution is a set of "fake" reads that span the gaps within a 454 assembly. For gaps that cannot be automatically closed, a primer file containing suggested PCR reactions is created for additional sequencing. A fake read represents the consensus sequence of the assembly of a gapped region that was closed by adding reads within the gap. Reassembly of the fake reads to generate an improved assembly is not performed within Gap Resolution. This step should be done by the user subsequent to running this software.

Software Requirements
Gap Resolution requires Perl 5.8+ and runs on a Linux/Unix environment. Gap Resolution also requires the following software to be installed (not included in the installation package).
Newbler

sffinfo

Primer3

blastall

formatdb
Installation Guide:

1. Uncompress and untar the installation package to your installation directory.

2. Open the config/gapRes.config file and modify the following parameters:

newblerAssemSubProject.newblerEnv=path to the newbler assembler

script.sffinfo=path and name of the sffinfo program
script.blastLocation=path to the blastall program
validateSubProject.createDbFileExecutable=path and name of formatdb

validateSubProject.aligner=path and name of blastall
script.primer3_core=path and name of the primer3 program
Running Gap Resolution:

Once you have a Newbler assembly, run gap resolution using the following command:
runGapResolution.pl –od <outputDir> <aceFile> <454Scaffolds.txt> <454NewblerMetrics> <454AllContigs.fna> <454AllContigs.qual>

Primary Output:

Gap resolution creates many files and directories. The following is a list of the primary output files and directories that you would be interested in.
1) A fakes directory containing the fasta and qual files of the consensus of closed gaps.
2) A primers.txt file containing the suggested primers to address gaps that fail to close.

3) Directories containing files and sub assemblies corresponding to each gap within the assembly. The naming convention for the directory name is <scaffoldNumber><leftContigNumber><ContigNumber>.
Incorporating the primary output into the original assembly with stitchClosedSubProjects.pl
If certain configuration parameters are set correctly it is possible to incorporate the fake consensus from closed gaps into the original assembly scaffold files with a script included in the distribution called stitchClosedSubProjects.pl. The resulting output of the stitcher includes scaffold fasta and qual files.

The particular configuration parameters below tell Gap Resolution to not shred closed subproject fakes, and to trim them back to the anchors.

createSubProjectFakes.trimClosedGapConsensusUsingAnchorPos=1

createSubProjectFakes.trimConsensusSeqToThisManyBasesAwayFromAnchor=0

createSubProjectFakes.shredClosedGapConsensus=0
In addition to the above, those parameters that effect the validation stage, which determines whether a subproject is correctly closed depending on the estimated vs. observed gap size, pairing consistency across the closed gap, and template insert size consistency across the closed gap, are relaxed slightly to maximize the number of gaps closed. Relaxing the below parameters generally works well, as anecdotal evidence suggest most gaps within Newbler assemblies are small, and the statistics for these small gaps can vary.
validateSubProject.percentReadPairConsistency=60
validateSubProject.libInsertSizeStdDevMultiplier=2.5
validateSubProject.percentGapSizedPaddingForValidation=200

As a third and final step manual inspection of the validationSummary.txt file may yield more gaps that are actually closed. Those that fail due to invalid anchor distance and or pairing are usually candidates for inspection. If any are found the validationSummary.txt file can be modified to state PASS and createSubProjectFakes.pl can be rerun to produce the complete set of fakes that represent all closed gaps.
Once Gap Resolution is run with the above options run the stitcher with the following command:

 stitchClosedSubProjects.pl <454Scaffolds.txt> <454AllContigs.fna>

 <454AllContigs.qual> <fakes_dir> <gapdirs.txt> <outputFileName>
The output will include <outputFileName>.fasta and <outputFileName>.fasta.qual which will represent the original Newbler assembly scaffolds with closed gaps from Gap Resolution stitched in.

Technical Details:
The Gap Resolution software package is written in Perl and consists of 9 major independent software components that are executed together using the runGapResolution.pl wrapper. The software components are listed as follows:

· createGapResProject.pl

· idContigRepeats.pl

· getSubProjReads.pl

· newblerAssemSubProject.pl or newblerAssemSubProjectWithSanger.pl
· validateSubProject.pl

· createSubProjectFakes.pl

· createAnchorTagsForAce.pl

· createAnchorTagsForSubprojectAce.pl

· createSubProjectPrimers.pl

Each software component in turn executes one or more sub component, which can be used independently as well. The sub components are listed as follows:

· newblerAce2ReadPair.pl

· parseNewblerMetrics.pl

· createSubProject.pl

· ace2contigs.pl

· fasta2MegaBlastDb.pl

· fastaParser

· idRepeatBoundary.pl

· getReadsInUnique.pl

· getReadsInRepeat.pl

· getRepeatContig.pl

· reads2sff.pl

· reads2fasta.pl

· validateGapAssembly.pl

· primer3Design.pl

The software has been tested with Perl 5.8.8.
Please refer to each software component or sub component’s documentation for more details.

Software Component Diagram:

[image: image4.emf]validateSubProject.pl

newblerAssemSubProject.pl

ace file

sub project directories

"s#c#c#"

repeat contig fasta +

qual

{contig}.boundary

(unique and repeat coords file)

libinfo.txt

{contig}.anchor

(anchor sequence)

list of sub project

directories

list of sub project

directories

createGapResProject.pl

newblerAce2ReadPair.pl

readinfo.txt

(read pairing info)

createSubProject.pl

454Scaffold.txt

(agp format file)

Create sub project directory and the

scaffInfo.txt file containing the info:

scaffold, contigs and gap size

parseNewblerMetrics.pl

454NewblerMetrics.txt

scaffinfo.txt

idContigRepeats.pl

idRepeatBoundary.pl

ace2contigs.pl

contigs.fasta

fasta2MegaBlastDb.pl

reference db file

contigs.fasta.qual

getReadsInUnique.pl

{contig}.unique.reads

(readlist in unique area of gap

contigs)

readinfo.txt

getReadsInRepeat.pl

{contig}.repeat.reads

(readlist in repeat area of gap

contigs)

readinfo.txt

start, stop coords

contig name

contig name, left or right

getSubProjReads.pl

readinfo.txt

repeat contig

fasta + qual

contigs.fasta +

.qual

getReadsInRepeat.pl

repeat contig list

{contig}.repeat.reads

(readlist in repeat area

of gap contigs)

start, stop coords

454Scaffold.txt

start, stop coords

getRepeatContig.pl

fastaParser

{contig}.fasta

454Scaffold.txt

contigs.fasta +

.qual

runNewblerAssembly.pl

reads2sff.pl

sff files

sffinfo.txt

contig name

readinfo.txt

454Scaffold.txt 454NewblerMetrics.txt

{contig}.anchor

sffinfo.txt

readlist.txt

gapdirs.txt

reads2fasta.pl

phd_dir

fasta + qual

gapdirs.txt

454Scaffold.txt

anchorTags.txt

ace file

validateGapAssembly.pl newblerAce2ReadPair.pl

readinfo.txt

ace file

454AllContigs.f

asta + .qual

validationSummary.txt

gapdirs.txt

sffinfo.txt

libinfo.txt

Legend

Software

component

Wrapper

createAnchorTagsForSubprojectAce.pl

tagCTAce

createAnchorTagsForAce.pl

tagCTAce

gapdirs.txt

ace file

primerinfo.txt

fasta/quals of

closed gap

consensus

shredFasta.pl

createSubProjectFakes.pl

createSubProjectPCRPrimerInfo.pl

primer3Design.pl

createSubProjectPrimers.pl

primers.txt

Software Dependencies:

Primer3

Newbler

Blastall
formatdb
Software Component Documentation:

runGapResolution.pl

Head wrapper to execute Gap Resolution.
Usage:

runGapResolution.pl [options] <aceFile> <454Scaffolds.txt> <454NewblerMetrics> <454AllContigs.fna> <454AllContigs.qual>

 Options:
 -od <path> Output directory (optional; default is current dir)
 -np <number> Specify number of parallel processes to use (optional;
 default is non-parallelized mode)

 -p <name> Used for naming primers (optional)
 -pd <path> Absolute full path to phd_dir for Sanger data
 (optional)
 -c <file> Config file (optional; default is either specified
 using environment variable GAPRES_CONFIG or in
 installation path)
 -h Detailed message (optional)
The following scripts (configurable in config file) must exist in the same path as runGapResolution.pl unless the path to the script is defined in the config file:

 * createGapResProject.pl

 * idContigRepeats.pl

 * getSubProjReads.pl

 * newblerAssemSubProject.pl

 * newblerAssemSubProjectWithSanger.pl

 * validateSubProject.pl

 * createSubProjectPrimers.pl

 * gapResParallel.pl

A default config file named gapRes.config residing in <installPath>/config is used to specify the following parameters:

 script.createGapResProject=createGapResProject.pl

 script.idContigRepeats=idContigRepeats.pl

 script.getSubProjReads=getSubProjReads.pl

 script.newblerAssemSubProject=newblerAssemSubProject.pl

 script.validateSubProject=validateSubProject.pl

 script.createSubProjectPrimers=createSubProjectPrimers.pl

To specify a different config file, set the environment variable GAPRES_CONFIG to the path and name of the config file you want to use.

createGapResProject.pl

Wrapper program to prepare and creates sub project directories for gap resolution.

Usage:

createGapResProject.pl [options] <aceFile> <454Scaffold.txt> <454NewblerMetrics.txt>

 Options:

 -od <directory> Output directory (optional; default is current

 working directory).

 -h Detailed message (optional)

This program reads an agp formatted file (i.e., 454Scaffold.txt) and constructs a sub project directory for each gap in all scaffolds that are larger than N (configurable) and have more than one contig. The two contigs spanning the gap must have at least M (configurable) number of linking reads for creation of the directory. Each directory contains a scaffinfo.txt file containing the information about the contig and gap size, formatted as such, whereby each item is separated by a tab, and represents one entry per line:

 1. gap name

 2. gap size

 3. left contig length

 4. left contig name

 5. right contig length

 6. right contig name

 7. scaffold name

The program also creates the directory 'assemInfo' within the specified output directory containing the following files:

 * gapdirs.txt - list of sub project directories.

 * libinfo.txt - library name, insert size and standard deviation. For more

 information on the format of this file, refer to the parseNewblerMetrics.pl

 documentation.

 * sffinfo.txt - sff name and location. For more information on the format of

 this file, refer to the parseNewblerMetrics.pl

 * readinfo.txt - read pairing information. For more information on the format

 of this file, refer to the newblerAce2ReadPair.pl documentation.

 * contigOrientation.txt - file containing contig name and orientation (+/-)

 delimited by a tab, one per line.

The program acts as a wrapper that calls the following executables:

 1. newblerAce2ReadPair.pl

 2. parseNewblerMetrics.pl

 3. createSubProject.pl

A default config file named gapRes.config residing in

<installPath>/config is used to specify the following parameters:

 createSubProject.minReadLinkage=minimum number of read links across gapped contigs

 createSubProject.minScaffSize=minimum scaffold size for sub project creation

 createSubProject.ignoreCircularGap=0|1 used to create sub project for circularized genomes

 script.readInfoFileGenerator=newblerAce2ReadPair.pl

 script.parseNewblerMetrics=parseNewblerMetrics.pl

 script.createSubProject=createSubProject.pl

If the value of the config parameter script.nnnn doesn't contain file paths,

createGapResProject.pl assumes that the script name resides in the

<installPath>/bin directory.

idContigRepeats.pl

Identifies unique/repeat boundary for contigs flanking a gap and generates unique sequence tags that can be used to check for gap closure.

Usage:

idContigRepeat.pl [-h] -scaff <454 scaff file> -ace <acefile> -subdirs <list> -lib <lib info file> -od <path>

 Options:

 -h detailed message (optional)

 -scaff 454Scaffolds.txt file

 -lib librart info file

 -ace path to acefile (required)

 -od output directory (required) (where assemInfo and gapdirs

 reside)

 -subdirs list of gap subdirectories (required)

 *subdirs should contain a file detailing the following in

 tab delimited format:

 1. subproject name

 2. est. gap size

 3. left contig size

 4. left contig name

 5. right contig size

 6. right contig name

 7. scaffold name

This program is a wrapper that calls on several components to identify the unique/repeat boundary for contigs in a subproject. This boundary is used by subsequent software to identify pools of reads for use in reassembly, and for primer design. A Subproject represents the contig information flanking a single gap in a scaffold and should contain a file that details the following in a tab delim format:

 1. subproject name

 2. est. gap size

 3. left contig size

 4. left contig name

 5. right contig size

 6. right contig name

 7. scaffold name

The input to this program is the newbler 454Scaffolds.txt, library info file, acefile, and a list of subdirectories. As previously mentioned the subdirectories should contain a text file detailing the contig information flanking a gap. The Scaffolds.txt file is used to reverse complement individual contig fasta if it is in the negative orientation in the scaffold.

#ace2contigs Fasta and Qual sequence for the -ace <acefile> is generated by calling ace2contigs and is deposited in a configurable location (see config section below). (See component help menu for further details.)

#fasta2MegaBlastDb.pl The Fasta sequence for the acefile is then used to create a blast database by calling fasta2MegaBlastDb.pl. The database is deposited in the same location as the acefile Fasta seq. (See component help menu for further details.)

#fastaParser.pl The scaffInfo.txt file in each subdirectory listed in -subdirs <list> is parsed and fastaParser.pl is used to create the Fasta sequence for each contig. If the contig is in the - orientation it will be reverse complemented. (See component help menu for further details.)

#idRepeatBoundary.pl The blast database and contig fastas are then used by idRepeatBoundary.pl. The contig fasta is aligned to the database and results are parsed for repeats that meet configurable thresholds. A configurable sliding window is used to check for the presence of repeat nearest the gap. If repeat is identified the window keeps sliding away from the gap until a configurable amount of unique sequence is found. This defines the unique/repeat boundary that is used to determine which data can be trusted for reassembly and for primer design. (See component help menu for further details.)

The output is a subDirectory/<contigname>.boundary file and a subDirectory/<contigname>.anchor file deposited in each subdirectory in -subdirs <list>.

<contigname>.boundary: #uniqueStart uniqueEnd repeatStart repeatEnd 51 39630 1 50

<contigname>.anchor: >contig00013 GTCGAGCGGGATGGTGCCGGTCTCGCCGATCCCCTGCCACGCCACCGTCC

A default config file named gapRes.config residing in <installDir/config> is used to specify the name and location of the software components as well as options for each component. To specify your own config file, set the environmental variable GAP_RES_CONFIG to the path and name of the custom config file.

The config parameters used by idContigRepeats.pl are as follows: (components are identified by ``script.'').

idContigRepeats.pl # script.createFastaFromAce=ace2contigs script.createRefBlastDb=fasta2MegaBlastDb.pl script.createContigFasta=parsefasta2 script.identifyRepeatBoundary=idRepeatBoundary.pl script.blastLocation=/usr/X11R6/bin/

#**NOTE** #The blast location can also be defined by the environmental #variable BLAST_LOC; #********

idRepeatBoundary.aligner=blastall idContigRepeats.cleanupTmpFiles=1 idContigRepeats.outputLogDir=assemInfo idContigRepeats.scaffFileName=scaffInfo.txt idContigRepeats.bondaryFileExt=.boundary idContigRepeats.anchorFileExt=.anchor

fasta 2 aligner Db config # fasta2MegaBlastDb.formatDbOptions=-p F -o -i

idRepeatBoundary.pl # idRepeatBoundary.blastOptions=-p blastn -F F -e 1e-5 idRepeatBoundary.repeatLength=100 idRepeatBoundary.repeatIdentity=95 idRepeatBoundary.windowLength=500 idRepeatBoundary.subWindowLength=100 idRepeatBoundary.windowStep=250 idRepeatBoundary.uniqueAnchorLength=50 idRepeatBoundary.boundaryPadLength=50 idRepeatBoundary.aligner=blastall

ace2contigs # ace2contigs.outputFileName=454AllContigs ace2contigs.options=-q

getSubProjReads.pl

Wrapper program for the Gap Resolution sub system that is responsible for getting reads and it's pairs in the unique and repeat regions of each contig in a sub project directory

Usage:

getSubProjReads.pl [options] <readinfo.txt> <gapdirs.txt> <libinfo.txt>

 <contigs.fasta> <contigs.fasta.qual>

 Options:

 -od <dir> Output directory (optional; default is current

 directory).

 -h Detailed message (optional)

For each sub project directory and contig left or right of the gap, the program performs the following steps:

1. Get reads + pairs in the unique region of the contig by calling getReadsInUnique.pl (configurable). Save list in a file within the sub project's directory as <contigName>.unique.reads (extension configurable).

2. Get reads in the repeat region of the contig by calling getReadsInRepeats.pl (configurable) Save list in a file within the sub project's directory as <contigName>.repeat.reads (extension configurable).

3. Look for read pairs from the contig of interest that are in contigs from different scaffolds using getRepeatContig.pl (configurable). At least 2 (configurable) read pairs must be present. If found, check that the ``repeat'' contig is > 250 (configurable) and less than the gap size + a gap padding (configurable). For each repeat contig, create the fasta and qual files in the sub project directory and a $contigs.repeatContigs.txt (extension configurable) file containing a list of the repeat contig names. The position withing the contig to look for reads is determined by using the largest library insert size + 2 (configurable) x standard deviation.

4. For each repeat contig found, get reads for the entire contig using getReadsInRepeat.pl (configurable). Save the list in a file within the sub project directory as <contigName>.repeat.reads (extension configurable). For each repeat contig fasta and qual file created as fakes, check if fasta sequence is > 2kb (configurable). If so, shred fasta and qual to 1kb (configurable) fragments with 100bp (configurable) overlap.

For more information regarding each of the software component called, refer to it's documentation.

The following output files are created within each of the sub project directory:

 * <contig>.unique.reads - list of reads to assemble from the unique
 region of the contig adjacent to the gap (one for the left contig,
 one for the right contig).

 * <contig>.repeat.reads - list of reads to assemble from the repeat
 region of the contig adjacent to the gap or from the repeat contig
 (if exists).

 * <contig>.repeatContigs.txt - list of repeat contig names found from
 read pairs belonging to the contig adjacent to the gap (one for the

 left contig, one for the right contig). If no repeat contig is
 found, this file is not created.

 * fastas/<contig>.fasta - fasta sequence of the repeat contig

 consensus (fake read). If no repeat contig is found, this file is

 not created. This file is created in the repeatFastas
 (configurable) sub directory within the sub project directory.

 * fastas/<contig>.fasta.qual - quality values of the repeat contig
 consensus (fake read). If no repeat contig is found, this file is
 not created. This file is created in the repeatFastas configurable)
 sub directory within the sub project directory.

 * readlist.txt - list of output read pairing info files created by
 this software.

The file format of the <contig>.unique.reads and <contig>.repeat.reads are the same as the readinfo.txt file. For more details, refer to the documentation for newblerAce2ReadPair.pl.

A default config file named gapRes.config residing in <installPath>/config is used to specify the following parameters:

(configurable)

 getSubProjReads.libInsertSizeStdDevMultiplier=2

 Specify the multiplier of the library insert size standard
 deviation to determine the distance from the end of the repeat
 contig to grab reads. The maximum library insert size defined in
 the the libinfo.txt is used.

 getSubProjReads.minRepeatContigLength=250

 Specify the minimum repeat contig length to be consider for
 creating fakes and grabbing reads from.

 getSubProjReads.gapSizePadding=0

 Specify the padding to add/subtract from the gap size to determine
 the maximum repeat contig length such that it can fit inside the
 gap.
 getSubProjReads.shredRepeatConsensus=1

 Specify whether to shred the repeat consensus fasta and qual files.

 getSubProjReads.shredRepeatConsensusIfGreaterThanThisLength=2000

 Specify the minimum length of the repeat contig to be considered
 for shredding.

 shredFasta.fragmentLength=1000

 Specify the fragment length when shredding the repeat contig
 consensus.

 shredFasta.overlapLength=100

 Specify the overlap length when shredding the repeat contig
 consensus.

 getSubProjReads.minNumReadLinksInRepeatContig=2

 Specify the minimum number of read links between the contig
 belonging to the gap and the repeat contig outside of the scaffold.
(system configuration)

 script.getReadsInUnique=getReadsInUnique.pl

 script.getReadsInRepeat=getReadsInRepeat.pl

 script.getRepeatContig=getRepeatContig.pl

 getSubProjReads.repeatFastaFileExtension=.repeat.fasta

 getSubProjReads.repeatQualFileExtension=.repeat.fasta.qual

 getSubProjReads.repeatContigListFileExtension=.repeatContigs.txt

 idContigRepeats.boundaryFileExtension=.boundary

 getSubProjReads.readListFileName=readlist.txt

 getSubProjReads.directoryOfRepeatContigConsensus=fastas

 getSubProjReads.uniqueReadsFileExtension=.unique.reads

 getSubProjReads.repeatReadsFileExtension=.repeat.reads

 getSubProjReads.outputFastaDirectory=fastas

newblerAssemSubProject.pl

Wrapper program to assemble gap project directories using the Newbler assembler.

Usage:

newblerAssemSubProject.pl [options] <subdirectory list> <sffInfo file>

 Options:

 -h detailed message (optional)

 -d debug printing (optional)

 -o output assembly directory (optional) default=Newbler

 -p location of phd_dir if you have finishing data in the assembly

 -fn finishing data output filename. Default=finishingData

This program takes a list of gap project subdirectories as well as an sffInfo file, which lists the name and locations of each sff file for the project, and converts any reads specified in a read list into sff or fasta/qual depending on if it is a 454 or sanger type read. It organizes the data into three directories created within each gap subdirectory for paired 454 data, unpaired 454 data, and sanger-type data (fasta/quals). If you have any finishing read data you must specify -p <phd_dir> so the program can find phd files associated with that data to create fasta and quals.

After sourcing a config file specified newbler environment file, the organized read data for each gap subproject is assembled with newbler. The assembly output can be found in a directory within each gap subdirectory and its name is configurable (default = Newbler).

A default config file named gapRes.config residing in <installPath>/config is used to specify the following parameters:

 script.reads2sff=reads2sff.pl

 script.sfffile=/jgi/tools/454/rig-BETA/bin/sfffile

 newblerAssemSubProject.newblerEnvFile=/jgi/tools/454/454_env_BETA.sh

 newblerAssemSubProject.newblerOptions=-consed -g -nrm

 newblerAssemSubProject.pairedDataDir=pairedData

 newblerAssemSubProject.unpairedDataDir=unpairedData

If the value of the config parameter script.nnnn doesn't contain file paths, newblerAssemSubProject.pl assumes that the script name resides in the <installPath>/bin directory.

validateSubProject.pl

Wrapper program for the Gap Resolution sub system that is responsible for validating each of the sub project directories and generating 1) the fasta and qual files of a closed assembly or 2) a primer description file to be used for designing primers.

Usage:

validateSubProject.pl [options] <gapdirs.txt> <libinfo.txt> <sffinfo.txt>

 Options:

 -h Detailed message (optional)

Unless otherwise noted, anchor here refers to the anchor sequence obtained from the left and right contigs of the gap prior to reassembly. This is done upstream using idContigRepeats.pl.

The following tasks are done for each sub project:

 1. Create a contig orientation file of the assembly in the assembly directory

 using the 454Scaffolds.txt file.

 2. Create a read pairing info file (readinfo.txt) file in the assembly directory

 from the ace file.

 3. Validate the gap assembly by calling valdateGapAssembly.pl. This will create

 a validinfo.txt file within the sub project directory containing information

 pertaining to the validation of the assembly. For more info, refer to

 validateGapAssembly.pl's documentation.

The format of the validinfo.txt file is as follows:

 leftAnchorContig=name of contig

 leftAnchorContigLength=number

 leftAnchorStart=number

 leftAnchorEnd=number

 rightAnchorContig=name of contig

 rightAnchorContigLength=number

 rightAnchorStart=number

 rightAnchorEnd=number

 anchorStart=number

 anchorEnd=number

 anchorDistance=number

 gapSize=number

 gapSizeStdDev=number

 numConsistentReadPairs=number

 numInconsistentReadPairs=number

 pctConsistent=number

 avgConsensusQualityBetweenAnchors=number

 IsDistanceValid=0|1

 IsReadPairingValid=0|1

 IsQualityValid=0|1

 Status=SUCCESSFUL|FAILED

 Comment=comment entry

The format of the contigOrientation.txt file is as follows, with each item

separated by a tab, one entry per line:

 1. contigName

 2. orientation (+|-)

A validationSummary.txt file is created in the working directory containing

the validation status of each of the sub project directories. The format of

the file is as follows, with each entry separated by a tab:

 1. full path of sub project directory

 2. status (PASS or FAIL)

 3. comments
Dependencies:
The following scripts (configurable in config file) must exist in the same path as validateSubProject.pl unless the path to the script is defined in the config file:

 * newblerAce2ReadPair.pl

 * validateGapAssembly.pl

The following are the description of the input files used by the validateSubProject.pl.

 * gapdir.txt - list of gap directories created by createSubProject.pl

 * libinfo.txt - library insert size and std dev file created by
 parseNewblerMetrics.pl

 * sffinfo.txt - location of sff files created by
 parseNewblerMetrics.pl

The following files are created or must exist in each sub project directory:

 * 454Scaffolds.txt - created by Newbler in the sub project directory
 + Newbler/assembly.

 * contigOrientation.txt - created within the sub project directory +

 Newbler/assembly using the 454Scaffolds.txt file. The format is
 contig + tab + orientation(+/-), one per line.

 * readinfo.txt - created within the sub project directory +
 Newbler/assembly using newblerAce2ReadPair.pl.

 * scaffinfo.txt - must exist within the sub project directory created

 elsewhere using createSubProject.pl)

For more information regarding the formats of these files, refer the documentation of the scripts that are used to create the file.

A default config file named gapRes.config residing in <installPath>/config is used to specify the following parameters:

(configurable)

 validateSubProject.anchorSeqMinAlignPercentIdentity

 The anchor sequences are aligned to the reference sequence to
 determine the positions of the anchors in the assembly. Use this to
 specify the minimum alignment percent identity.

 validateSubProject.anchorSeqMinAlignmentLength

 The anchor sequences are aligned to the reference sequence to
 determine the positions of the anchors in the assembly. Use this to
 specify the minimum alignment length.

 validateSubProject.percentGapSizedPaddingForValidation

 If the left and right anchors are aligned to the same contig in the
 assembly, the distance between the anchors must be within the gap
 size +/ a standard deviation to be considered valid. This parameter
 is used to compute the gap size standard deviation, represented as
 a percentage of the gap size (e.g., std dev=gap size * percent gap
 size padding). The gap size is determined from the required pre-
 existing file scaffinfo.txt (previously generaged by
 createSubProject.pl)

 validateSubProject.percentReadPairConsistency

 When validating the read pairs for consistency, the percentage of
 consistent read pairs (valid read pairs/invalid read pairs) must be
 >= to the threshold defined by this parameter. Read pairs are
 considered valid if they meet all of the following criteria: 1)
 read pairs are located on the same contig, 2) distance between the
 read pairs are within the library insert size +/ standard

 deviation, 3) The read orientation points toward each other.

 validateSubProject.libInsertSizeStdDevMultiplier

 One of the criteria for validating read pairs for consistency is
 determining whether the distance of the read pairs are within the
 library insert size +/- standard deviation. This parameter is used
 as a standard deviation multiplier in order to allow for the
 configuration of the library insert size range.

 validateSubProject.minAvgConsensusQualityBetweenAnchors

 One of the criteria for validating a sub project is that the

 average consensus quality between the anchors must be >= to a
 threshold. This parameter is used to specify this threshold.

(system configuration)

 validateSubProject.assemblyDirectory

 validateSubProject.validateGapAssemblyOutputFile

 validateSubProject.assemblyContigsFasta

 validateSubProject.assemblyContigsQual

 validateSubProject.validationSummaryFile

 validateSubProject.createDbFileExecutable

 validateSubProject.aligner

 validateSubProject.alignerParameters

createSubProjectFakes.pl
Usage:

createSubProjectFakes.pl [options] <validationSummary.txt>

Options:

-h Detailed message (optional)
This is a wrapper program for the Gap Resolution sub system that is responsible generating the fasta and qual files of closed assemblies to be used as fake reads.
Dependencies:

The following scripts (configurable in config file) must exist in the same path as validateSubProject.pl unless the path to the script is defined in the config file:

 * shredFasta.pl

The input file contains information about the validation statuses for each sub project directory. The format of the validationSummary.txt file are as follows, one per line with each item delimited by a tab.

 1. sub project directory

 2. PASS|FAIL

 3. comment (optional)

Each sub project directory must contain a validinfo.txt file (previously generated by validateSubProject.pl). Note that this file contains the validation status. However, the status defined in the input validationSummary.txt file supercedes the status within the validinfo.txt file. In other words, the status in validationSummary.txt is the one that is used to determine whether or not to process the creation of fakes or primer files for each sub project.

The status within the validationSummary.txt file determines the course of action.

If the validation is successful, create fasta and qual files of the contig containing the anchors and place them in the sub project directory naming it <subProjectDirName>.a1 and <subProjectDirName>.a1.qual. Copy the fasta and qual files to the fakes dir in the current working directory.
The following files must exist in each sub project directory:

 * validinfo.txt - create by validateSubProject.pl

 * 454ALlContigs.fna - created by Newbler

 * 454AllContigs.qual - created by Newbler

A default config file named gapRes.config residing in

<installPath>/config is used to specify the following parameters:

(configurable)

 createSubProjectFakes.trimClosedGapConsensusUsingAnchorPos
 Specify if the closed gap consensus should be trimmed at the anchor
 position (0|1)

 createSubProjectFakes.trimConsensusSeqToThisManyBasesAwayFromAnchor=0

 If trimming consensus of closed gaps is turned on, specify how many

 bases away from anchor position to keep.

 createSubProjectFakes.shredClosedGapConsensus
 Specify if the closed consensus fasta and qual files should be
 shredded (0|1).

 createSubProjectFakes.shredClosedGapConsensusIfGreaterThanThisLength
 Specify the minimum length of the closed consensus sequence to be
 considered for shredding.

 shredFasta.fragmentLength
 Specify the fragment length when shredding the repeat contig
 consensus.

 shredFasta.overlapLength
 Specify the overlap length when shredding the repeat contig
 consensus.

(system configuration)

 createSubProjectFakes.fakesDir
 Specify the name of the directory to store the fasta and qual files

 of the fakes.

 createSubProjectFakes.fakesFileExtension
 Specify the file extension of the fakes.

createSubProjectPCRPrimerInfo.pl

Usage:

createSubProjectPCRPrimerInfo.pl [options] <validationSummary.txt>

 Options:

 -h Detailed message (optional)
This is a wrapper program for the Gap Resolution sub system that is responsible for creating a primer description file to be used for designing primers.

Dependencies:

The input file contains information about the validation statuses for each sub project directory. The format of the validationSummary.txt file are as follows, one per line with each item delimited by a tab.

1. sub project directory

2. PASS|FAIL

3. comment (optional)

Each sub project directory must contain a validinfo.txt file (previously generated by validateSubProject.pl). Note that this file contains the validation status. However, the status defined in the input validationSummary.txt file supercedes the status within the validinfo.txt file. In other words, the status in validationSummary is the one that is used to determine whether or not to process the creation of fakes (status=pass) or to create primer files (status=fail) for each sub project.

The status within the validationSummary.txt file determines the course of action.

If the validation failed and the anchors reside on different contigs, create a primerinfo.txt file to be used for primer design (downstream process).

The following files must exist in each sub project directory:

· validinfo.txt - create by validateSubProject.pl

· 454AllContigs.fna - created by Newbler

· 454AllContigs.qual - created by Newbler

The format of the primerinfo.txt file is as follows:

FASTA_TAG=<fasta tag name>

TARGET_REGION=<start> <length>

TEMPLATE=GDNA

LEFT_PRIMER_NAME=<name of left primer>

RIGHT_PRIMER_NAME=<name of right primer>

EXCLUDED_REGION=<start> <length>

Note that the EXCLUDE_REGION key/value pair is optional. If used, more than one entry could be defined.

A default config file named gapRes.config residing in <install Path>/config is used to specify the following parameters:

(configurable)

 createSubProjectPCRPrimerInfo.numberOfNsToInsertInGapConsensus=50

 If the validation fails and the anchors are on different contigs, a
 sequence of the left contig and the right contig will be produced
 with N paddings in the middle. This parameter defines the number
 of N's to place between the two sequences.

 createSubProjectPCRPrimerInfo.maxDistanceAwayFromAnchorToDesignPrimer=

1000
 Specify the maximum distance away from the anchor position to
 design primers.

 (system configuration)

 createSubProjectPCRPrimerInfo.leftPrimerNameExtension=_left

 Specify the suffix for naming the left primer within the primers
 file.

 createSubProjectPCRPrimerInfo.rightPrimerNameExtension=_right

 Specify the suffix for naming the right primer within the primers
 file.

 createSubProjectPCRPrimerInfo.primerInfoFile=primerinfo.txt

 Specify the name of the file containing the primer reactions.

 createSubProjectPCRPrimerInfo.gapFastaFileExtension=.gap.fasta

 Specify the file extension for the fasta file containing the gap
 concensus.

 createSubProjectPCRPrimerInfo.primerInfoTemplateName=GDNA

 Sepcify the template name in the primers file

createAnchorTagsForAce.pl

Usage:

createAnchorTagsForAce.pl [options] <454Scaffolds.txt> <gapDirsFile> <outputAnchorFile>

Options:

 -d
Debug mode. Prints additional information in output file
 (optional)

 -a
ace file (optional; if specified then ace file will be tagged)

 -h
Detailed help message (optional)
This software component is part of the Gap Resolution sub system that is responsible for creating an output of tags that specify the coordinates of the anchors in the acefile. The anchor tags are then added to the specified ace file.

Unless otherwise noted, anchor here refers to the anchor sequence obtained from the left and right contigs of the gap prior to reassembly. This is done upstream using idContigRepeats.pl.

The ouput of idRepeatBoundaries.pl is used, in conjunction with the size and orientation of each contig within its scaffold, as specified in the 454Scaffolds.txt file, to calculate the position of each anchor. This information is then used to create a consed formatted output file of tags.
A default config file named gapRes.config residing in <installPath>/config is used to specify the following parameters:

(configurable)

createAnchorTagsForAce.allowTransferOfTags

 Allow transfer of ace tags using transferConsensusTags (provided in

 Phred/Phrap/Consed package). Set to 1 for transferability, zero for non-transferability.

createAnchorTagsForAce.tagType

 Name of tag type when adding tag to ace file.

(system configuration)

createGapResProject.assemInfoDirName

idContigRepeats.scaffFileName

idContigRepeats.boundaryFileExtension

idRepeatBoundary.uniqueAnchorLength

script.aceTagger

createAnchorTagsForSubprojectAce.pl

Usage:

createAnchorTagsForSubProjectAce.pl [options] <gapdirs.txt>

Options:

-d Debug mode. Prints additional information in output file
 (optional)

-h Detailed message (optional)

This script adds anchor tags to all gap directories specified in the input.

It expects that the validation info file and Newbler ace file are found within

each subdirectory. It will add anchor tags and also a custom navigation file

to each subdirectory.

A default config file named gapRes.config residing in

<installPath>/config is used to specify the following parameters:

(system configuration)

 newblerAssemSubProject.newblerAssemblyDirectory

 validateSubProject.validateGapAssemblyOutputFile

 script.tagCTAce

createSubProjectPrimers.pl

Usage:

CreateSubProjectPrimers.pl [options]

Options:

-if input file of sub-project paths

-h detailed message (optional)
This is a wrapper program for the Gap Resolution software. It takes a list of Gap project directories and then attempts to design primers for a gap and places the designed primers in the gap directory and also in a file in the current working directory.

For eachs of the sub project directories the program performs the following:

1) Check for the existence of a fasta file and associated primer info file.

2) If the appropriate files exist then primer3 is called on the files
3) If primers were successfully designed, an output file is created within the gap project sub directory. An entry is also added to the primer file in the current working directory.

The output files created are based on the parameters below are:

{gapname}createSubProjectPrimers.subProjectPrimersExtension

{current workingdir}/createSubProjectPrimers.allProjectPrimersFile

The output file format is as follows:

 name=<primer_name>

 position=<contig> <primerStart> <primerEnd>

 type=<primer type>

 sequence=<sequence>

 template=<clone1> <clone2> ...

 date=YYMMDD:HHMMSS temp=<annealing temp>

Parameters are read from the configuration file and are as follows:

createSubProjectPrimers.primer3ParameterFile=primer3.parameters file createSubProjectPrimers.primerInfoFile=name of primer info file ex. "primerinfo.txt" createSubProjectPrimers.gapFastaFileExtension=fasta file extension ex. ".gap.fasta"

createSubProjectPrimers.subProjectPrimersExtension=file extension ex. “.subProjectPrimers.txt" createSubProjectPrimers.allProjectPrimersFile=global primer files in working dir ex. "primers.txt"
This wrapper executes the following scripts/programs:
primer3Design.pl
primer3Design.pl

Wrapper program to execute primer3 for designing primers to close gaps.

Usage:

primer3Design.pl -if <input sequence fasta file>

 -ic <sequence coords file>

 -ip <primer3 parameter file>

 -o <primer output file>

 -help

Note:all given options are required except help

PRIMER3_PATH environmental variable path to primer3_core executable must be set.

primer3Design.pl is a program that takes as inputs: a sequence file in fasta format ,a sequence coordinate file (in the format described below), and a primer3 parameter file. The program then calls primer3_core and outputs a primer output file(in the format described below).

options:

-if: A sequence file in fasta format. The sequence id represented by the first space separated field in the fasta header lines.

-ic: The sequence coordinates file used to direct primer3 and must have the following format:

 FASTA_TAG=(sequence id)

 TARGET_REGION=(start and length coords of region to design
 primers around)

 TEMPLATE=(Template id)

 LEFT_PRIMER_NAME=(example s00127c01594c01595_left)

 RIGHT_PRIMER_NAME=(example s00127c01594c01595_right)

 EXCLUDED_REGION=(start and len of region to exclude)

 EXCLUDED_REGION=(Note: there can be multiple regions)

 Example:

 FASTA_TAG=s00127c01594c01595

 TARGET_REGION=60727 50

 TEMPLATE=GDNA

 LEFT_PRIMER_NAME=s00127c01594c01595_left

 RIGHT_PRIMER_NAME=s00127c01594c01595_right

 EXCLUDED_REGION=1 59626

 EXCLUDED_REGION=60677 50

 EXCLUDED_REGION=60777 50

 EXCLUDED_REGION=61877 59335

-ip: Primer3 paramter file. Formated list of primer3 paramters.

 Example:

 PRIMER_NUM_RETURN=5

 PRIMER_MAX_END_STABILITY=9.0

 PRIMER_MAX_MISPRIMING=12.00

 PRIMER_PAIR_MAX_MISPRIMING=24.00

 ...

 PRIMER_IO_WT_SEQ_QUAL=0.0

 PRIMER_TASK=pick_pcr_primers

 PRIMER_FIRST_BASE_INDEX=1

 PRIMER_PICK_ANYWAY=1

 =

-o: Path to primer output file containing the designed primer information with the following format:

 name=(left primer name),(right)

 position=("left primer id" "left primer start" "left primer
 end"),(right)

 type=(sequencing type left),(right)

 sequence=(primer sequence left),(right)

 template=(template to use)

 date=(left primer design date),(right date) temp=(left temp),(right)

 Example:

 name=s00127c01594c01595_left,s00127c01594c01595_right

 position=s00127c01594c01595 60623 60643,s00127c01594c01595 60892
 60912

 type=custom PCR,custom PCR

 sequence=CGGTtACGTCAaGGTTCGTT,GCAAAGTCCACCTGAATGGT

 templates=GDNA

 date=20090120:142243,20090120:142243 temp=60,60

newblerAce2ReadPair.pl

This script takes as input an ace file and generates a file containing the information of the reads and it's mate.

Usage:

newblerAce2ReadPair.pl [options] <acefile> <outputfile>

 Options:

 -cf <file> File containing contig name and orientation (+/-)

 delimited by a

 tab, one per line (optional; use this to define contigs

 that need to be reverse complemented)

 -h help message (optional)

The format of the output file is as follows, where each item is separated by a tab:

 1. read name

 2. read start

 3. read stop

 4. read strand (+/-)

 5. contig name of the read

 6. contig length of the read

 7. type of pairing (P-paired, U-unpaired, M-multiply placed)

 8. read pair name

 9. read pair start

 10. read pair stop

 11. read pair strand (+/-)

 12. contig name of the read pair

 13. contig length of the read pair

parseNewblerMetrics.pl

This script parses the 454NewblerMetrics.txt file generated by the Newbler assembler to produce a file containing sff locations and/or a file containing the library insert size and std deviation.

Usage:

parseNewblerMetrics.pl [options] <454NewblerMetrics.txt>

 Options:

 -sff <file> Name of output sff file (optional; if omitted, -lib must

 be specified.)

 -lib <file> Name of output library file (optional; if omitted, -sff

 must be specified.)

 -h help message (optional)

The format of the sff file is as follows, where each item is separated by a tab:

 1. sff name

 2. sff file location

 3. type (P-paired, U-unpaired)

The format of the library file is as follows, where each item is separated by a tab:

 1. library name

 2. insert size

 3. standard deviation

createSubProject.pl

This script takes as input newbler generated 454Scaffolds.txt file and newblerAce2ReadPair.pl generated read pairs file.

Usage:

createSubProject.pl -is <454Scaffolds.txt>

 -ip <454Contigs.ace.1.pairs>

 -od <existing output dir or path>

 -of <full path for creation of sub project fof>

 -sf <name of scaff info file to be created within

 each subproject>

 -rl <ReadLinkage min ex 2>

 -ms <min Scaffold len ex 50000>

 -ic <ignore Circ gap 1=true 0=false>

Note:all given options are required.

The output dir or path for output dir creation is specified.

Suproject directories will be created in the output dir with the following naming convention:

s00002c00004c00005 (scaffold, left contig, right contig)

Within each subproject directory is a scaffInfo file with the following tab-delimited one line format:

 1.Gap Name ex. s00002c00009c00004

 2.Gap Size ex. 100

 3.Left Contig Len ex. 548

 4.Left Contig Name ex. contig00009

 5.Right Contig Len ex. 19097

 6.Right Contig Name ex. contig00004

 7.Scaffold ex. scaffold00002

Parameters required on the command line are :

 -rl = minReadLinkage = minimum reads linking two contigs

 required to create subproject

 -ms = minScaffSize = minimum scaffold size to consider

 when creating subprojects (kbp)

 -ic = ignoreCircGap = if set to 0 will create an additional

 circularization gap per scaffold if

 linking criteria is met.

fasta2MegaBlastDb.pl

Creates a blast database of the input Fasta where the fasta file is located. Uses formatdb, the location of which is defined by the environmental variable BLAST_LOC.

Usage:

fasta2AlignerDb.pl [options] -o 'options' -f <fasta>

 Options:

 -h this help message

 -if fasta

 -o command line options for formatdb

Location of blastall must be defined in environmental variable ``BLAST_LOC''. This script constructs the command line and executes it with a system call. Creates teh database at the location of the input fasta file.

idRepeatBoundary.pl

Determines the repeat boundary at the ends of each contig flanking the gap.

 idRepeatNoundary.pl [options] -if <input fasta>

 -id <input blast database>

 -e <contig end>

 -blastcmd <blastcommand>

 -ao <AnchorFileName>

 -bo <BoundaryFileName>

 Options:

 -h this help message

 -d turn debug printing on

 -id input blast database (REQUIRED)

 -if input query fasta (REQUIRED)

 -e contig end (REQUIRED)

 -li library info file (REQUIRED)

 -blastcmd blast command (REQUIRED)

 ex /usr/X11R6/bin/blastall -p blastn -F F -e 1e-5

 #-m 8 is hardcoded, and -i -d are command line options

 -bo boundary output file name (REQUIRED) ex /thisdir/ThisCtg.boundary"

 -ao anchor output file name (REQUIRED) ex "/thisotherdir/ThisCtg.anchor"

 -k keep temporary blast files

 -al unique anchor size (default=50)

 -pl length of boundary padding (default=50)

 -wl window size to examine for repeats (default=500)

 -sl subwindow size to examine for repeats (default=100)

 -ws window step size (default=250)

 -rl definition: repeat minimum length (default=100)

 -ri definition: repeat minimum identity (default=95)

 Input fasta is aligned to a database using blastn -m 8 and the unique/repeat

boundary is returned as well as a unique anchor in fasta format.

Given a newbler assembly where 2 contigs in a scaffold flank a particular gap,

 ctgA ctgB

 |----------| gap |----------|

 1 N 1 N

This program is designed to identify the boundary between unique and repeat sequence within a contig by aligning the contig to a blast database of the entire assembly. Blast results are parsed for any repeat >= repeat length (-rl) with percent identity >= repeat identity (-ri).

The boundary locations of unique and repeat as well as the fasta sequence for a unique anchor are deposited in the location of the input query sequence.

The unique-repeat boundary is defined by examining blast results within a specified size window X to Y (-wl), starting in a small subwindow Y-Z defined by subwindow length (-sl).

<-gap ctgNNN |--.... X Y-Z Y ^.............|.........^

If there are no repeat hits then the boundary is X+padding (-pl). The unique anchor is then: X+padding (-pl) to X+padding+anchor length (-al).

If there are blast hits then the presence of repeat is first checked for in the sub-window, defined by Y-subwindow length (-sl) to Y. If repeat is present within this sub-window then the entire window X to Y is shifted by window step (-ws). The window keeps sliding by -ws, and the presence of repeat is checked in the subwindow until no repeat is found.

Once the presence of repeat is not detected in the subwindow, the rest of the window X to Y - subwindow length (-sl) is checked for repeat and the unqique/repeat boundary is defined as the end of the last repeat within that window + padding (-pl):

<-gap ctgNNN --------||||||----|||||---------------------.... ^repeat Y minus Z X.................................|........Y ^ ^- no repeat detected in sub-window | boundary -| <-(-pl)-> x y repeat bounds >------< unique anchor |-----------------------------| |------..... unique bounds

The END of the unique boundary is defined by the largest insert size library

for the project x 1.5, starting at the beginning of the contig, no the beginning

of the unique boundary.

The unique anchor (see x,y) start is then defined as 1 + boundary position + padding length (-pl), and end is start + anchor length (-al).

The boundaries of unique and repeat as well as unique anchor sequence are named and deposited according to -bo -ao respectively.

boundary file: #uniqueStart uniqueEnd repeatStart repeatEnd 51 2080 1 50

anchor file: >contig00005 length=2080 numreads=426 GGTCGGCGACGTAGCCGGGCGCGGCGCCGTCCGGCACCTCGCCGTGGAAC

Contig end, specified by -e, is important in that if the contig resides on the left side of a gap, then the fasta sequence is reverse complimented and treated as a contig who resides on the right side of the gap (for coding efficiency). The boundary and anchor sequence are identified, and reverse complimented.

The coordinates of unique and repeat can then be used to extract which reads can be safely gathered for subprojecting, and the anchor is used to check if reassembly of a subproject is in a single contig.

getReadsInUnique.pl

This script takes read pair file, contig name, position (left or right of gap), unique boundary start, unique boundary end, path to output file of read ids and an optional file name to output a read pair subset file of read pair lines in the target region.

Usage:

getReadsInUnique.pl

 -iRead <454Contigs.ace.1.pairs>

 -cName <contig name>

 -cPos <left|right>

 -bStart <unique boundry start>

 -bEnd <unique boundry end>

 -oRead <path to read pair output file>

 -help

All reads in boundaries specified are examined. Unpaired reads are output if a read or portion of the read falls within the boundaries. Additionally, paired reads are output the read or portion of the read falls within the boundary and it is oriented in such a way that its mate lies in the direction of the gap.

getReadsInRepeat.pl

This script takes read pair file, contig name, repeat boundary start, repeat boundary end, path to output file of read ids and an optional file name to output a read pair subset file of read pair lines in the target region.

getReadsInRepeat.pl

 -iRead <454Contigs.ace.1.pairs>

 -cName <contig name>

 -bStart <repeat boundry start>

 -bEnd <repeat boundry end>

 -oRead <path to read pair output file>

 -help

All unpaired reads in boundaries specified are examined. Reads are ouput if the entire read falls within specified boundaries. No overlap.

getRepeatContig.pl

Part of the Gap Resolution sub system, this software component identifies repeat contigs based on the read pairing information on the specified contig.

Usage:

 getRepeatContig.pl [options] <scaffinfo.txt> <readinfo.txt> <fastaOfAllContigs>

 <qualOfAllContigs> <outputContigListFile>

 Options:

 -rs <number> Length of region from gap to look for read
 pairs (required)

 -contig <contig name> Name of contig adjacent to the gap (required)

 -pos <L or R> Position of contig (L-left, R-right) relative
 to gap (required)

 -min <number> Minimun repeat contig length (required)

 -max <number> Maximum repeat contig length (required)

 -rl <number> Minimum number of linking reads between
 specified contig and repeat contig.

 -od <dir> Output directory to create the fasta and qual

 files (optional; default is current working
 directory)

 -rlog <file> Name of file containing repeat contig reads
 (optional; for debugging purposes)

 -fastaExt <string> File extension to name the repeat fasta file.
 Prefix is contig name (required)

 -qualExt <string> File extension to name the repeat qual file.
 Prefix is contig name (required)

 -h help message (optional)

A fasta and qual file of each repeat contig is generated and a list of repeat contig names are created in the file specified in <outputContigListFile>. The following steps are performed to identify a repeat contig for creating a fasta and qual files.

1. Look for reads that contain pairs within the specified contig and within the region from the start of the gap to the range specified using the -regionsize parameter. The reads that have pairs must point towards the gap. The read pairs are obtained from the <readinfo.txt> file and only read pairs with the status P (paired) or M (multiply placed) are used.

2. If the read pair is in a different contig and scaffold, and there are at least N number (specified using the -rl option) of read links present, mark the repeat contig for consideration in creating fasta and qual files. The repeat contig length must be >= the minimum repeat contig length (specified using the -min option) and <= the maximum repeat contig length (specified using the -max option).

In summary, the repeat contigs must pass the following criteria to be considered for creating the fasta and qual files: a. repeat contig must be >= the minimum repeat contig length (specified using the -min option) and must be <= to the maximum repeat contig length (specified using the -max option). b. A minimum of N read links (specified using the -rl option) between the specified contig and the repeat must exist. c. repeat contig must be in a different scaffold than specified contig. d. read pairs in the specified contig must be located within a specified distance from the gap (using -rs option).

An <outputContigListFile> is created containing the names of the repeat contigs.

Description of inputs:

 scaffinfo.txt - scaffold info file generated by createSubProject.pl

 readinfo.txt - ead pairing information file generated from
 newblerAce2ReadPair.pl

 fastaOfAllContigs - fasta file containing specified contig and all
 repeat contigs

 qualOfAllContigs - qual file containing specified contig and all
 repeat contigs

 outputContigListFile - name of file containing the list of repeat
 contigs described in step 2.

reads2sff.pl

This script takes as input a readlist to retrieve.

Usage:

createSubProject.pl -sffinfo <list of lib info>

 -odir <outputdir for sff file creation

 unpaired>

 -odirPair <outputdir for sff file creation

 paired>

 -help

 readlistfile1 readlistfile2 ... etc

Note:all given options are required except help .

SFFFILE_PATH environmental variable path to sffinfo executable must be set.

reads2fasta.pl

This script takes as input a readlist or readlist to retrieve. The read id to be retrieved must be in the 1st (whitespace separated) column of the readlist(s) supplied on the command line.

Usage:

reads2fasta.pl -pd <phd_dir>

 -of <path to fasta output file>

 -oq <path to qual output file>

 -help

 readlistfile1 readlistfile2 ... etc

Note:all given options are required except help.

If the phd file for the read exists in the phd_dir specified by -pd by the command line, the fasta and quals are written.

Note: Newbler ace file information (eg. _left,_right,.pr) is stripped from the read id to enable use of readlists generated by NewblerAce2ReadPair.pl

 Options are as follows:

 -pd phd_dir where the phd files are kept

 -of path to output fasta file. This file will contain

 the fasta sequences.

 -of path to output qual file. This file will contain

 the quality scores.

 space separated command line arguments are the read lists.

validateGapAssembly.pl

This software component is part of the Gap Resolution sub system that is responsible for validating a sub project for closure after it has been reassembled.

Usage:

validateGapAssembly.pl [options] <leftAnchorFastaFile> <rightAnchorFastaFile> <readinfo.txt> <libinfo.txt> <sffinfo.txt> <contigs.fasta> <contigs.qual> <outputFile (e.g., validinfo.txt)>

Options:

 -gsize <number> Gap size (required)

 -gsizeStd <number> Gap size standard deviation (required)

 -aligner <name> Path and name of aligner to use for

 aligning anchors to reference (required)

 -alignerParams <params> Aligner parameters (required)

 -formatdb <name> Path and name of formatdb (required)

 -pctId <number> Minimum percent identity for aligning

 anchors to reference (optional;

 default=95)

 -alignLen <number> Minimum alignment length for aligning

 anchors to reference (optional;

 default=40)

 -pctValidReads <number> Minimum percent of valid read pairs

 (optional; default=90)

 -minQual <number> Minimum avg consensus quality between

 anchors (optional; default=30)

 -insertSizeStdMult <number> Library insert size standard deviation

 multiplier (optional; default=1)

 -debug Prints additional information in output

 file (optional)

 -h Detailed help message (optional

Unless otherwise noted, anchor here refers to the anchor sequence obtained from the left and right contigs of the gap prior to reassembly. This is done upstream using idContigRepeats.pl.

1. Validate anchor distance. The left and right anchors are aligned (using -aligner <aligner>) to the contigs of the assembly. If the anchors reside on the same contig and the distance is within the gap size (-gsize option) +/- standard deviation (-gsizeStd option), the anchor distance is considered to be valid. Otherwise, the anchor distance is invalid. Alignments of the anchors to the assembly contigs are filtered by percent identity (-pctId option) and the alignment length (-alignLen option).

2. Validate read pairing. For each read pair, determine the library insert size by mapping the read to the it's corresponding sff file (via 454's sffinfo script) and determining the library insert sizes and standard deviations x a multiplier (-insertSizeStdMult option) using the sffinfo.txt and libinfo.txt files. Read pairs are considered valid only if they meet all of the following criteria: a) the read pairs are located on the same contig and their distance are within the library insert size +/- standard deviation * a multiplier (-insertSizeStdMult option), b) the orientation of the reads point towards each other, then that read pair is deemed valid, and c) the percent of the valid read pairs to invalid read pairs is >= 90% (configurable using -pctValidReads option).

3. Validate consensus quality. If the anchors reside on the same contig of the assembly, the average quality between the anchors is determined and must be >= 30 (configurable using -minQual option) to be considered valid. Otherwise, the consensus quality is invalid.

The specified output file contains information pertaining to the validation in a key/value pair. The following entries are reported:

 leftAnchorContig=name of contig

 leftAnchorContigLength=number

 leftAnchorStart=number

 leftAnchorEnd=number

 rightAnchorContig=name of contig

 rightAnchorContigLength=number

 rightAnchorStart=number

 rightAnchorEnd=number

 anchorStart=number

 anchorEnd=number

 anchorDistance=number

 gapSize=number

 gapSizeStdDev=number

 numConsistentReadPairs=number

 numInconsistentReadPairs=number

 pctConsistent=number

 avgConsensusQualityBetweenAnchors=number

 IsDistanceValid=0|1

 IsReadPairingValid=0|1

 IsQualityValid=0|1

 Status=SUCCESSFUL|FAILED

 Comment=comment entry

The Status is defined as SUCCESSFUL if all three validations passed. Otherwise, it is reported as FAILED.

Description of input files:

 * leftAnchorFastaFile - fasta file containing the sequence of the
 left anchor

 * rightAnchorFastaFile - fasta file containing the sequence of the
 right anchor

 * readinfo.txt - file containing read pairing information of the
 assembly. This file is generated by newblerAce2ReadPair.pl. For
 more information on the format of the file, refer to

 newblerAce2ReadPair.pl's documentation.

 * libinfo.txt - file containing library insert size and standard
 deviation. This file is generated by parseNewblerMetrics.pl. For
 more information on the format of the file, refer to
 parseNewblerMetrics.pl's documentation.

 * sffinfo.txt - file containing the path of the sff file, it's
 corresponding library and the type of the sff file. This file is
 generated by parseNewblerMetrics.pl. For more information on the
 format of the file,

 refer to parseNewblerMetrics.pl's documentation.

 * contigs.fasta - fasta file containing the contigs of the assembly.

 * contigs.qual - qual file of the corresponding contigs.fasta.

 * outputFile - name of the output file containing the information of
 the validation.

Gap Resolution File Formats:

Unless otherwise stated, each item listed is separated by a tab and represents one entry per line.

gapdirs.txt (in assemInfo directory)

list of file path and names of all sub project directories

sffinfo.txt (in assemInfo directory)

1. sff name

2. file path and name of sff file

libinfo.txt (in assemInfo directory)

1. library name

2. insert size

3. standard deviation

contigOrientation.txt (in assemInfo directory)

1. contig name

2. orientation (+ or -)

scaffinfo.txt (in sub project directory)

1. gap name

2. gap size

3. left contig length

4. left contig name

5. right contig length

6. right contig name

7. scaffold

readlist.txt (in sub project directory)

list of file names containing read pairing info created by getSubProjectReads.pl

<contig>.boundary (in sub project directory)

1. unique start

2. unique stop

3. repeat start

4. repeat stop

{contig}.anchor (in sub project directory)

unique sequence (fasta file format w/ contig name in def line; unique sequence is from unique boundary to length of anchor)

readinfo.txt (in assemInfo directory), <contig>.unique.reads (in sub project directory)

, <contig>.repeat.reads (in sub project directory)

1. readName

2. readStart

3. readstop

4. strand (+|-)

5. contig

6. contigSize

7. status (P-paired, U-unpaired, M-multiply placed)

8. matePairName

9. matePairStart

10. matePairstop

11. matePairStrand (+|-)

12. matePairContig

13. matePairContigSize

readlist.txt (in sub project directory)

list of one or more of the following read pairing information file created by getSubProjReads.pl)
1. <contig>.unique.reads

2. <contig>.repeat.reads

validinfo.txt (in sub project directory)

validation information file (not tab delimited)
leftAnchorContig=name of contig

leftAnchorContigLength=number

leftAnchorStart=number

leftAnchorEnd=number

rightAnchorContig=name of contig

rightAnchorContigLength=number

rightAnchorStart=number

rightAnchorEnd=number

anchorStart=number

anchorEnd=number

anchorDistance=number

gapSize=number

gapSizeStdDev=number

numConsistentReadPairs=number

numInconsistentReadPairs=number

pctConsistent=number

avgConsensusQualityBetweenAnchors=number

IsDistanceValid=0|1

IsReadPairingValid=0|1

IsQualityValid=0|1

Status=SUCCESSFUL|FAILED

Comment=comment entry

validationSummary.txt (in working directory)

1. sub project directory

2. status (PASS|FAIL)

3. comment (optional; may be omitted)

anchorTags.txt (in working directory), 454Contigs.ace.1.anchor.tags (in edit_dir directory created by Newbler)

file to add consensus tags to ace file

1. contig name

2. tag type

3. tag source

4. unpadded start of region

5. unpadded end of region

6. comment

primerinfo.txt (in sub project directory)

primer info file to design primers using primer3Design.pl.

FASTA_TAG=(sequence id)

TARGET_REGION=(start and length coords of region to design primers around) TEMPLATE=(Template id)

LEFT_PRIMER_NAME=(example s00127c01594c01595_left) RIGHT_PRIMER_NAME=(example s00127c01594c01595_right) EXCLUDED_REGION=(start and len of region to exclude) EXCLUDED_REGION=(Note: there can be multiple regions)

primers.txt (current working directory)

output file containing primer reactions designed for gapped projects.

name=(left primer name),(right)

position=("left primer id" "left primer start" "left primer end"),(right)

type=(sequencing type left),(right) sequence=(primer sequence left),(right) template=(template to use)

date=(left primer design date),(right date)

temp=(left temp),(right)

sub project directory naming:

s<number>c<number>c<number>

where s=scaffold name, first c=left contig number, second c=right contig number

Gap Resolution S/W Component Inputs/Outputs:
Main wrapper: runGapResolution.pl

executes the following components in the order described.

1. createGapResProject.pl

2. idContigRepeats.pl

3. getSubProjReads.pl

4. newblerAssemSubProject.pl

5. validateSubProject.pl

6. createSubProjectPrimers.pl

inputs:

1. ace file (assembly output file)

2. 454Scaffolds.txt (agp formatted file)

3. 454NewblerMetrics.txt (newbler specific file)

4. 454AllContigs.fna (contig fasta file)

5. 454AllContigs.qual (contig qual file)

Component: createGapResProject.pl

inputs:

1. ace file

2. 454Scaffolds.txt

3. 454newblerMetrics.txt

4. output directory (optional)

outputs:

1. assemInfo directory

2. assemInfo/contigOrientation.txt

3. sub project directories (createSubProject.pl)

4. <subProject>/scaffinfo.txt (createSubProject.pl)

5. assemInfo/gapdirs.txt (createSubProject.pl)

6. assemInfo/libinfo.txt (parseNewblerMetrics.pl)

7. assemInfo/sffinfo.txt (parseNewblerMetrics.pl)

8. assemInfo/readinfo.txt (newblerAce2ReadPair.pl)

dependencies:

1. newblerAce2ReadPair.pl

2. parseNewblerMetrics.pl

3. createSubProject.pl

Sub component: newblerAce2ReadPair.pl

inputs:

1. ace file

2. output file

3. contigOrientation.txt (-cf flag; optional)

outputs:

1. readinfo.txt

Sub component: parseNewblerMetrics.pl

inputs:

1. 454NewblerMetrics.txt

outputs:

1. assemInfo/sffinfo.txt

2. assemInfo/libinfo.txt

Sub component: createSubProject.pl

inputs:

1. 454Scaffolds.txt

2. readinfo.txt

outputs:

1. <subProject> directories

2. <subProject>/scaffinfo.txt

3. <assemInfo>/gapdirs.txt

Component: getSubProjReads.pl

inputs:

1. readinfo.txt

2. gapdirs.txt

3. libinfo.txt

4. 454AllContigs.fna

5. 454AllContigs.qual

outputs:

1. <subProject>/fastas

2. <subProject>/<contig>.unique.reads

3. <subProject>/<contig>.repeat.reads

4. <subProject>/<contig>.repeatContigs.txt

5. <subProject>/<contig>.repeat.reads

6. <subProject>/readlist.txt

7. <subProject>/fastas/<contig>.fasta

8. <subProject>/fastas/<contig>.fasta.qual

dependencies:

1. getReadsInUnique.pl

2. getReadsInRepeat.pl

3. getRepeatContig.pl

4. shredFasta.pl

Sub component: getReadsInUnique.pl

inputs:

1. readinfo.txt

outputs:

1. <subProject>/<contig>.unique.reads

Sub component: getReadsInRepeat.pl

inputs:

1. readinfo.txt

outputs:

1. <subProject>/<contig>.repeats.reads

Sub component: getRepeatContig.pl

inputs:

1. scaffinfo.txt

2. readinfo.txt

3. 454AllContigs.fna

4. 454AllContigs.qual

5. output file

outputs:

1. <subProject>/<contig>.repeat.reads

Component: newblerAssemSubProject.pl

inputs:

1. gapdirs.txt

2. sffinfo.txt

outputs:

1. <subProject>/Newbler/*

dependencies:

1. sfffile (454 software)

2. reads2sff.pl

3. reads2fasta.pl

Sub component: reads2fasta.pl

inputs:

1. phd directory

outputs:

1. output fasta file

2. output qual file

Component: validateSubProject.pl

inputs:

1. gapdirs.txt

2. libinfo.txt

3. sffinfo.txt

outputs:

1. <subProject>/Newbler/assembly/contigOrientation.txt

2. <subProject>/Newbler/assembly/readinfo.txt

3. <subProject>/<subProject>.a1

4. <subProject>/<subProject>.a1.qual

5. <subProject>/validinfo.txt

6. validationSummary.txt

dependencies:

1. newblerAce2ReadPairs.pl

2. validteGapAssembly.pl

3. <subProject>/scaffinfo.txt

4. <subProject>/Newbler/assembly/454Scaffolds.txt

Sub component: validateGapAssembly.pl

inputs:

1. <leftContig>.anchor

2. <rightContig>.anchor

3. readinfo.txt

4. libinfo.txt

5. sffinfo.txt

6. contigs.fasta

7. contigs.qual

outputs:

1. <subProject>/validinfo.txt

Component: createSubProjectFakes.pl

inputs:
1. validationSummary.txt

outputs:
1.
<subProject>/primerinfo.txt

2. fakes/<subProject>.a1

3. fakes/<subProject>.a1.qual

4. primers.txt

dependencies:

1. shredFasta.pl

2. <subProject>/validinfo.txt

3. <subProject>/Newbler/assembly/454AllContigs.fna

4. <subProject>/Newbler/assembly/454AllContigs.qual

5. <subProject>/454Scaffolds.txt

6. <subProject>/Newbler/assembly/contigOrientation.txt (if not present, one will be created)
Component: createAnchorTagsForAce.pl

inputs:
1. 454Scaffolds.txt
2. assemInfo/gapdirs.txt

outputs:

1. anchorTags.txt

dependencies:

1.
<subProject>/<contigNumber>.boundary

Component: createAnchorTagsForSubprojectAce.pl
inputs:

1.
assemInfo/gapdirs.txt

outputs:

1. <subProject>/Newbler/assembly/consed/edit_dir/454Contigs.ace.1.anchor.nav
2. <subProject>/Newbler/assembly/consed/edit_dir/454Contigs.ace.1.anchor.tags

dependencies:

1. <subProject>/validinfo.txt

2. <subproject>/ Newbler/assembly/consed/edit_dir/454Contigs.ace.1

Component: createSubProjectPrimers.pl

inputs:

1. gapdirs.txt

outputs:

1. <subProject>/primerinfo.txt

2. primers.txt

dependencies:

1. primer3Design.pl

Sub component: primer3Design.pl

inputs:

1. <contigNumber>.fasta

2. primerinfo.txt

3. primer3.parameters

outputs:

1. primers.txt

Configuration Parameters:

Perform execution on one or more components. Set to 1 to execute component,

0 to skip.

#

execute.createGapResProject.pl=1

execute.idContigRepeats.pl=1

execute.getSubProjectReads.pl=1

execute.newblerAssemSubProject.pl=1

execute.validateSubProject.pl=1

execute.createSubProjectFakes.pl=1

execute.createSubProjectPrimers.pl=1

execute.createAnchorTagsForAce.pl=1

execute.createAnchorTagsForSubprojectAce.pl=1

Error handling for all components

errorHandling.dieIfErrorDetectedWhileProcessingSubProjectDir=0

errorHandling.warningsFile=runGapResolution.warnings

runGapResolution

#

script.createGapResProject=createGapResProject.pl

script.idContigRepeats=idContigRepeats.pl

script.getSubProjReads=getSubProjReads.pl

script.newblerAssemSubProject=newblerAssemSubProject.pl

script.validateSubProject=validateSubProject.pl

script.createSubProjectFakes=createSubProjectFakes.pl

script.createSubProjectPrimers=createSubProjectPrimers.pl

script.createAnchorTagsForAce=createAnchorTagsForAce.pl

script.createAnchorTagsForSubprojectAce=createAnchorTagsForSubprojectAce.pl

runGapResolution.addAnchorTagsToMainAceFile=1

runGapResolution.addAnchorTagsToSubprojectAceFile=1

fasta 2 aligner Db config

#

fasta2MegaBlastDb.formatDbOptions=-p F -o -i

idRepeatBoundary.pl

#

idRepeatBoundary.blastOptions=-p blastn -F F -e 1e-5

idRepeatBoundary.repeatLength=100

idRepeatBoundary.repeatIdentity=95

idRepeatBoundary.windowLength=500

idRepeatBoundary.subWindowLength=100

idRepeatBoundary.windowStep=250

idRepeatBoundary.uniqueAnchorLength=50

idRepeatBoundary.boundaryPadLength=50

idRepeatBoundary.aligner=blastall

ace2contigs

#

ace2contigs.outputFileName=454AllContigs

ace2contigs.options=-q

idContigRepeats.pl

#

idContigRepeats.cleanupTmpFiles=1

idContigRepeats.scaffFileName=scaffinfo.txt

idContigRepeats.boundaryFileExtension=.boundary

idContigRepeats.anchorFileExtension=.anchor

idRepeatBoundary.aligner=blastall

script.createFastaFromAce=ace2contigs

script.createRefBlastDb=fasta2MegaBlastDb.pl

script.createContigFasta=fastaParser.pl

script.identifyRepeatBoundary=idRepeatBoundary.pl

script.blastLocation=/usr/X11R6/bin/

createSubProject

#

createSubProject.minReadLinkage=2

createSubProject.minScaffSize=50000

createSubProject.ignoreCircularGap=1

createGapResProject

#

script.readInfoFileGenerator=newblerAce2ReadPair.pl

script.parseNewblerMetrics=parseNewblerMetrics.pl

script.createSubProject=createSubProject.pl

createGapResProject.assemInfoDirName=assemInfo

createGapResProject.readInfoFileName=readinfo.txt

createGapResProject.libInfoFileName=libinfo.txt

createGapResProject.sffInfoFileName=sffinfo.txt

createGapResProject.subProjectFoFName=gapdirs.txt

createGapResProject.contigOrientationFileName=contigOrientation.txt

getSubProjReads

#

script.getReadsInUnique=getReadsInUnique.pl

script.getReadsInRepeat=getReadsInRepeat.pl

script.getRepeatContig=getRepeatContig.pl

script.shredFasta=shredFasta.pl

getSubProjReads.libInsertSizeStdDevMultiplier=2

getSubProjReads.minRepeatContigLength=250

getSubProjReads.gapSizePadding=0

getSubProjReads.minNumReadLinksInRepeatContig=2

getSubProjReads.shredRepeatConsensus=1

getSubProjReads.shredRepeatConsensusIfGreaterThanThisLength=2000

getSubProjReads.repeatFastaFileExtension=.fasta

getSubProjReads.repeatQualFileExtension=.fasta.qual

getSubProjReads.repeatContigListFileExtension=.repeatContigs.txt

getSubProjReads.uniqueReadsFileExtension=.unique.reads

getSubProjReads.repeatReadsFileExtension=.repeat.reads

getSubProjReads.readListFileName=readlist.txt

getSubProjReads.outputFastaDirectory=fastas

getSubProjReads.keepTempContigReadInfoFiles=0

newblerAssemSubProject

#

script.reads2sff=reads2sff.pl

script.reads2fasta=reads2fasta.pl

newblerAssemSubProject.newblerEnv=/home/copeland/local/x86_64/newbler/2.1-PreRelease-4-28-2009-gcc-3.4.6-threads

newblerAssemSubProject.newblerOptions=-consed -g -nrm -rip

newblerAssemSubProject.pairedDataDir=pairedData

newblerAssemSubProject.unpairedDataDir=unpairedData

newblerAssemSubProject.newblerAssemblyDirectory=Newbler

shredFasta

#

shredFasta.fragmentLength=1000

shredFasta.overlapLength=100

validateSubProject

#

script.sffinfo=/home/copeland/local/x86_64/newbler/2.1-PreRelease-4-28-2009-gcc-3.4.6-threads/sffinfo

script.validateGapAssembly=validateGapAssembly.pl

validateSubProject.anchorSeqMinAlignPercentIdentity=95

validateSubProject.anchorSeqMinAlignmentLength=40

validateSubProject.percentReadPairConsistency=90

validateSubProject.minAvgConsensusQualityBetweenAnchors=30

validateSubProject.libInsertSizeStdDevMultiplier=1

validateSubProject.percentGapSizedPaddingForValidation=20

validateSubProject.assemblyDirectory=Newbler/assembly

validateSubProject.validateGapAssemblyOutputFile=validinfo.txt

validateSubProject.assemblyContigsFasta=454AllContigs.fna

validateSubProject.assemblyContigsQual=454AllContigs.qual

validateSubProject.validationSummaryFile=validationSummary.txt

validateSubProject.createDbFileExecutable=/usr/X11R6/bin/formatdb

validateSubProject.aligner=/usr/X11R6/bin/blastall

validateSubProject.alignerParameters=-p blastn -F F -e 1e-5

createSubProjectPrimers

#

script.primer3_core=/home/prefin/bin/primer3_core

script.primer3Design=primer3Design.pl

Note: below parameter file is placed in config directory

createSubProjectPrimers.primer3ParameterFile=primer3.parameters

createSubProjectPrimers.primerInfoFile=primerinfo.txt

createSubProjectPrimers.gapFastaFileExtension=.gap.fasta

createSubProjectPrimers.subProjectPrimersExtension=.subProjectPrimers.txt

createSubProjectPrimers.allProjectPrimersFile=primers.txt

createAnchorTagsForAce

#

script.aceTagger=tagCTAce

createAnchorTagsForAce.outputFile=anchorTags.txt

createAnchorTagsForAce.tagType=anchorTag

createAnchorTagsForAce.allowTransferOfTags=1

createAnchorTagsForSubprojectAce

#

createAnchorTagsForSubprojectAce.tagType=anchorTag

createAnchorTagsForSubprojectAce.allowTransferOfTags=1

createAnchorTagsForSubprojectAce.

#

script.tagCTAce=tagCTAce

createSubProjectFakes

#

createSubProjectFakes.trimClosedGapConsensusUsingAnchorPos=0

createSubProjectFakes.trimConsensusSeqToThisManyBasesAwayFromAnchor=0

createSubProjectFakes.numberOfNsToInsertInGapConsensus=50

createSubProjectFakes.shredClosedGapConsensus=1

createSubProjectFakes.shredClosedGapConsensusIfGreaterThanThisLength=2000

createSubProjectFakes.maxDistanceAwayFromAnchorToDesignPrimer=1000

createSubProjectFakes.fakesDir=fakes

createSubProjectFakes.fakesFileExtension=.a1

createSubProjectFakes.leftPrimerNameExtension=_left

createSubProjectFakes.rightPrimerNameExtension=_right

createSubProjectFakes.primerInfoFile=primerinfo.txt

createSubProjectFakes.gapFastaFileExtension=.gap.fasta

createSubProjectFakes.primerInfoTemplateName=GDNA

Contig

Gap (due to repeat)

Read pairs that are found in contigs outside of this scaffold

Contig

Gap

Design sequencing reactions to close gap

Contig

Gap

_1318339444.vsd
newblerAce2ReadPair.pl

ace file

readinfo.txt
(read pairing info)

createSubProject.pl

454Scaffold.txt
(agp format file)

sub project directories
"s#c#c#"

idRepeatBoundary.pl

{contig}.boundary
(unique and repeat coords file)

runNewblerAssembly.pl

{contig}.anchor

validateGapAssembly.pl

scaffinfo.txt

getReadsInUnique.pl

Create sub project directory and the
scaffInfo.txt file containing the info:
scaffold, contigs and gap size

sff files

ace file

createAnchorTagsForSubprojectAce.pl

gapdirs.txt

newblerAce2ReadPair.pl

readinfo.txt

sffinfo.txt

libinfo.txt

ace2contigs.pl

repeat contig fasta + qual

primers.txt

tagCTAce

contigs.fasta +
.qual

{contig}.unique.reads
(readlist in unique area of gap contigs)

reads2sff.pl

contigs.fasta

reference db file

readinfo.txt

getReadsInRepeat.pl

{contig}.repeat.reads
(readlist in repeat area of gap contigs)

parseNewblerMetrics.pl

454NewblerMetrics.txt

libinfo.txt

getRepeatContig.pl

readinfo.txt

validateSubProject.pl

{contig}.fasta

repeat contig fasta + qual

getReadsInRepeat.pl

repeat contig list

{contig}.anchor
(anchor sequence)

{contig}.repeat.reads
(readlist in repeat area of gap contigs)

readinfo.txt

sffinfo.txt

start, stop coords

contig name

contig name, left or right

start, stop coords

fasta2MegaBlastDb.pl

start, stop coords

readlist.txt

idContigRepeats.pl

createGapResProject.pl

newblerAssemSubProject.pl

Software component

Wrapper

Legend

list of sub project directories

454Scaffold.txt

getSubProjReads.pl

list of sub project directories

gapdirs.txt

contigs.fasta.qual

fastaParser

454Scaffold.txt

contigs.fasta +
.qual

sffinfo.txt

contig name

fasta + qual

readinfo.txt

454Scaffold.txt

454NewblerMetrics.txt

454AllContigs.fasta + .qual

gapdirs.txt

reads2fasta.pl

phd_dir

primer3Design.pl

createSubProjectPrimers.pl

gapdirs.txt

ace file

createAnchorTagsForAce.pl

tagCTAce

454Scaffold.txt

anchorTags.txt

ace file

shredFasta.pl

createSubProjectFakes.pl

primerinfo.txt

validationSummary.txt

fasta/quals of closed gap consensus

createSubProjectPCRPrimerInfo.pl

