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ABSTRACT

A new system for aligning whole genome sequences
is described. Using an efficient data structure called a
suffix tree, the system is able to rapidly align
sequences containing millions of nucleotides. Its use
is demonstrated on two strains of Mycoplasma
tuberculosis , on two less similar species of Mycoplasma
bacteria and on two syntenic sequences from human
chromosome 12 and mouse chromosome 6. In each
case it found an alignment of the input sequences, using
between 30 s and 2 min of computation time. From the
system output, information on single nucleotide
changes, translocations and homologous genes can
easily be extracted. Use of the algorithm should
facilitate analysis of syntenic chromosomal regions,
strain-to-strain comparisons, evolutionary comparisons
and genomic duplications.

INTRODUCTION

When the genome sequence of two closely related organisms
becomes available, one of the first questions researchers want to
ask is how the two genomes align. There is a large body of
research, including many sophisticated algorithms, for aligning
two sequences. This vast literature cannot be cited here, but
important early work includes Needleman and Wunsgtauid
Smith and WatermarY) (for recent reviews se&9). The focus
of most prior research has been on comparing single proteins or
genomic DNA sequences containing a single gene. The existing
algorithms work extremely well on this task, but in most cases are
ineffective in aligning entire genomes. The problem is really one
of size: single gene sequences may be as long as tens of thousand
of nucleotides, but whole genomes are usually millions of
nucleotides or larger. When comparing a 4 Mb sequence such as
M.tuberculosigo another 4 Mb sequence, many algorithms either
run out of memory or take unacceptably long to complete. In
addition, previous algorithms were designed primarily to dis-
cover insertions, deletions and point mutations, but not to look for
the kinds of large-scale changes that can be discovered in
whole-genome comparisons, such as differences in tandem
repeats and large scale reversals.

Since the first successful whole-genome shotgun sequence olin this paper we describe a system for pairwise alignment and
Haemophilus influenzagl), the number of organisms whose comparison of very large scale DNA sequences. The algorithm

genomes have been completely sequenced has been increaassymes the sequences are closely related, and using this assumptic
rapidly each year. As the number and variety of these genomean quickly compare sequences that are millions of nucleotides in
increase, it is becoming more common for a project to sequenieagth. It will also be able to compare entire chromosomes as large
the genome of an organism that is very closely related to anottes human chromosome 1 (i.e., several hundred million basepairs),
completed genome. For example, the genomédycbplasma once such sequences are available, and in the process identify all
genitalium(2) andMycoplasma pneumonigg), the third and differences between two different individuals.

fifth prokaryotic organisms to be completely sequenced, respect-The system is specifically designed to perform high resolution
ively, are very closely related and share sequence homologgmparison of genome-length sequences. It outputs a base-to-base
across large fractions of their genomes. More recently, there haignment of the input sequences, highlighting the exact differences
been tremendous scientific interest in sequencing different strainsthe genomes. It will locate all single nucleotide polymorphisms
of the same bacteria. Two straindtyfcobacterium tuberculosis (SNPs), large inserts, significant repeats, tandem repeats and
H37Rv @) and CDC1551 (R.D.Fleischmaanal, manuscriptin  reversals, in addition to identifying the exact matches between the
preparation), and two strains ©hlamydia trachomatjserovar  genomes.

D (5) and mouse pneumonitis (Fraser al, manuscript in We have applied this system to the CDC1551 and H37Rv
preparation), will be completely sequenced in the near future; 8trains ofM.tuberculosis to the two completedlycoplasma

each case one of the two strains is complete and the other is negeypomes, and to two relatively long (225 kb) syntenic sequences
so. It is clear that the future will see an increasing number @fom the human and mouse genomes. In the case of tuberculosis,
sequencing projects whose target is a strain or species thathe strains are very closely related, and the system was very useful
closely related to an already-sequenced organism. at pinpointing the SNPs and the relatively small number of
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significant insertions between these two genomes. (For tliee longer sequence. Tlken3 program {3) uses a linear time
context of this discussion, the term SNP is used to meanaigorithm that works well when the input sequences are highly
sequence that appears in both genomes with a difference of jashilar; it runs very fast even on very long sequences. Unfortunately,
one base between the two copies. Such polymorphisms maytlis class of algorithms does not always work for whole genome
may not represent mutations that occur in a significant percentagi@nments, since the ‘errors’ may include multiple large inserts on
of the population.) In the second case, where the organisms #rne order of 1Hor 1® nucleotides. As we demonstrate below, the
much less closely related (differing by hundreds of thousands nfimber of differences may be greater than 100 000 despite the fact
nucleotides), the system is nonetheless able to align the genortiex the genomes (in this cadegenitaliumandM.pneumoniagare
precisely. We also tested our system on even more distantipsely related and can in fact be aligned with one another.
related sequences by comparing a syntenic region from the mous@nother system developed to align long sequencini14).
and human genomes. The results of these comparisons a&tes system uses a BLAST-like hashing scheme to identify exact
described in the Results and Discussion. k-mer matches, which are extended to maximal-length matches.
In addition to allowing for comparison between differentThese maximal matches are then combined into local alignment
organisms, the system described here can also be put to a differdins by a dynamic programming step. In contrast, our
use. At different stages of any large genomic sequencing project, theffix-tree approach directly finds maximal matches that are
assembled sequence will change as gaps are closed, sequenaitigue. These matches can then be easily ordered to form the
errors are corrected and additional sequences are completedsis of an alignment that can span even very long mismatch
Because the finishing stage involves many individuals, it can lregions between the two input genomes.
difficult for a project leader (or any one person) to get a picture of The system described here was developed in response to our
what has changed each time a genome is reassembled. The program efforts as part of sequencing strain CDC155W adiber-
described here can compare two different versions of a genomecatosis we realized it was essential to describe all the differences
different stages of sequencing and highlight precisely what hagtween CDC1551 and the recently completed H37Rv stain (
changed. The well-known and widely used BLAST%16) and FASTA
The output of the system gives a clear picture at the sequer{l1) systems are not designed to perform large scale alignment
level of all the differences between two genomes. (The code a6 genomes, and our attempts to use these did not produce all the
freely available; contact the authors by email for details.) Tonformation we needed. It is possible, of course, to align two
present a more global picture, we have also developed a graphgahomes gene-by-gene, or to align shorter pieces and concatenate
interface that allows a researcher to scroll along the two genornras the results. By assuming that the two input sequences are
being compared and zoom in on areas of interest. (See Eigure closely related, our algorithm can perform large scale alignments
an example of what the tool displays.) The next sections descrifpaickly and precisely; the result is a very detailed and inclusive
the computational techniques employed in the system, followed byase-to-base mapping between the two sequences.
a demonstration of its use in three different comparisons: complete
genomes of two strains M.tuberculosis complete genomes of
two related species dflycoplasmaand related 225 kb regions ALGORITHMIC METHODS

from mouse chromosome 6 and human chromosome 12. g haqjs of the algorithm is a data structure known as a suffix

tree, which allows one to find, extremely efficiently, all distinct
THE CHALLENGE OF WHOLE GENOME ALIGNMENT subsequences in a given sequence. The first efficient algorithms

to construct suffix trees were given by Weindr7)( and
The standard algorithms for sequence alignment rely on eithbtcCreight (L8), and this data structure has been studied
dynamic programming/(10) or hashing technique8,(1). Naive  extensively for more than two decadéj. (For the task of
versions of dynamic programming u€¥n?) space and time comparing two DNA sequences, suffix trees allow us to quickly
(wheren is the length of the shorter of the two sequences beirfind all subsequences shared by the two inputs. The alignment is
compared), which makes computation simply unfeasible fahen built upon this information.
sequences of size4 Mb (such as the twadM.tuberculosis Our system uses a combination of three ideas: suffix trees, the
genomes). [For an input with sigea functionX is O(n?) if, for  longest increasing subsequence (LIS) and Smith—Waterman
sufficiently largen and for some consta@ independent ofi,  alignment {). The novelty of the system derives from the
X< Cn. Informally stated, théd(n?) notation means that the integration of these ideas into a coherent system for large-scale
amount of space and time required for the computation is no magenome alignment. We focus here on the high-level design of the
thanCr?.] Hashing techniques operate faster on average, but theystem and exclude some of the low-level algorithmic details;
involve a ‘match and extend’ strategy, where the ‘extend’ part altbose details can be found in the references.
takesO(n?) time. For dynamic programming, it is possible to The inputs to the system are two sequences, which for
reduce the required spaced(n) by taking more time; this solves convenience we refer to as Genofnand Genom®. Note that
the memory problem but still leaves one with an unacceptably slomny sequences can be provided as input (in fact, we have a
algorithm. Faster algorithms can be developed for specializedodified version of the system that handles protein sequences),
purposes, such as a recent system for finding tandem reii®ats (but we will use DNA for the purposes of discussion. We assume
This repeat finder useskdauple hashing algorithm and couples itthe sequences to be compared are closely homologous. In
with a stochastic pattern matching strategy. particular, we assume that there is a mapping between large

More complex dynamic programming methods can be used feubsequences of the two inputs, presumably because they evolvec

alignment when the alignment error is expected to be low. Férom a common ancestor. The main biological features that the
example, one can align two similar sequences with at Ehost system identifies are as follows. (i) SNPs, defined here as a single
differences (or errors) in time proportionaHdimes the length of mutation ‘surrounded’ by two matching regions on both sides of
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Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta gaaccgacct
Genome B:  gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag 123456780910

Figure 1. A maximal unique matching subsequence (MUM) of 39 nt (shown
in uppercase) shared by Genofvend GenomB. Any extension of the MUM
will result in a mismatch. By definition, an MUM does not occur anywhere else

. . accgacct
in either genome. gace

the mutation. (ii) Regions of DNA where the two input sequences
have diverged by more than an SNP. (jii) Large regions of DNA
that have been inserted into one of the genomes, for example by
transposition, sequence reversal or lateral transfer from anothgure 2. Suffix tree for the sequence gaaccgacct. Square nodes are leaves and
organism. (iV) Repeats, usua”y in the form of a duplication thafep(eser!t complete suffixes. They are labeled by the starting position of the
. suffix. Circular nodes represent repeated sequences and are labeled by the

has occurred in one genome but not the other. The repeat@lgin of that sequence. In this example the longest repeated sequence is acc
regions can appear in widely scattered locations in the inpudccurring at positions 3 and 7.
sequences. (v) Tandem repeats, regions of repeated DNA that
might occur in immediate succession, but with different copy
numbers in the two genomes. The copy numbers do not have to
be integers; e.g., arepeat could occur 2.5 times in one genome gidima unique matching subsequence decomposition
4.2 times in the other.

The alignment process consists of the following steps, whicRs mentioned above, identification of MUMs is the key step in
are described in more detail in subsequent sections. ~~ the alignment. By identifying the sequences that occur only once

(i) Perform a maximal unique match (MUM) decomposition ofin each genome we can complete the alignment by closing the
the two genomes. This decomposition identifies all maximalaps between the aligned MUMs.
unique matching subsequences in both genomes. An MUM is aThe problem of finding a set of maximal unique matching
subsequence that occurs exactly once in Gerfoarel once in  strings (subsequences) in two very long sequences is by no means
GenomeB, and is not contained in any longer such sequenceomputationally trivial. The naive algorithm for this problem will
Thus, the two character positions bounding an MUM must bienply matching every subsequence in Genduweth Genome
mismatches, as shown in FigureThe crucial principle behind B. There aré(n?) such subsequences (whaiie the sum of the
this step is the following: if a long, perfectly matching sequenckengths of the two genomes), and each match requires approxi-
occurs exactly once in each genome, it is almost certain to be panatelyO(n) time using standard pattern matching methods.
of the global alignment. (Note that a similar intuition is behind the Fortunately, we can employ an ingenious computational data
hashing method upon which FASTA and BLAST are basedstructure introduced by Weineirq) called a suffix tree. An example
Thus, we can build the global alignment around the MUMf a suffix tree for the string gaaccgacct is shown in Figure
alignment. Because of the assumption that the two genomes arés the name implies, a sulffix tree is a compact representation that

highly similar, we are assured that a large number of MUMSs wiftores all possiblsuffixesof an input sequenc A suffix is simply
be identified. a subsequence that begins at any position in the sequence anc

MUMs on both DNA strands are identified; this allows the€Xt€nds to the end of the sequence. Each suficam be located
system to identify sequences from one genome that app(gg/rtraversmg a unigue path in the tree from the root node to a leaf
reversed in the other genome. node. In other words, each leaf node represents a unique suffix. A

(i) Sort the matches found in the MUM alignment, and extract thg€duence of lengi hasN suffixes, one starting at each sequence

longest possible set of matches that occur in the same order in bB‘@i't'on’ so the tree must haideaves, and therefore at mbiil

o ; o . rnal nodes since each internal node has at least two child nodes.
?Oe;}z[jn?ﬁ;ﬂ'g 'ngnse%ﬂggfevi;'?gfe%ggh?_\gjg'kxgvgﬂ%ﬂzgh ote that each internal node in a tree corresponds to a repeated

: . gquence in the original genome, where the repeat number equals the
ordered MUM alignment that provides an easy and natural way mber of leaf nodes underneath that node in the tree. [Recently
scan the alignment from left to right.

: . . suffix trees have also been used to help discover regulatory elements
(i) Close the gaps in the alignment by performing local, yenomic yeast sequencas)( For other applications of suffix
identification of large inserts, repeats, small mutated regiongees to sequence analysis, see GusIH (
tandem repeats and SNPs. _ _ The simple, brute-force algorithm to construct suffix trees runs
(iv) Output the alignment, including all the matches in then guadratic time; this is no faster than dynamic programming
MUM alignment as well as the detailed alignments of regiongnd, as explained above, is impractical for comparing whole
that do not match exactly. genomes. However, it is possible to build a suffix tree in linear
The system, which is called MUMmer, is packaged as thragme by clever use of sets of pointets,(8,20,21); our system
independent modules: suffix tree construction, sorting and extractiges McCreight'sl(8) algorithm. The total size of the tree is also
of the LIS, and generation of Smith—Waterman alignments for all thimear in the sum of the lengths of the genomes in it, since there
regions between the MUMSs. The last step can easily be replade@xactly one leaf and at most one internal node for each base, anc
with another alignment program if a user wishes. In the ensuirige sizes of these nodes are fixed. Note that the sequence label or
sections we elaborate further on each of these steps. each edge can be represented by two integers (its length and
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starting position in the genome), no matter how long it is. Our ¢, 0me A: 2 3, _ s 5 7
particular implementation uses 12 bytes per leaf node, 24 bytes g(

per internal node, plus 1 byte for each base in the genome. MoreGenome B: - ——3—; P 6 7 5
compact representations are possiBl®.(Because suffix-tree

construction and all subsequent steps require no more than linearg.e,ome A: ! ) 4 6 7
time and space, the overall running time (and space) required by \ \ j
the system is also linear. As a very generous upper bound, theGenome B: - — 2 P 6 7

system as implemented requires no more than 37 bytes per base
of the input sequences; thus a comparison of two 100 Mb

chromosomes would require <8 gigabytes of memory (an(lfigure_S.AIign?ng_GenomeA and Genom@ after locating th_e MUMs. Each
probably far less than that). MUM is here indicated only by a number, regardless of its length. The top

) . . alignment shows all the MUMs. The shift of MUM 5 in Gendihmdicates
MUMmer begins by constructing a suffix tréeor genomeA, a transposition. The shift of MUM 3 could be simply a random match or part
and then adding the suffixes for genoBwo T. Adding suffixes  of an inexact repeat sequence. The bottom alignment shows just the LIS of
from an additional string to a suffix tree is a trivial modification of MUMs in GenomeB.
the construction algorithm for a single string, since the construction
is accomplished by adding one suffix at a time to the portion of the
tree that has already been constructed. A|temate|y, we can aChie\iESNP: exactly one base (indicated by ") differs between the two sequences. It is
the same effect by concatenating the two genomes (separated by aurrounded by exact-match sequence.
dummy character that does not occur in either genome) and Genome A:  cgtoatgggegttogtogttg
constructing a suffix tree from that single concatenated string. Genome B: - cgtcatgggeattcgtegtte
Each leaf node ifi is labeled to indicate which suffix it represents A
in Wthh genome?‘ orB. The System needs to |dent|fy the nodes in 2. Insertion: a sequence that occurs in one genome but not the other.
the tree that correspond to MUMSs. It is not hard to see that every Genone A: - CggEELaaccge. ... .. -vv. .o CCLEELCREe
unique matching sequence is represented by an internal node with Genome [ cagggtasccgeqt et cageetanccroctesteess
exactly two child nodes, such t_hat the child nodes are Ieaf node§ Highly polymorphic region:
from different genomes. The unique matches that are maximal can
be identified by mismatches at their ends. (MUMmer as actually
implemented determines whether a match is maximal based on
pOinteI'S used to construct the suffix tree-) ThUS, ina Single Scan Of Repeat sequence: the repeat is shown in uppercase. Note that the first copy of

many mutations in a short region.

Genome A: ccgectegeetgg. getggegeccgetce
Genome B: ccgectegecagttgaccgegeeegete

the suffix tree' all MUMSs can be identified. F(t;e ?p'elat‘ in. (,?nnomo B is imperfect, containing one mismatch to the other three
The main input parameter to the system, besides the genomes™™™"* “"*
themselves, iS the |ength Of the Shortest MUM that the SyStem W|" Genome A: c¢TGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc

. . . Genome B: aTGGGTGGGGCgACCTgggggggggTGGGTGGGACAACGTa
identify. We typically do not want to report short MUMs that are . - -

likely to be random matches. For highly similar genomes (as with
the two tuberculosis strains), we set this parameter to 50 b
However, for more distantly related genomes, fewer MUMs o
50 bp might exist, and therefore this parameter can be adjusted. For

aligning the two Mycoplasma species, we used a minimum MUM
length of just 20 bp. lengths of the sequences represented by the MUMs and the fact

that they can overlap.
An example of an initial MUM-alignment and the ordered

Sorting the MUMSs MUM-a!ignment that results fror_n applyjng the LIS algorithr_n is

shown in Figure3. The longest increasing sequence algorithm
requiresO (K log K) time, whereK is the number of MUMs. It
can also be implemented using a simpler dynamic programming
algorithm in O(K?) time. In generalK is much smaller than
N/log N so this step taked(N) time.

igure 4.The four types of gaps in MUM alignment. These examples are drawn
rom the alignment of the twid.tuberculosisgenomes.

After finding all the MUMSs, we sort them according to their
position in GenomeA. Now we consider the order of their
matching positions in GenomB. In some cases, e.g. a
transposition or reversal between the genomeB, pbsitions are
not in ascending order. See Fig@ror an illustration. Here we )
have assigned two integers to each MUM representing the ordirfaPsing the gaps
position of the subsequence in GenodesdB. Since we have
sorted the MUMs by theiA-positions, we can depict the
alignment as the single sequenc®&qgfosition integers.

We now employ a variation of the LIS algorith&) {o find the
longest set of MUMs whose sequences occur in ascending or:
in both Genomé and Genom®. Essentially, we want the LIS
contained in the sequenceBposition integers. For instance, if
the order oB positions is given by the sequeri@e 2, 10, 4,5, SNP processingThe identification of SNPs is becoming an
8,6,7,9, 3 the LIS is(1, 2, 4,5, 6, 7,9 The LIS technique increasingly important task in DNA sequence analysis, especially
allows us to browse the alignment from left to right, as well aas the number of sequences from closely related organisms
‘close the gaps’ in the alignment consistently. MUMmer impleincreases43,24). SNPs in human DNA appear to be associated
ments a variation of this algorithm that takes into account theith many important health issues, including genetic illnesses

Once a global MUM-alignment is found, we deploy several
algorithms for closing the local gaps and completing the
alignment. A gap is defined as an interruption in the MUM-
lignment which falls into one of four classes: (i) an SNP

erruption, (ii) an insertion, (iii) a highly polymorphic region or
(iv) a repeat. These classes are depicted in Figure
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and disease susceptibility. SNPs manifest themselves in two ways Genome A:  uniqueAAGGAAGGAAGGsequence
in the MUM alignment. In the simpler case, the SNP is Cenome B:  uniqueAAGGAAGG. . . .sequence
surrounded by maximal unique matching subsequences. In this N I | I
case our program easily identifies the SNP, which manifests itself Position: 0 10 20

as a simple gap of one base between the MUMs. In some cases,

however, an SNP is adjacent to sequences that appear elseWhlgrﬁre 5.Repeat sequences surrounded by unique sequences. For the purposes
In On_e of the genomeS; i.e., the adjacent sequenceg are not un'%‘l%}ustration, other characters besides the four DNA nucleotides are used.
In this case the adjacent sequence plus the SNP is captured an

processed by the repeat processing procedure described below.

Insert detectionAn insert is defined as a moderately large regiof@ses in Genontigbut only four bases in Genorpindicates how
that appears in one genome and not the other. Such inserts BRY additional repeat bases are inserted in one of the genomes.
easily detected as large gaps in the alignment in one genome and
not the other.
Inserts can be divided into two classes. Transpositions aRESULTS AND DISCUSSION
subsequences that have been deleted from one location and
inserted elsewhere (with respect to one of the genomes, @bmparing two strains of tuberculosis
course). These are detected during a post-processing step; they

appear in the MUM alignment out of sequence. Simple insertionge ysed MUMmer to perform a comparison of two strains of
are subsequences that appear in only one of the genomes; thgggrculosis that have recently been sequenced, H3jRand
may be the result of lateral transfer, simple deletions or Ot_h@’DC1551 (R.D.Fleischmanat al, manuscript in preparation).
evolutionary processes. Regardless of the cause, these simplerRy is a laboratory strain that has been in continuous culture for
insertions can be identified as such because they do not appeasd years, while CDC1551 is a recent clinical isolate that has
the MUM alignment. demonstrated itself to be highly virule&&]. Tuberculosis is known

to mutate relatively slowly26), so despite the length of time that
Polymorphic regionsGaps in the MUM alignment can be alsothese strains have had to diverge, their genomes are still >99%
caused by sequences that have large numbers of differences, ibigittical (not counting several large repeat sequences that appear in
that still should be aligned in the whole genome alignmentifferent copy numbers). Understanding the differences is critical to
Because the number of differences is high, it is less meaningfyhderstanding the different biological behavior of the two strains.
to define these regions in terms of the SNPs; for example, if theRunning the two genomes through MUMmer produced a
sequence identity is 25%, the sequences might be considetghole-genome alignment that mapped every base of one genome
highly homologous although the number of SNPs is triple thento the other. Thus we were able to catalog all SNPs, all
number of conserved positions. If these regions are sufficientliisertions of every length, all tandem repeats with different copy
small, we align them with a standard dynamic programmingumbers and other miscellaneous differences. A detailed descrip-
algorithm, essentially equivalent to Smith—Waterman This  tion of the biological consequences of this comparison will appear
produces an optimal alignment with respect to pre-specifieglsewhere (R.D.Fleischmaetal, manuscript in preparation).
insertion and mutation costs. For very large polymorphic regions, Our alignment revealed thousands of individual differences
we can apply our entire matching procedure recursively usingbtween the two genomes, most of which were single base changes.
reduced minimum MUM length, if desired. There were several dozen large insertions unique to each genome,

many of which contained genes or partial genes. An example is
Repeat processingRepeat sequences do not appear in the MUMhown in Figures, which shows a 15 kb region containing three
alignment because, by definition, the MUM alignment onlyinsertions and five point mutations. Using the display tool illustrated
includes sequences that appear exactly once in each genomenlthe figure, we were able not only to identify all the differences,
our comparison of thigl.tuberculosisstrains we found that most but also to identify which mutations were silent, which ones resulted
repeats were tandem repeats. In every case we foundifna premature stop in one genome, and which of the many
M.tuberculosis repeat sequences were adjacent to uniqudifferences occurred in intergenic regions. The tool allows the
sequence, and the MUM on either end of a tandem repéaavestigator to click on any of the genes, which are linked to a live
extended into the repeat itself. As a result, the MUM alignmentatabase, and get a detailed report on that gene. The analysis showe
indicates a gap that is smaller than the length of the tandem repdiaait, of those insertions that occurred in gef#8% occurred in
Also note that the MUMSs overlap one another. hypothetical genes; i.e., genes with no homology to any known gene.

Figure5 shows a tandem repeat with different copy numbers iBecause only 45% of the annotated genes are hypothetical, this

GenomesA and B. In this example, there are two MUMSs: result suggests that some of the annotated hypothetical genes are nc
(i) unigueAAGGAAGG and (i) AAGGAAGGsequence. Depend- real. MUMmer's output also makes it easy to find very long identical
ing on how this region is aligned, the four-base gap could appesgquences: the longest such sequence shared between the twi
anywhere between positions 6 and 14 (as shown) in the alignmegenomes is 24 563 bp, and there are 246 MUMs >5000 bp in length.
(For consistency, MUMmer always shows the insertion at the The time required to generate the alignments was 55 s ona DEC
rightmost position.) The MUM alignment will indicate that MUM Alpha 4100, broken down as follows: 5 s for suffix tree
(i) occupies positions 0...13, and MUM (i) occupies positiongonstruction, 45 s for sorting the MUMs and finding the longest
10...25 in Genomé\. The fact that these two intervals overlapincreasing sequence and 5 s for generating the Smith—Waterman
indicates to the algorithm that a tandem repeat is present. Takignments of the gaps. (Because the sequences are so close t
difference in overlap length in the two genomes (the overlap is eigldentical, the Smith—Waterman step needs to do very little work.)
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Figure 6. Alignment ofM.tuberculosisstrain CDC1551 (top) and H37Rv (bottom). This alignment was extracted from the graphical display tool developed to scan
and zoom in on the output of the genome alignment program. In the view shown, single green lines in the center conaset difigierizes between the genomes.

Blue v-shaped lines indicate insertions. The first two v-shaped insertions are large insertions in the H37Rv strainiya@mestédh is a very small insertion in
CDC1551. This lastinsertion appears as a line rather than a v-shape due to the resolution of the displayed regiorronéargefomes are displayed as arrows,

with color-coding to indicate the role assigned to each gene. Role assignments and gene IDs are taken from annotafi®R ehth8ariger genome centers,
respectively. Note that both of the large insertions shown here contain genes. White lines (gaps) appearing in the meldieasisindicate silent mutations in

those genes. Point mutations that change an amino acid are displayed differently; none occur in this region. Either gersmmodi@aimdependently, and the scale

can be adjusted up or down, from viewing of individual bases all the way out to viewing the entire genome on the screen.

Comparing two Mycoplasmagenomes FASTA (11) searches. [In the comparison of the Myroplasma

. . : that appeared previousl¥1), the FASTA and BLAST programs
The H37Rv and CDC1551 strains kktuberculosisare highly were used in a similar manner to compare all genes to all genes,

homologous, containing many subsequences thousands of nucleg-. - Pl : . : .
tides long that are perfect matches. To test the limits of our systeg%'ctgnmgpﬂ?g ':i:r?](gn%raei?slogfs-]sggbseﬁgggstﬁa:fe\gid;?Qgst:og(gi %

we turned to two bacteria that are ‘cousins’ but that are much ma . 0 R
distantly related. The genome Mfgenitaliumis 580 074 nt in identical over 80% of the match appear as points in the plot. The

length, whileM.pneumoniaés 816 394 nt. Clearly there are at Ieastm'Fjdle of Figure7 |IIu§trates a much S|mple.r mEthOd' wh_er_e
226 000 nt of additional DNA inM.pneumoniage however, unique, exaptly matching 25mer.s are plotted,; this figure mimics
alignments of proteins indicate that nearly allMbfjenitaliumis Fhe MUM. alignment but uses gﬂxed length for the M.UMS' Th|s
contained inM.pneumoniag27). The protein alignments further IS less n0|sythan the FASTA allgnment_, but of course it only gives
indicate that very large fragmentshfgenitaliumretain the same @ rough alignment. The bottom of Figureshows the MUM
order and orientation inM.pneumoniae Thus, despite the &lignment, where each MUM appears as a point. This is the
evolutionary distance between these organisms, we believed th&/§anest and most continuous of the alignments, though of course
might be possible to align them using MUMmer. it contains many gaps. As the f_|gure _makes clear, t_he overall
The system aligned these two genomes quite easily, as it turrignment of these two genomes is basically a long series of short
out. This was somewhat surprising given previous difficulties ¢fmostly 20-30 bp) exact matches strung together in the same
producing such an alignment using alternative methods. Not orfifder and with the same spacing in both genomes. The longest
did it work, but it worked very fast: the suffix tree portion of the€xactly matching sequence between the two genomes was only
computation took 6.5 s, while sorting and finding the LIS of81 bp and there are only 16 shared MUMs >100 bp. In total there
MUMs took 0.02 s (on a DEC Alpha 4100). Generating thé@re 20 872 bp contained in shared MUMg1 bp, just 3.6% of
Smith-Waterman alignments of the gaps between the MUMS$e shorter genome’s length.
took 116 s; not surprisingly, this was much slower than for the The MUM alignment clearly shows five translocations of
tuberculosis genome comparison because of the larger amounbdbgenitaliumsequence with respecttbpneumoniagin agree-
sequence that fell into the gaps. ment with the analysis of Himmelreiethal (27). In the FASTA
Figure7 illustrates the alignment at the whole genome leveland 25mer alignments, these translocations are either missing or
Three different alignment methods were used in this figure. Aery difficult to identify amidst the noise.
FASTA alignment was generated by dividing each genome into In addition to the data shown in Fig@telUMmer also produces
1000 bp segments and using those segments in ‘all against alffile containing the complete Smith—Waterman alignment of all the
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Figure 7. Alignment ofM.genitaliumandM.pneumoniaaising FASTA (top), 25mers (middle) and MUMs (bottom). In all three plots, a point indicates a ‘match’
between the genomes. In the FASTA plot a point corresponds to similar genes. In the 25mer plot, each point indicateseg@mbaghat occurs exactly once
in each genome. In the MUM plot, points correspond to MUMs as defined in the main text.

gaps between the MUMs. (See Figdrer an illustration of what identity plots (pip) to display the resul&lj and a program called

this output looks like.) Most of these aligned gaps were neartygONSERVED 82) to identify segments >50 bp with >60%
identical in length, and obviously corresponded to sequences witlseéquence identity in the SIM alignment. As reported in that studly,
shared evolutionary history, but the sequence identity averaggtk nucleotide similarity for the coding portions of the 17 genes
<50%, much lower than in thd.tuberculosiscomparison. Taken in this region ranges from 70 to 92%, while the percent identity
together, this data allows us to map every base of the smaller genggtéamino acids ranges from 56 to 100%.

to its corresponding position in the larger genome. Although our alignment does not contain all the details
generated and displayed by the combination of methods used in
Ansari-Lariet al, the overall alignment of the two sequences is
To test MUMmer on sequences even more distant than the t§@Sily apparent from the output of our program. The program
Mycoplasmaswe chose a 222 930 bp subsequence of humdgduired 29 s of CPU time to generate the complete alignment, of
chromosome 12p13 (accession no. U47924) that is syntenic t§/Aich 1.6 s was used to build the suffix tree. The alignment using
227 538 bp contiguous subsequence of mouse chromosomd®ners as the minimum MUM length contained several large
(accession no. AC002397). These sequences were the subjed@@s corresponding to intergenic regions, as shown in Rgure
arecent study by Ansari-Lat al (28), who used a combination Re-running the program with minimum MUMs of 10 bp reduces
of alignment tools to produce a detailed alignment. These todige gaps, but in either case one must examine the Smith—\Water-
included DOTTER 29) for the initial comparison, a modified man algorithm output to see the complete alignment. The figure
version of SIM 80) to find good local alignments, percent also shows other MUMs falling outside the aligned region; these

Comparing human and mouse
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