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Introduction

The simultaneous alignment of three or more
nucleotide or amino acid sequences is one of the
commonest tasks in bioinformatics. Multiple align-
ments are an essential pre-requisite to many
further analyses of protein families such as hom-
ology modeling or phylogenetic reconstruction, or
are simply used to illustrate conserved and vari-
able sites within a family. These alignments may
be further used to derive profiles (Gribskov et al.,
1987) or hidden Markov models (Bucher et al.,
1996, Haussler et al., 1993) that can be used to
scour databases for distantly related members of
the family.

The automatic generation of an accurate multiple
alignment is potentially a daunting task. Ideally,
one would make use of an in-depth knowledge of
the evolutionary and structural relationships
within the family, but this information is often
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global alignment; multiple sequence alignment

lacking or difficult to use. General empirical
models of protein evolution (Benner et al.,, 1992;
Dayhoff, 1978; Henikoff & Henikoff, 1992) are
widely used instead, but these can be difficult to
apply when the sequences are less than 30 % iden-
tical (Sander & Schneider, 1991). Further, math-
ematically sound methods for -carrying out
alignments, using these models, can be extremely
demanding in computer resources for more than a
handful of sequences (Carrillo & Lipman, 1988;
Wang & Jiang, 1994). In practice, heuristic methods
are used for all but the smallest data sets.

The most commonly used heuristic methods are
based on the progressive-alignment strategy (Feng
& Doolittle, 1987, Hogeweg & Hesper, 1984;
Taylor, 1988). with ClustalW (Thompson et al,
1994) being the most widely used implementation.
The idea is to take an initial, approximate, phylo-
genetic tree between the sequences and to gradu-
ally build up the alignment, following the order in
the tree. Although successful in a wide variety of
cases, this method suffers from its greediness.
Errors made in the first alignments cannot be recti-
fied later as the rest of the sequences are added in.
T-Coffee is an attempt to minimize that effect, and

© 2000 Academic Press
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although the strategy we propose here is also a
greedy progressive method, it allows for much bet-
ter use of information in the early stages, as we
will see below.

The main alternative to progressive alignment is
the simultaneous alignment of all the sequences.
Two such packages exist (MSA (Lipman et al.,
1989) and DCA (Stoye et al., 1997)), based on the
Carrilo and Lipman (1988) algorithm, but they
remain an extremely CPU and memory-intensive
approach. Iterative strategies (Gotoh, 1996;
Notredame & Higgins, 1996) are another interest-
ing alternative. They do not provide any guaran-
tees about finding optimal solutions but are
reasonably robust and much less sensitive to the
number of sequences than their deterministic
counterparts.

All of these methods attempt to carry out global
alignments, where one tries to align the full lengths
of the sequences with each other. Alternatively,
one might wish to consider local similarity, as
occurs when two proteins share only a domain or
motif. For two-sequence comparisons, there is the
well-known Smith and Waterman (1981) algor-
ithm. Here we use Lalign (Huang & Miller, 1991),
from the FASTA package (Pearson & Lipman,
1988), which is a variant of the Smith and Water-
man method. It produces sets of non-overlapping
local alignments from the comparison of two
sequences. For multiple sequences, the Gibbs sam-
pler (Lawrence et al, 1993) and Dialign2
(Morgenstern, 1999) are the main automatic
methods. These programs often perform well when
there is a clear block of ungapped alignment
shared by all of the sequences. They perform
poorly, however, on general sets of test cases when
compared with global methods (Thompson et al.,
1999b; this work). In principle, a method able to
combine the best properties of global and local
multiple alignments might be very powerful. This
is the second motivation for T-Coffee: the design of
a method that provides a simple, flexible and,
most importantly, accurate solution to the problem
of how to combine information of this sort. Accu-
racy is tested as overall performance on 141 test
case alignments from the BaliBase collection
(Thompson et al., 1999a,b).

T-Coffee Algorithm

T-Coffee (Tree-based Consistency Objective
Function for alignment Evaluation) has two main
features. First, it provides a simple and flexible
means of generating multiple alignments, using
heterogeneous data sources. The data from these
sources are provided to T-Coffee via a library of
pair-wise alignments. Here we demonstrate the
power of T-Coffee by computing multiple align-
ments using a library that was generated using a
mixture of local and global pair-wise alignments
(Figure 1).

The second main feature of T-Coffee is the
optimization method, which is used to find the
multiple alignment that best fits the pair-wise
alignments in the input library. We use a so-called
progressive strategy (Feng & Doolittle, 1987;
Taylor, 1988; Thompson et al., 1994), which is simi-
lar to that used in ClustalW. This has the advan-
tage of being fast and relatively robust. With T-
Coffee, however, we make use of the information
in the library to carry out progressive alignment in
a manner that allows us to consider the alignments
between all the pairs while we carry out each step
of the progressive multiple alignment. This gives
us progressive alignment, with all its advantages
of speed and simplicity, but with a far lesser ten-
dency to make errors like the one shown in
Figure 2(a), i.e. misalignment of the word CAT. T-
Coffee is a progressive alignment with an ability to
consider information from all of the sequences
during each alignment step, not just those being
aligned at that stage.

Generating a primary library of alignments

The primary library contains a set of pair-wise
alignments between all of the sequences to be
aligned. We wuse the structure described by
Notredame et al. (1998). This does not require the
alignments to be consistent (e.g. two or more
different alignments of the same pair of sequences
can be included). In the library, we include infor-
mation on each of the N(N — 1)/2 sequence pairs,
where N is the number of sequences. Here, we use
two alignment sources for each pair of sequences,
one local and one global. The global alignments
(Figures 1 and 2(b)) are constructed using Clus-
talW on the sequences, two at a time (default par-
ameters; version 1.75). This is used to give one full-
length alignment between each pair of sequences.
The local alignments (Figure 1) are the ten top-
scoring non-intersecting local alignments, between
each pair of sequences, gathered using the Lalign
program of the FASTA package with default par-
ameters. Lalign is the FASTA implementation of
the Sim program (Huang & Miller, 1991; Pearson
& Lipman, 1988).

In the library, each alignment is represented as a
list of pair-wise residue matches (e.g. residue x of
sequence A is aligned with residue y of sequence
B). In effect, each of these pairs is a constraint. All
of these constraints are not equally important.
Some may come from parts of alighments that are
more likely to be correct. We take this into account
when computing the multiple alignment and give
priority to the most reliable residue pairs. This is
achieved by using a weighting scheme.

Derivation of the primary library weights

T-Coffee assigns a weight to each pair of aligned
residues in the library (Figure 2(b)). An ideal pri-
mary weight will reflect the correctness of a con-
straint. We use sequence identity, which is known
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to be a reasonable indicator of accuracy when
aligning sequences with more than 30% identity
(Sander & Schneider, 1991). This weighting scheme
proved to be highly effective for a previous consist-
ency-based objective function (Notredame et al.,
1998). It also has the advantage of great simplicity.
Libraries are lists of weighted pair-wise con-
straints. Each constraint receives a weight equal to
percent identity within the pair-wise alignment it
comes from (Figure 2(b)). For each set of
sequences, two primary libraries are computed
along with their weights, one using ClustalW
(global alignments; Figure 2(b)) and the second
using Lalign (local).

Combination of the libraries

Our aim is the efficient combination of local and
global alignment information. This is achieved by
pooling the ClustalW and Lalign primary libraries

Figure 1. Layout of the T-Coffee
strategy; the main steps required to
compute a multiple sequence align-
ment using the T-Coffee method.
Square blocks designate procedures
while rounded blocks indicate data
structures.

in a simple process of addition. If any pair is dupli-
cated between the two libraries, it is merged into a
single entry that has a weight equal to the sum of
the two weights. Otherwise, a new entry is created
for the pair being considered. This “‘stacking’ of
the signal is similar to previously described strat-
egies (Bucka-Lassen et al., 1999; Heringa, 1999;
Taylor, 1999). Pairs of residues that did not occur
are not represented (by default they will be con-
sidered to have a weight of zero).

This primary library can be used directly to com-
pute a multiple sequence alignment. We could find
an alignment that best matched the weighted pairs
of residues. However, we enormously increase the
value of the information in the library by examin-
ing the consistency of each pair of residues with
residue pairs from all of the other alignments. For
each pair of aligned residues in the library, we can
assign a weight that reflects the degree to which
those residues align consistently with residues
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2. The library extension. (a) Progressive alignment. Four sequences have been designed. The tree indicates

the order in which the sequences are aligned when using a progressive method such as ClustalW. The resulting align-
ment is shown, with the word CAT misaligned. (b) Primary library. Each pair of sequences is aligned using ClustalW.
In these alignments, each pair of aligned residues is associated with a weight equal to the average identity among
matched residues within the complete alignment (mismatches are indicated in bold type). (c) Library extension for a
pair of sequences. The three possible alignments of sequence A and B are shown (A and B, A and B through C, A
and B through D). These alignments are combined, as explained in the text, to produce the position-specific library.
This library is resolved by dynamic programming to give the correct alignment. The thickness of the lines indicates

the strength of the weight.

from all the other sequences. This process is called
library extension.

Extending the library

Fitting a set of weighted constraints into a
multiple alignment is a well-known problem, for-
mulated by Kececioglu as an instance of the “maxi-
mum weight trace”, an NP-complete problem
(Kececioglu, 1993). Recently, two optimization

strategies were proposed (Notredame et al., 1998;
Reinert et al., 1997). The first one relies on a genetic
algorithm while the second is based on a graph-
theoretical method using a branch and bound
algorithm. Neither of these methods is entirely sat-
isfactory. The genetic algorithm (Notredame &
Higgins, 1996) is robust but may require prohibi-
tive computation time. The graph-theory-based
algorithm has a complexity only partially charac-
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terized and may fail in some cases for reasons that
are difficult to predict.

We circumvent the problem by using a heuristic
algorithm that we «call library extension
(Figure 2(c)). The overall idea is to combine infor-
mation in such a manner that the final weight, for
any pair of residues, reflects some of the infor-
mation contained in the whole library. To do so, a
triplet approach is wused, as summarized in
Figure 2(c). The strategy bears some similarities to
the concept of overlapping weights developed in
Dialign2 (Morgenstern, 1999) or the intermediate-
sequence method proposed by Neuwald et al.
(1997) for searching databases. It is based on taking
each aligned residue pair from the library and
checking the alignment of the two residues with
residues from the remaining sequences. For
instance, let us consider the four sequences A, B, C
and D of Figure 2. Let us call A(G) the G of GAR-
FIELD in sequence A, B(G) the equivalent G in
sequence B and W(A(G), B(G)) the weight associ-
ated with this pair of symbols in the primary
library. In the direct alignment of A and B, A(G)
and B(G) are matched (Figure 2(b) and (c)). There-
fore, the initial weight for that pair of residues can
be set to 88 (primary weight of the alignment of
sequence A and B, which is the percent of identity
of this pair).

If we now look at the alignment of sequence A
and sequence B through sequence C (Figure 2(c)),
we can see that the A(G) and C(G) are aligned, as
well as C(G) and A(G). We conclude that there is
an alignment of A(G) with B(G) through sequence
C. We associate that alignment with a weight
equal to the minimum of W; = W(A(G), C(G)) and
W, = W(C(G), B(G)). Since W; =77 and W, = 100,
the resulting weight is set to 77. In the extended
library, this new value is added to the previous
one to give a total weight of 165 (i.e. 77 4 88) for
the pair A(G), B(G).

The complete extension will require an examin-
ation of all the remaining triplets. Not all of them
bring information. For instance, the alignment of A
and B through sequence D does not contain any
information relative to A(G) or B(G), and, there-
fore, it has no influence on the weight associated
with A(G) and B(G). In summary, the weight
associated with a pair of residues will be the sum
of all the weights gathered through the examin-
ation of all the triplets involving that pair. The
more intermediate sequences supporting the align-
ment of that pair, the higher its weight. Extension
will be carried out on each pair of residues of A
and B. Once the operation is complete, sequence
pair A and B will have gathered information from
all the other sequences in the set. This scenario is
repeated for each remaining pair (AC, AD, BC, BD,
CD) of sequences. The complete set of pairs consti-
tutes the extended library. The worst-case com-
plexity of this computation is O(N°L?) with L being
the average sequence length. However, this will
only occur when all the included pair-wise align-
ments are totally inconsistent. In practice, with the

data sets used here, the complexity is closer to
(O)N°L.

Weights will be zero for any residue pairs that
never occur (this will be true of the majority of
residue pairs). Otherwise, the weight will reflect a
combination of the similarity of the pair of
sequences or sequence segments that the residue
pair comes from and the consistency of that resi-
due pair with all other residue pairs in the primary
library. These scores can then be used to align any
two sequences from our data set using convention-
al dynamic programming (Gotoh, 1982). When one
normally aligns a pair of sequences, one uses a set
of scores derived from some general table of amino
acid weights such as a Blosum matrix (Henikoff &
Henikoff, 1992). In our case, we can replace that
matrix with a set of scores that are specific to every
possible pair of residues in our two sequences.
This will allow an alignment to be carried out that
will take account of the particular residues in the
two sequences but will also be guided towards
consistency with all of the other sequences in the
data set (Figure 2(c)). This is a powerful ability and
can be used to carry out progressive alignment
while avoiding many of the local-minimum pro-
blems normally associated with that technique.

Progressive alignment strategy

In the progressive alignment (Thompson et al.,
1994), pair-wise alignments are first made to pro-
duce a distance matrix between all the sequences,
which in turn is used to produce a guide tree using
the neighbor-joining method (Saitou & Nei, 1987).
This is a phylogenetic tree, which is used to direct
the grouping of sequences during the multiple
alignment process (Figure 2(a)). The closest two
sequences on the tree are aligned first using normal
dynamic programming. This alignment uses the
weights in the extended library above to align the
residues in the two sequences. This pair of
sequences is then fixed and any gaps that have
been introduced cannot be shifted later. Then the
next closest two sequences are aligned or a
sequence is added to the existing alignment of the
first two sequences, depending which is suggested
by the guide tree. The next two closest sequences
or pre-aligned group of sequences are always
joined. This continues until all the sequences have
been aligned. To align two groups of pre-aligned
sequences the scores from the extended library are
used, as before, but the average library scores in
each column of existing alignment are taken.

As used here, the procedure does not require
any additional parameters such as gap penalties.
This stems, in part, from the fact that the substi-
tution values (the library weights) were computed
on alignments where such penalties had already
been applied. Furthermore, high scoring segments
that show consistency within the data set see their
score enhanced by the extension to such a point
that they become insensitive to gap penalties. In
practice, this means that during the progressive
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phase, we use a dynamic-programming algorithm
(Gotoh, 1982) with gap-opening penalties and gap-
extension penalties set to zero for aligning two
sequences or two groups of pre-aligned sequences.

Biological validation of the results

In order to test the accuracy of our method, we
used the BaliBase database of multiple sequence
alignments (Thompson et al., 1999a,b). This collec-
tion contains 141 protein alignments that we use as
test cases. For most members within each test case,
a three-dimensional (3D) structure is available. The
BaliBase multiple alignments were constructed by
manual structure comparison and validated using
structure-superposition algorithms such as SSAP
(Orengo & Taylor, 1996) or DALI (Holm & Sander,
1995). The alignments are thus unlikely to be
biased toward any specific multiple-alignment
method. For analysis purposes the authors have
annotated these alignments by marking blocks of
columns deemed to be correctly aligned. Such
decisions were made in a conservative manner,
only including blocks for which structural evidence
is conclusive. This removes most scope for human
error but also removes many sections where there
are no meaningful alignment between the struc-

tures. Altogether, these trusted regions represent
58 % of the aligned residues and have a level of
identity on average 5 percentage points higher
than that of the complete alignment. There are five
basic categories of alignments (families) in Bali-
Base. They encompass most of the situations that
arise when making multiple sequence alignments.
The level of average identity within each BaliBase
alignment can be seen in Figure 3; it ranges from
10 to 70 %. The coverage is similar for each of the
five categories. The first category is made up of
phylogenetically equidistant members. In the
second category, each alignment contains one
orphan sequence with a group of close relatives.
The third category contains two distant groups,
while the fourth and fifth categories, respectively,
involve long terminal and internal insertions. Over-
all, these 141 test cases constitute the most versatile
and sensitive benchmark available today for asses-
sing the accuracy of multiple sequence alignment
methods (Thompson et al., 1999b). The version of
BaliBase used here is the one that was publicly
available in January 1999, and is a more recent ver-
sion, with different alignment files, than that used
in the analysis by Thompson et al. (1999b). The
differences between the two BaliBase releases

Comparison of T—Coffee and Prrp
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Figure 3. Comparison between T-Coffee and Prrp. For each alignment in BaliBase, the average level of pair-wise
identity was measured on the core regions of the reference alignment. Alignment accuracy was assessed for T-Coffee
and Prrp on these core regions. The latter two values were subtracted (%T-Coffee accuracy —%Prrp accuracy) and
plotted versus the average identity for the alignment. Points in the top area indicate alignments where T-Coffee is out-
performing Prrp and inversely for the bottom area. Alignments have been divided into three sets: below 30 % identity
(34 alignments), between 30 and 40 % identity (52 alignments) and above 40 % identity (55 alignments). The percen-
tages given in the corners of the plot indicate the fraction of alignments for which T-Coffee outperforms Prrp (top)
and vice-versa (bottom). These percentages do not add up to one hundred as for some alignments the same accuracy
was obtained with each method (e.g. for alignments having less than 30 % identity, T-Coffee outperforms Prrp in
53 % of the cases, Prrp outperforms T-Coffee in 38 % of the cases, and the two methods draw in 9 % of the cases).
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mostly affect category 4, where four test-cases out
of 13 are different between the two releases.

Validation is carried out by comparing each cal-
culated multiple alignment with its counterpart in
BaliBase. The scoring scheme is the percentage of
the trusted columns in the reference that have been
correctly aligned. This column-wise comparison
has been described as being more sensitive and
discriminating (Thompson et al., 1999b) than the
alternative pair-wise comparison used by Gotoh
(1996), especially in the case of categories 2 and 3
of BaliBase. In the context of this work, the column
measure, applied to the trusted regions, is the
default that was used to generate our results.

For comparison purposes, we also implemented
the so-called sum-of-pairs (SP) measure, where a
calculated alignment is assessed on proper align-
ment of all possible pairs of residues in each of the
alignment columns. This measure generally leads
to a more gradual loss of score in case of misalign-
ment than the above column-count measure. The
comparison routine we used was devised follow-
ing Baliscore, the program made available and
used by Thompson et al. (1999b), although some
updates were effected to ensure accurate alignment
comparison.

Comparison with other methods

To compare T-Coffee with other methods, we
produced multiple alignments of each BaliBase
family with other programs. We evaluated three
such packages here. They include the methods
described as performing best by the authors of
BaliBase. Together, they cover a large portion of
the existing algorithms for multiple sequence align-
ments. Prrp (Gotoh, 1996) attempts to simul-
taneously align all the sequences in an iterative
manner. It uses a scoring function very similar to
the MSA program (weighted sums of pairs;
Lipman et al., 1989). ClustalW (Thompson et al.,
1994) is a progressive-alignment method. Dialign2
(Morgenstern, 1999) is a segment-based method
that constructs the multiple alignment by assem-
bling a collection of high-scoring segments in a
sequence-independent progressive manner.
Methods based on multidimensional dynamic pro-
gramming like MSA (Lipman et al., 1989) or DCA
(Stoye, 1998) could not be used in the evaluation
as they aborted the construction of alignments in
about 10 % of the BaliBase sets. For the alignments
that MSA and DCA could construct, the accuracy
was comparable to Prrp.

We constructed the alignments by extracting the
sequences from the BaliBase reference alignments
and realigning them with a given program. In each
case, the parameters used were the default settings
provided by the authors. We made no attempt of
tuning, either on T-Coffee and its associated
methods, or on the methods used for comparison.
The packages used here are those that were avail-
able in January 1999 when they were downloaded
from the sites indicated by the authors in their

respective publications and installed on our

machines.

Statistical validation

It is critical to establish whether differences
observed between two methods are statistically
meaningful. We used the same strategy as Gotoh
(1996), which involves applying the Wilcoxon
signed matched-pair ranked test on the results
obtained with two methods on the 141 BaliBase
alignments. This non-parametric test allows the
association of a P-value with the differences
measured on these two series of results. In that
case, the P-value is the probability that the
observed differences may be due to chance. The
lower the P-value, the more significant the result.

Implementation

T-Coffee is implemented in ANSI C. Its tree-par-
sing and tree-calculating facilities were taken from
the ClustalW package, and it uses a modified ver-
sion of the Lalign program. T-Coffee is available
free of charge on request from the authors and is
distributed with documentation and examples
(send a request to cedric.notredame@europe.com).
Here, the program was run on a LINUX platform
with Pentium II processors (330 MHz).

Results

Combining local and global alignments
without extension

The effect of combining local and global align-
ments is shown in Table 1. Three alternative pri-
mary libraries (i.e. without extension) were used to
make the alignments: the ClustalW pair-wise
library (C), the Lalign pair-wise library (L), and
pooling of the ClustalW and Lalign pair-wise
libraries (CL). In each of the five BaliBase cat-
egories, the combination of local and global infor-
mation (CL) induced a statistically meaningful
improvement over the two single method-based
protocols (Table 1). On average (Total in Table 1),
CL is at least 7.6 percentage points better than C or
L. The Wilcoxon test shows that these differences
are associated with P-values lower than 0.001.

Effect of the library extension

The three previously used libraries (C, L, CL)
were extended. In all three cases, extended libraries
(CE, LE, CLE) induced significantly improved per-
formances when compared to their non-extended
counterparts (C, L, CL), regardless of the BaliBase
category (Table 1). Most importantly, CLE signifi-
cantly outperforms all of the alternative protocols
in all categories. Table 1 also shows that the per-
formance of CLE is highly sustained, while in con-
trast, the second-best protocol varies over the
BaliBase categories (CE in Catl and 2, CL for Cat3,



Table 1.

The effect of combining local and global alignments

Name Protocol Catl (81) Cat2 (23) Cat3 (4) Cat4 (12) Cat5 (11) Total (141)  Significance
C ClustalW pw . 70.6 26.7 43.0 56.0 60.0 58.9 7.8

CE ClustalW pw . extend 77.1 33.6 47.6 64.8 75.9 66.3 17.72

L ... Lalign pw ... 65.4 12.1 22.8 53.9 66.0 52.0 7.8?

LE . Lalign pw extend 72.6 25.6 47.2 775 85.5 64.2 16.3*
CL ClustalW pw Lalign pw .. 76.2 32.0 48.3 76.2 74.6 66.5 12.12
CLE ClustalW pw Lalign pw extend 80.7 37.3 52.9 83.2 88.7 72.1

Protocol shows the way the library was created. ClustalW pw and Lalign pw show the pair-wise alignments computed with one of these programs, using default parameters. Extend indicates
that the library was extended before progressive alignment. CLE uses a combination of ClustalW and Lalign alignments and library extension. Catl to Cat5 are the five reference categories of
BaliBase; number sin parentheses indicate the number of alignments in a category. The average accuracy is then given for each protocol. The best accuracies in each column are shown in bold
and underlined. Total gives the average accuracy across all 141 test alignments. The last column shows the percentage of times that CLE is outperformed by each other protocol. The statistical

significance of the improvement of CLE over each protocol is shown by

3 (P < 0.001).




T-Coffee: a Method for Sequence Alignment

213

LE in Cat4 and Cat5). These results show that the
combination of local (Lalign) and global (ClustalW)
information boosts the quality of multiple align-
ment. Table 1 indicates that the CLE protocol is
outperformed by the second-best protocol (CL) in
only about 12 % of the cases, as assessed over 141
BaliBase alignments.

Comparing T-Coffee with other multiple
sequence alignment methods

The protocol used to assess the four methods
(Dialign2, ClustalW, Prrp and T-Coffee (CLE)) is
identical with that described in the previous sec-
tion, and the results are organized in a similar lay-
out (Table 2). Each program was executed using its
default parameters (see, Using T-Coffee).

T-Coffee (CLE protocol) shows the highest aver-
age accuracy in each BaliBase category (Table 2),
even in category 4 where long internal deletions
require a method able to deal with local similarity
such as Dialign2. These differences are all statisti-
cally significant (Table 2). When considering the
unweighted average accuracy over the five cat-
egories (Table 2, Total2) T-Coffee is 9.7 % more
accurate than the next-best method, Prrp. In most
BaliBase categories, Prrp is the second-best meth-
od, slightly outperforming ClustalW, as reported
by Gotoh (1996). Repeating the evaluation on the
complete alignments (as opposed to the core
regions only) shows that the trend is persistent: T-
Coffee still outperforms all the other methods in
the five categories. However, when measured over
the complete alignments, ClustalW becomes the
second-best protocol, with an unweighted average
accuracy of 43.7% as opposed to 48.7% for T-
Coffee. The difference of 5% in performance is
statistically significant, as the Wilcoxon test results
in a P-value lower than 0.01.

These alignments were also evaluated using the
sum-of-pairs measure, where each pair of residues
is compared between the two alignments. This
measure is less drastic than the column measure as
it allows one to score columns that are partially
correct. For instance, it tolerates the complete misa-
lignment of one sequence without making all the
columns count as being wrong. This measurement,
carried out on the annotated blocks of BaliBase,
gave similar results: T-Coffee outperforms the
other methods in the five categories. The differ-
ences between the methods are slightly less pro-
nounced: T-coffee achieves 89.7% of the pairs
correctly aligned, while Prrp, the second-best,
aligns 86.2% of the pairs correctly. ClustalW
comes third, with 85.6% of the pairs correctly
aligned. We conclude that the increase in align-
ment accuracy observed with T-Coffee is signifi-
cant and consistent over the two generally applied
accuracy measures used here.

Most of the improvement with T-Coffee tends to
concentrate in the BaliBase alignments having a
low level of average identity. Figure 3 follows the
representation proposed by Gotoh for comparing

two methods (Gotoh, 1996) and shows that the
alignments for test-cases with less than 30 % aver-
age sequence identity improve the most. The
Figure shows that at this low identity level, there is
an almost two-thirds chance of obtaining the best
alignment when using T-Coffee rather than Prrp.

Application to serine/threonine kinases

A major application of any alignment algorithm
will be the delineation of motifs or domains. In
Figure 4 we show an example that illustrates the
usefulness of T-Coffee for identifying functional
features of a series of kinases taken from BaliBase
(kinase3 in ref5). These proteins belong to a sub-
family of protein serine/threonine kinases. Each
sequence is identified by its SwissProt identifier
except for gen2, which is from PDB. A 3D structure
is also available for 11 of these sequences. Each of
the 19 sequences in the alignment contains a
nucleotide-binding site (NBS), marked by bold-
type capital letters in Figure 4. In all these
sequences, the NBS is followed by a second con-
served motif toward the C terminus (also marked
in capital letters). T-Coffee was able to accurately
align 18 of the 19 NBSs, as were Dialign2 and Prrp.
ClustalW was only able to correctly align 16 of
these NBSs. The second motif is more difficult
because of the long indel in stll_yeast. Here as
well, T-Coffee can properly align 18 of the motifs,
while Prrp and ClustalW get 15 correct, and Dia-
lign2 only 13. This trend is confirmed with the
measure of the accuracy on that portion of the
alignment. The column measure indicates a score
of 0% for ClustalW and Prrp, 30.9 % for Dialign2
and 39.8 % for T-Coffee. The SP measure gives a
score of 65.4% for ClustalW, 73.1% for Prrp,
83.0% for Dialign2, and 92.7 % for T-Coffee. The
Gibbs sampler (Lawrence et al., 1993) was also
attempted on the set of kinase sequences, but
could never align more than ten of the motifs (and
only when provided with an estimate of the total
number of blocks in the alignment). As a result of
combining local and global alignment information,
T-Coffee managed to align almost all of the motifs
as in the BaliBase reference alignment. Moreover,
T-Coffee was the only program that correctly
aligned the second motif of kp68_human, which is
an interferon-induced kinase and an essential com-
ponent of the viral response. It is activated by
interacting with double-stranded RNA (Meurs et al.,
1990), whereupon it induces inhibition of protein
synthesis.

Efficiency

The complexity of the whole procedure is given
by:

O(N?L?) + O(N3L) + O(N?®) + O(NL?)

where O(N?L?) is associated with the computation
of the pair-wise library, O(N’L) the extension,



Table 2. T-Coffee compared with other multiple sequence alignment methods

Method Catl (81) Cat2 (23) Cat3 (4) Cat4 (12) Cat5 (11) Totall (141) Total2 (141) Significance
Dialign 71.0 25.2 35.1 747 80.4 61.5 57.3 11.32
ClustalW 785 322 425 65.7 743 66.4 58.6 2622
Prrp 78.6 325 50.2 51.1 82.7 66.4 59.0 36.9°
T-Coffee 80.7 37.3 52.9 83.2 88.7 721 68.7

Method indicates the name of the method evaluated. T-Coffee is the protocol CLE in Table 1. Totall gives the average accuracy across all the 141 alignments. Total2 is the average accuracy
across the five BaliBase categories (unweighted). The last column shows the percentage of times that T-Coffee is outperformed by each other protocol. The statistical significance of the improve-
ment of T-Coffee over each method is shown by

2 (P <0.001). The Table layout is otherwise similar to that of Table 1.
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O(N?) the computation of the NJ tree and O(NL?)
the computation of the progressive alignment
(assuming N sequences of length L that can be
aligned in a multiple alignment of length L).

The CPU time consumption of T-Coffee was
analyzed empirically. Our measurements (data
not shown) indicate that with alignments of
similar size as those considered here, the appar-
ent complexity of the program is quadratic, both
relative to the average sequence lengths and to
the number of sequences. This result can be
explained by the fact that in the cases analyzed
here, L>» N. Therefore, the time required for the
library and the alignment computation is much

Figure 4. Example of a T-Coffee
alignment. This N-terminal align-
ment of 19 kinases shows two
boxes containing the nucleotide-
binding site and a conserved motif.
The residues in capital letters are
annotated as core regions in Bali-
Base. The core residues in red are
correctly aligned with respect to
the BaliBase reference. This align-
ment belongs to BaliBase category
5 (long insertion).

larger than the time reqzuired for the library
extension: O(NZ2L?) 4+ O(NL?)» O(N°L). The com-
plexity of the latter is the same as that of Clus-
talW, even if in absolute time, the overhead is
higher. For instance, given the Lalign and Clus-
talW primary libraries, T-Coffee is about two
times slower than ClustalW.

Discussion

T-Coffee is a new progressive method for
sequence alignment. It can combine signals from
heterogeneous sources (e.g. sequence-alignment
programs, structure alignments, threading, manual
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alignment, motifs and specific constraints) into a
unique consensus multiple sequence alignment.
We show here that a combination of local and glo-
bal alignments leads to a significant increase in
alignment accuracy. The method is more accurate
than its counterparts and has proved successful in
a wide variety of cases.

The main difference from traditional progressive
alignment methods is that, instead of using a sub-
stitution matrix for aligning the sequences, a pos-
ition-specific scoring scheme is used (the extended
library). Thanks to the extension process, the
values contained in the library for a given pair of
sequences also depend on information from the
other sequences in the set. In this way, errors are
less likely to occur during early stages of the pro-
gressive alignment. As a consequence, even though
the paradigm “once a gap always a gap” (Feng &
Doolittle, 1987) remains true, misplacing gaps
becomes much less likely.

The second important feature of T-Coffee is the
combination of local and global information.
Although it has long been suspected that such a
combination was probably necessary for comput-
ing high-quality alignments (McClure et al., 1994),
to date no satisfactory formula had been found to
address this problem efficiently. Through combin-
ing local and global alignments from widely used
programs with a new formalism, T-Coffee appears
to provide a convincing solution. The end-user
benefits from the simplicity of the method and
does not need to provide any extra parameter
values.

A key ingredient of the method is the primary
weighting scheme. A shortcoming of the current
use of average sequence identity is that this tends
to overweight small segments where high simi-
larity is more likely to occur by chance. This is par-
ticularly significant when weighting shorter
segments obtained from a local alignment program
such as Lalign. The main reason why T-Coffee can
tolerate such noise is because short high-scoring
segments are rarely consistent enough to have a
strong effect on the position-specific scoring
scheme after extension. Moreover, final alignments
are processed using dynamic programming (pro-
gressive alignment). This makes it less likely for
misplaced high-scoring segments to affect the
alignment. For other protocols, which incorporate
segments in a multiple alignment following a strict
order based on their weight (Morgenstern, 1999),
such fortuitous segments can be a major pitfall.

Although the protocol proposed here (Lalign + -
ClustalW  pair-wise alignments + extension)
employs a minimal combination of local and global
information, there is no theoretical limit to the
number of methods that can be used. For instance,
alignments from structural comparisons could be
combined with sequence alignments. It is also
possible to incorporate, in the library, information
extracted from multiple alignments.
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