
Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Installation — 267

Proof Copy

Proof Copy

B. Managing Bioinformatics Tools
16. Installing Bioinformatics Software

in a Server-Based Bioinformatics Resource
17. Management of a Server-Based

Bioinformatics Resource

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 6 8 — Fristensky

Proof Copy

Proof Copy

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Installation — 269

Proof Copy

Proof Copy

16

269

Installing Bioinformatics
Software in a Server-Based
Computing Environment

Brian Fristensky

Introduction

To support a diverse institutional program of genomics projects, it is often necessary
to have an equally diverse and comprehensive software base. Although programs may
come from many sources, it is important to make them easily accessible to the user
community on a single computing platform. This chapter will outline the strategies for
installing programs for a server-based molecular biology software resource, accessed by
a large user base. It is assumed that the reader is familiar with basic UNIX commands
and concepts, as described in the previous chapters. The approaches discussed here are
implemented in the BIRCH system (see Website: http://home.cc.umanitoba.ca/
~psgendb), but are generally applicable to any centralized multiuser software installa-
tion. The important parts of the process are described in either program documentation
or UNIX documentation. The tricks and conventions that help to simplify the installa-
tion process will also be highlighted. This should give the novice an idea of what to
expect before wading into the documentation.

Considerations
There are five guiding principles for installation and use that should be applied to

help ensure a smooth operation.

1. Any user should be able to run any program from any directory simply by typing
the name of the program and arguments. It should not be necessary to go to a
specific directory to run a program.

2. System administration should be kept as simple as possible. This saves work for the
Bioadmin1, as well as increasing the likelihood that things will function properly.

3. Avoid interruption of service during installation and testing.
4. The Bioadmin should never have to modify individual user accounts.
5. Even if you have root access, do most of your work on a regular user account.

Log in as root only when necessary.

WWW

1Since bioinformatics software may be installed by a specialist other than UNIX system staff,
the term Bioadmin will refer to the person installing and maintaining bioinformatics software,
distinct from system administrators.

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 7 0 — Fristensky

Proof Copy

Proof Copy
The Networked Computing Environment

The casual computer user learns only a narrow computing model: the PC model.
PCs are based on the idea that each person has their own computer that is com-
pletely self-contained, with all hardware, software, and data residing physically on
the desktop. Provisions for multiple users on a single machine (e.g., separate home
directories, user accounts, file permissions) may exist, but are seldom taken into
account by PC software developers. Each PC becomes a special case with special
problems. The work of administration grows with the number of computers. Soft-
ware has to be purchased and installed independently for each machine. Security
and backup are often not practiced.

UNIX greatly simplifies the problem of computing with a network-centric
approach, in which any user can do any task from anywhere. Figure 1 illustrates com-
puting in a network-centric environment. All data and software reside on a file server,
which is remotely mounted to one or more identically configured computer servers.
Programs are executed on a computer server, but displayed at the user’s terminal or
PC. Regardless of whether one logs in from an X11 terminal, a PC running an X11
server, a PC using the VNC viewer (see Chapters 13 and 17) or an internet appliance,
the user’s desktop screen looks the same and opens to the user’s $HOME directory.
Consequently, any user can do any task from any device, anywhere on the Internet.

Leveraging the Multi-Window Desktop

The installation process involves moving back and forth among several directories,
which is most effectively accomplished by viewing each directory in a separate
window. One of the things that makes the typical PC desktop awkward to use is the
one window owns the screen model. In MS-Windows, most applications default to

Fig. 1. Network-centric computing.

See
companion CD
for color Fig. 1

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Installation — 271

Proof Copy

Proof Copy

take up the entire screen. One moves between applications using the task bar.
Although it is possible to resize windows so that many can fit on one screen, this is
seldom done in MS-Windows. On Macintosh, even when multiple windows are
present, they depend on the menu at the top of the screen, requiring the user to first
select a window by clicking on it, and then to choose an item from the menu at the top
of the screen. Even worse, the menus often look almost identical from program to
program, so that it is not obvious when the focus has shifted to a new application.

On UNIX desktops, menus are found within the windows themselves. This
decreases the amount of distance the eye has to cover. Focus moves with the mouse
and does not need to be switched with the taskbar. The user simply moves from one
window to another and works. Because UNIX tends to be oriented towards multiple
windows, UNIX users tend to favor larger monitors. More screen real estate means
more space for windows. The screen in Fig. 2 appears crowded because it was gener-

Fig. 2. Leveraging the multiwindow desktop. In the example, the environment variable $DB, which
identifies the root directory for bioinformatics software, is set to /home/psgendb. Clockwise from top
left: Double clicking on fastgbs in $DB/doc/fasta opens up a list of locations of database files in a text
editor. Similarly, Makefile33.common has been opened up from $DB/install/fasta. This file contains
Makefile commands that are compatible with all operating systems. A terminal window at lower right
is used for running commands in $DB/install/fasta, while another terminal window at bottom left is
used for running commands in $DB/bin. At bottom, the CDE control panel shows that the current
screen, out of four screens available, is screen One.

Note: To get the C-shell to display the hostname and current working directory in the prompt,
include the following lines in cshrc.source or your .cshrc file:

set HOSTNAME = ‘hostname‘
set prompt=”{$HOSTNAME”:”$cwd”}
alias cd ‘cd \!*; set prompt=”{$HOSTNAME”:”$cwd”}’
alias popd ‘popd \!*; set prompt=”{$HOSTNAME”:”$cwd”}’
alias pushd ‘pushd \!*; set prompt=”{$HOSTNAME”:”$cwd”}’

See
companion CD
for color Fig. 2

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 7 2 — Fristensky

Proof Copy

Proof Copyated at 1024 × 768 resolution. Although this is a common resolution for PCs, the
UNIX community tends to work with larger monitors, at 19" diagonal or larger, run-
ning at 1280 × 1000 or higher resolution. To provide further real estate, UNIX desk-
tops such as CDE, KDE, and GNOME support switching between several desktops at
the push of a button. Use of multiple windows during an installation is illustrated in
Figure 2.

Finding and Downloading Software

Table 1 has a short and by no means exhaustive list of sites where freely available
sequence analysis software can be downloaded. USENET newsgroups such as
bionet.software contain announcements of new software and updates, as well as dis-
cussions on molecular biology software.

Usually, software is downloaded as a directory tree packed into a single archive
file in various formats. Generally, files in these formats can recreate the original
directory tree containing source code, documentation, data files, and often, executable
binaries. Usually, the first step is to uncompress the file and then recreate the original
directory. For example, the fasta package comes as a shell archive created using the
shar command. Because you do not know in advance whether the archive contains a
large number of individual files or a single directory containing files, it is always
safest to make a new directory in which to recreate the archive, using the following
commands:

mkdir fasta create new directory
mv fasta.shar fasta move fasta.shar into the new directory
cd fasta go into the fasta directory
unshar fasta.shar extract files from fasta.shar

Table 2 lists some of the most common archive tools and their usage.
Two goals when installing software are to 1) avoid interruption of service for users

during installation and testing and 2) having the option of deleting programs after

Table 1
Sources of Free Downloadable Software

Source URL

IUBio Archive http://iubio.bio.indiana.edu/
EMBOSS Software Suite http://www.uk.embnet.org/Software/EMBOSS/
Open Source Bioinformatics Software http://bioinformatics.org/
Linux for Biotechnology http://www.randomfactory.com/lfb/lfb.html
Sanger Center Software http://www.sanger.ac.uk/Software/
Staden Package http://www.mrc-lmb.cam.ac.uk/pubseq/
NCBI FTP site http://www.ncbi.nlm.nih.gov/Ftp/index.html
PHYLIP Phylogeny software http://evolution.genetics.washington.edu/phylip.html
BIRCH, FSAP, XYLEM,GDE http://home.cc.umanitoba.ca/~psgendb/downloads.html
FASTA package ftp://ftp.uva.edu/pub/fasta/
Virtual Network Computing (VNC) http://www.uk.research.att.com/vnc/

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Installation — 273

Proof Copy

Proof Copy

Table 2
Archive Commands

File extension Utility Archive command Unarchive command

.tar UNIX tar To create a tar file from To recreate the directory:
a directory called source: tar xvf source.tar
 tar cvf source.tar source

.zip ZIP To create a compressed To recreate the directory:
archive file called source.zip: unzip source
 zip source source

.shar UNIX shar To create a shar file from To recreate the directory:
a directory named source: unshar source.shar
shar source > source.shar or chmod u+x source.shar

or sh source.shar a

.gz GNU zip To compress a file with: To recreate the directory:
 gzip source > source.gz gunzip source

.Z compress To compress source.tar: To uncompress source.tar.Z:
 compress source.tar uncompress source.tar.Z

.uue uuencode To encode source.tar.Z To recreate the original
using ASCII characters: binary file:
 uuencode source.tar.Z uudecode source.uue
 source.uue

a.shar files are actually shell scripts that can be executed to recreate the original directory.

evaluation. For example, a separate directory called install could hold separate direc-
tories for each package during the installation.

Understand the Problem Before You Begin

For many standard office tasks, it is possible to get by without ever reading the
documentation. In molecular biology, the task itself often has enough complexity
that it may not be possible to simply launch, point, and click. In practice, it is almost
always faster to read the documentation before trying to install. In particular, each
program will have installation instructions that let you know about important
options for where the final program files will reside and which environment vari-
ables must be set.

Reading the documentation at this stage gives you a chance to learn more about
what the program does and to decide if it is really what you need. This weeding out
phase can save a lot of unnecessary compiling, organizing, and testing.

Compilation

Programs distributed as source code, for which no binaries are available, will
require compilation and linking steps. Although these procedures vary somewhat with
language, most of the common packages use protocols of the C and C++ family of

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 7 4 — Fristensky

Proof Copy

Proof Copy

languages. In addition to source files (.c), code items such as type definitions, which
need to be shared, are found in header files (.h). At compile time, code from header
files is inserted into C code, and the .c file translated to machine code, which is written
as object modules (.o). Next, the compiler calls a linker, which links object modules
into a final executable file. In most programs, object modules from standard libraries
(e.g., Tcl/Tk) are also linked. These are typically linked dynamically, meaning that
only a reference to the libraries is made and the actual library modules are loaded each
time the program is run. Consequently, dynamic linking saves disk space. However,
when a program depends on libraries that may not be found on all systems, static
linking can be accomplished, in which object modules are written to the final execut-
able code file. Static linking favors portability at the expense of disk space. A short
list of the types of files frequently encountered during installation appears in Table 3.

Virtually all scientific program packages automate these procedures using the make
program. The make program reads a Makefile, containing compilation, linking, and
installation options. For cross-platform compatibility, it is common to include sepa-
rate Makefiles for each platform (e.g., SGI, Linux, Windows, Solaris). For example,
the fasta package has a file called Makefile.sun for Solaris systems. Copy Makefile.sun
to Makefile, and edit Makefile as needed for your system. At the beginning of the
Makefile, variables are often set to specify the final destinations for files. On our
system, fasta’s Makefile would be edited to change the line reading XDIR = /seqprog/
sbin/bin to XDIR = /home/psgendb/bin. Because this directory is in the $PATH for
all BIRCH users, the new programs become available to all users as soon as the files
are copied to this location.

Typing make executes the commands in Makefile, compiling and linking the pro-
grams. It is best to run make in a terminal window that supports scrolling, so that all
warning and error messages can be examined. This is particularly important because
one can then copy error messages to a file to provide the author of the program with a
precise description of the problem. If the authors do not receive this feedback, the
problems do not get fixed. However feedback must be precise and detailed.

If make is successful, executable binary files, usually with no extension, are writ-
ten to the target directory, which may or may not be the current working directory.
Many Makefiles require you to explicitly ask for files to be copied to the destination
directory by typing make install.

In some cases, testing can be carried out at this point, particularly if a test script is
included with the package. In the fasta package several test scripts are found. For
example, ./test.sh will run most of the fasta programs with test datafiles.

Table 3
Common File Types and File Extensions

File extension File type

.c C source code

.h C header

.o Compiled object file
no extension Executable binary file
.1, .l UNIX manual page
.makefile, .mak Makefile

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Installation — 275

Proof Copy

Proof Copy

Note: “./” forces the shell to look for test.sh in the current working directory.
Unless “.” was in your $PATH, it would not be found. It is generally considered inse-
cure to include “.” in your $PATH.

It is important to check test scripts to see where they look for executable files. For
example, if the script sets $PATH to “.” (the current directory), or if programs are
executed with a statement such as ./fasta33, then the shell will look for an
executable file in the current directory. If the directory for the executable file is not
explicitly, set, the shell will search all directories in your $PATH to find an execut-
able file. This could either result in a Command not found message, or if earlier
copies of the programs were already installed, these older programs execute, not the
newly compiled programs.

Installation

In the BIRCH system, all files and directories are found in a world-readable direc-
tory specified by the $DB environment variable. Thus, $DB/bin, $DB/doc, and
$DB/dat refer to directories containing executable binaries, documentation, and
datafiles used by programs, respectively, as summarized below.

$DB/bin

Although $DB/bin could in principle be set to refer to /usr/local/bin, it is probably
best to keep the entire $DB structure separate from the rest of the system. This
approach has the advantage that the Bioadmin need not have root privileges. All files
in $DB/bin should be world-executable.

One practice for managing program upgrades is to create a symbolic link to point to
the current production version of the program. For example, a link with the name fasta
might point to fasta3:

lrwxrwxrwx 1 psgendb psgendb 6 Jul 18 09:45 /home/psgendb/bin/fasta3 -> fasta*

To upgrade to fasta33:

rm fasta
ln -s fasta33 fasta
lrwxrwxrwx 1 psgendb psgendb 6 Jul 18 09:45 /home/psgendb/bin/fasta33 -> fasta*

Aside from giving users a consistent name for the current most recent version of the
program, this type of stable link eliminates the need to modify other programs that call
the upgraded program.

$DB/doc

Documentation files for software should be moved to this directory. Ideally, the
complete contents of this directory should be Web-accessible. Where a program or
package has more than one documentation file, create a separate subdirectory for each
program. All files should be world-readable.

$DB/dat
A program should never require that ancillary files such as fonts or scoring matri-

ces be in a user’s directory. These should always be centrally installed and adminis-
tered, transparently to the user. Datafiles required for programs, such as scoring

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 7 6 — Fristensky

Proof Copy

Proof Copy

matrices, lists of restriction enzymes, and so forth should be moved to this direc-
tory. Generally, each program should have its own subdirectory. All files should be
world-readable.

$DB/admin

This directory contains scripts and other files related to software administration.
First time BIRCH users run the newuser script, to append a line to the user’s .login
file:

source /home/psgendb/admin/login.source

and to the .cshrc file:

source /home/psgendb/admin/cshrc.source

These files respectively, contain commands that are executed when the user first
logs in, and each time a program is started. All environment variables, aliases, and
other settings required to run these programs are set in these files. Having run newuser
once, a user should never have to do any setup tasks to be able to run new or updated
programs. When a new program is added, the environment variables and aliases needed
are specified in cshrc.source, and therefore become immediately available to the user
community. The net effect is that the Bioadmin should never have to go to each user’s
account when a new program is installed.

Where programs require first-time setup, such as a configuration file being writ-
ten to the user’s $HOME directory, the program should be run from a wrapper script
that checks for the presence of that file. If the file is not present, the script writes a
default copy of the file to $HOME. The user should never have to explicitly run a
setup script before using a program.

All directories that are to be accessible to users must be world searchable (world-
executable), as well as world-readable. For example, to allow users to read files in
$DB/doc/fasta, both $DB/doc and $DB/doc/fasta must be world executable:

chmod a+rx $DB/doc/fasta

Special Considerations for Complex Packages

Some packages come as integrated units whose components can not be moved out
of their directory structure to $DB/bin/, $DB/dat, and $DB/doc. Packages of this type
are installed in $DB/pkg. A good case in point is the Staden Package (see Table 1).
The BIRCH login.source file contains the following lines:

Environment variables for Staden
setenv STADENROOT $DB/pkg/staden
source $STADENROOT/staden.login

that cause the commands in staden.login to be executed when the user logs in. This
script in turn sets several environment variables referencing files in the
$STADENROOT directory. As well, login.source adds $DB/pkg/staden/solaris-bin
to the $PATH. This illustrates that there are sometimes no simple solutions. On one
hand, it would be desirable to simply copy all Staden binaries into $DB/bin, which
has the effect of making it difficult to identify the origin of specific programs in

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Installation — 277

Proof Copy

Proof Copy

$DB/bin as coming from the Staden Package. On the other hand, a compromise might
be to make symbolic links from $DB/bin to each of the programs in $DB/pkg/staden/
solaris-bin, which would require that links be individually maintained.

Documentation and data can be linked more easily in $DB/doc. The following

ln -s $STADENROOT/doc staden

creates a link to the Staden documentation directory, while in $DB/dat, and

ln -s $STADENROOT staden

creates a link to the main Staden directory, from which the user can find several direc-
tories with sample datafiles. In this fashion, the $DOC and $DAT directories appear to
contain staden subdirectories, whose contents are physically located elsewhere.

On Linux systems, complex packages are maintained using programs such as Red
Hat Package Manager (RPM). RPM automates package installation, often requiring
no user input. As files are copied to their destinations, their locations are recorded in
the RPM database (/usr/lib/rpm). In addition to installation, RPM automates pack-
age updating, verification and de-installation. Tools such as RPM therefore make it
possible to install software in system directories such as /usr/local/bin or /usr/bin
without making these directories unmanageable. The one disadvantage is that instal-
lation in system directories can only be accomplished with root permissions.

Special Considerations for Java Applications
Java applications should be installed in a central location, such as $DB/java. Ide-

ally, all that should be required is the inclusion of $DB/java in the $CLASSPATH
environment variable. The Java Virtual Machine (JVM) would search this location
at runtime. However, the precise commands needed to launch an application vary so
that no single solution exists. For example, some applications are completely con-
tained in a single .jar file, while others require a complex directory structure with
large numbers of objects and datafiles. Consequently, Java applications should be
launched from wrappers: short scripts that reside in $DB/bin and call the applica-
tion. For example, a script called $DB/bin/readseq runs the Java implementation of
readseq (available from IUBio, see Table 1):

#!/bin/csh
UNIX script file to run command line readseq

Full path must be specified to enable us to
launch readseq from any directory.
setenv CLASSPATH $DB/java/readseq/readseq.jar

$argv passes command line arguments from the wrapper
to the application
java -cp $CLASSPATH run $argv

Thus, typing readseq launches the wrapper, which in turn launches the Java readseq
application. Readseq also has a method called app which runs readseq in a graphic
interface. To run in this mode, the Xreadseq wrapper has the following line:

java -cp $CLASSPATH app

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 7 8 — Fristensky

Proof Copy

Proof Copy
Calling Programs from a Graphic Front-End

Several options exist for unifying a large software base with a graphic front end.
Programs such as GDE (see Table 1), SeqLab from the GCG package (see Website:
http://www.accelrys.com), or SeqPup (see Table 1, IUBio) allow the Bioadmin to add
external programs to their menus, as specified in easy-to-edit configuration files. In
general, the user selects one or more sequences to work with, and then chooses a
program from the main menu. A window pops up, allowing parameters to be set. The
front end then generates a UNIX command to run the program with these parameters,
using the selected sequences.

In many cases, it is best for the front end to call a wrapper that verifies and checks
the parameters and sequences, then executes the program. This is especially important
for programs from packages such as FSAP or PHYLIP (see Table 1), which operate
through text-based interactive menus. If a prompt does not receive a valid response,
programs of this type may go into an infinite loop, prompting for a response.

Launching Programs from the Workspace Menu
The workspace menu is yet another avenue through which users can find pro-

grams. Figure 3 shows a CDE workspace menu organized categorically. At the high-
est level are the main categories of programs, including standalone items for office
packages. The molecular biology menu is further divided into submenus. For
example, the Sequencing submenu contains programs that together cover all steps in
the sequencing process, including reading the raw chromatograms, vector removal,
contig assembly, and submission to GenBank. The downside of the workspace menu
is that it is incomplete, as command line applications, cannot be launched from the
workspace menu.

Fig. 3. The CDE Workspace Menu.

See
companion CD
for color Fig. 3

WWW

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Installation — 279

Proof Copy

Proof Copy

One should be able to launch GUI applications from the workspace menu, default-
ing to the user’s $HOME directory. In the CDE desktop, this is specified in the .dt
directory. Most recent UNIX desktops, such as CDE 1.4 and GNOME use tree-struc-
tured directories to define the structure of the workspace menu. Again, it is important
to avoid having to do updates to individual user accounts. The easiest way is to create
a directory for molecular biology programs on the Bioadmin’s account, and have new
users run a script creating a symbolic link from their workspace menu directory (e.g.,
.dt/Desktop) to the Bioadmin’s directory. Subsequently, all updates to the Bioadmin’s
menu will become available to all users.

Testing
Testing should not be carried out using the account that owns the programs (e.g.,

root). Testing should always be done in a regular user account. One reason is that
testing on a user account will uncover incorrect permissions. This is likely the single
most common installation error. At the same time, it is probably also best to test in a
subdirectory, rather than in the $HOME directory, to fully demonstrate that the pro-
gram can be run from anywhere.

Using VNC (see Table 1), one can easily eliminate login/logout cycles between
your Bioadmin account and your user account. The vncserver is an X11 server that
runs on a networked UNIX host. It creates an X11 screen in memory. To display that
screen, run vncviewer on your desktop machine. The complete UNIX desktop appears
in a window. For example, the entire screen shown in Fig. 2 was run in a vncviewer
window. Thus, switching back and forth between the user desktop and the Bioadmin
desktop is as easy as switching between windows, facilitating rapid test-modify cycles.
(See Chapter 17 for additional VNC insights.)

Installation Checklist
Before announcing updates or new programs, go through the package in a user

account, checking the following:

• All files world-readable (chmod a+r filename)
• All binaries world-executable (chmod a+x filename)
• All directories world-searchable (chmod a+x directoryname)
• Environment variable set in cshrc.source
• Documentation and datafiles updated

Although installation should result in a finished product, there are often bugs that
need to be worked out as the package or program gets used. At this point, the user base
is probably the best group of testers, becuase they will make mistakes, and they will
try a wider range of data than the Bioadmin would try.

Acknowledgments
Thanks to the Academic Computing and Networking staff at the University of

Manitoba for UNIX system support. This work was made possible in part through
hardware provided by the Sun Academic Equipment Grants Program.

Au: Please provide “Glossary”.

Proof Copy
Job: Operator: NF
Chapter: 16/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 8 0 — Fristensky

Proof Copy

Proof Copy

Suggested Readings

Introduction
Fristensky, B. (1999) Building a multiuser sequence analysis facility using freeware,

in: Bioinformatics Methods and Protocols, (Misener, S. and Krawetz, S., eds.),
Humana Press, Totowa, NJ, pp. 131–145.

Sobell, M. G. (1995) A Practical Guide to the UNIX System, Addison-Wesley Pub-
lishing, Reading, MA.

The Networked Computing Environment
Fristensky, B. (1999) Building a multiuser sequence analysis facility using freeware,

in: Bioinformatics Methods and Protocols, (Misener, S. and Krawetz, S., eds.),
Humana Press, Totowa, NJ, pp. 131–145.

Compilation
Pearson, W. R. (1999) Flexible sequence similarity searching with the FASTA3 pro-

gram package, in: Bioinformatics Methods and Protocols, (Misener, S. and
Krawetz, S., eds.) Humana Press, Totowa, NJ, pp. 185–219.

Installation
Fristensky, B., Lis, J. T., and Wu, R. (1982) Portable microcomputer software for

nucleotide sequence analysis, Nucl. Acids Res. 10, 6451–6463.
Fristensky, B. (1986) Improving the efficiency of dot-matrix similarity searches

through use of an oligomer table, Nucl. Acids Res. 14, 597–610.
Felsenstein J. (1989) PHYLIP Phylogeny Inference Package, Cladistics 5, 164–166.
Fristensky, B. (1999) Building a multiuser sequence analysis facility using freeware,

in: Bioinformatics Methods and Protocols, (Misener, S. and Krawetz, S., eds.),
Humana Press, Totowa, NJ, pp. 131–145.

Smith, S., Overbeek, R., Woese, C. R., Gilbert, W., and Gillevet, P. M. (1994) The
Genetic Data Environment: an expandable GUI for multiple sequence analysis,
Comp. Appl. Biosci. 10, 671–675.
(see Website: http://megasun.bch.umontreal.ca/pub/gde/)

Staden R., Beal, K. F., and Bonfield, J. K. (1999) The Staden Package, in: Bio-
informatics Methods and Protocols , (Misener, S. and Krawetz, S, eds.), Humana
Press, Totowa, NJ, pp. 115–130.

<Au/Ed:
City,
state
correct?

WWW

