
Jelly�sh 2 User Guide

December 13, 2013

Contents

1 Getting started 2

1.1 Counting all k-mers . 2
1.1.1 Counting k-mers in sequencing reads . 3
1.1.2 Counting k-mers in a genome . 3

1.2 Counting high-frequency k-mers . 3
1.2.1 One pass method . 3
1.2.2 Two pass method . 4

2 FAQ 5

2.1 How to read compressed �les (or other format)?newmacroname 5
2.2 How to read multiple �les at once? . 5
2.3 How to reduce the output size? . 6

3 Subcommands 7

3.1 histo . 7
3.2 dump . 7
3.3 query . 7
3.4 info . 8
3.5 merge . 8
3.6 cite . 8

1

Chapter 1

Getting started

1.1 Counting all k-mers

The basic command to count all k-mers is as follows:

jellyfish count -m 21 -s 100M -t 10 -C reads.fasta

This will count canonical (-C) 21-mers (-m 21), using a hash with 100 million elements (-s 100M)
and 10 threads (-t 10) in the sequences in the �le reads.fasta. The output is written in the �le
'mer_counts.jf' by default (change with -o switch).

To compute the histogram of the k-mer occurrences, use the histo subcommand (see section 3.1):

jellyfish histo mer_counts.jf

To query the counts of a particular k-mer, use the query subcommand (see section 3.3):

jellyfish query mer_counts.jf AACGTTG

To output all the counts for all the k-mers in the �le, use the dump subcommand (see section 3.2):

jellyfish dump mer_counts.jf > mer_counts_dumps.fa

To get some information on how, when and where this jelly�sh �le was generated, use the info
subcommand (see section 3.4):

jellyfish info mer_counts.jf

For more detail information, see the relevant sections in this document. All commands understand
--help and will produce some information about the switches available.

2

1.1.1 Counting k-mers in sequencing reads

In sequencing reads, it is unknown which strands of the DNA is sequenced. As a consequence, a
k-mer or its reverse complement are essentially equivalent. The canonical representative of a k-mer
m is by de�nition m or the reverse complement of m, whichever comes �rst lexicographically. The
-C switch instructs to save in the hash only canonical k-mers, while the count is the number of
occurrences of both a k-mer and it reverse complement.

The size parameter (given with -s) is an indication of the number k-mers that will be stored
in the hash. For sequencing reads, one this size should be the size of the genome plus the k-mers
generated by sequencing errors. For example, if the error rate is e (e.g. Illumina reads, usually
e ≈ 1%), with an estimated genome size of G and a coverage of c, the number of expected k-mers
is G+Gcek. This assume

NOTE: unlike in Jelly�sh 1, this -s parameter is only an estimation. If the size given is
too small to �t all the k-mers, the hash size will be increased automatically or partial
results will be written to disk and �nally merged automatically. Running 'jelly�sh merge'
should never be necessary, as now jelly�sh now takes care of this task on its own.

If the low frequency k-mers (k-mers occurring only once), which are mostly due to sequencing errors,
are not of interest, one might consider counting only high-frequency k-mers (see section 1.2), which
uses less memory and is potentially faster.

1.1.2 Counting k-mers in a genome

In an actual genome or �nished sequence, a k-mer and its reverse complement are not equivalent,
hence using the -C switch does not make sense. In addition, the size for the hash can be set directly
to the size of the genome.

1.2 Counting high-frequency k-mers

Jelly�sh o�ers two way to count only high-frequency k-mers (meaning only k-mers with count > 1),
which reduces signi�cantly the memory usage. Both methods are based on using Bloom �lters. The
�rst method is a one pass method, which provides approximate count for some percentage of the
k-mers. The second method is a two pass method which provides exact count. In both methods,
most of the low-frequency k-mers are not reported.

1.2.1 One pass method

Adding the --bf-size switch make jelly�sh �rst insert all k-mers �rst into a Bloom �lter and
only insert into the hash the k-mers which have already been seen at least once. The argument to
--bf-size should the total number of k-mer expected in the data set while the --size argument
should be the number of k-mers occurring more than once. For example:

jellyfish count -m 25 -s 3G --bf-size 100G -t 16 homo_sapiens.fa

would be appropriate for counting 25-mers in human reads at 30× coverage. The approximate
memory usage is 9 bits per k-mer in the Bloom �lter.

3

The count reported for each k-mer (by 'jelly�sh dump' or 'jelly�sh query') is one less than the
actual count. Meaning, the count 1 k-mer are not reported, count 2 k-mer are reported to have
count 1, etc.

The drawback of this method is some percentage of the k-mer that should not be reported
(because they occur only once) are reported. This is due to the random nature of the Bloom �lter
data structure. The percentage is < 1% by default and can be changed with the--bf-fp switch.

1.2.2 Two pass method

In the two pass method, �rst a Bloom counter is created from the reads with 'jelly�sh bc'. Then
this Bloom counter is given to the 'jellly�sh count' command and only the k-mers which have been
seen twice in the �rst pass will be inserted in the hash. For example, with a human data set similar
that in section 1.2.1:

jellyfish bc -m 25 -s 100G -t 16 -o homo_sapiens.bc homo_sapiens.fa

jellyfish count -m 25 -s 3G -t 16 --bc homo_sapiens.bc homo_sapiens.fa

The advantage of this method is that the counts reported for the k-mers are all correct. Most count
1 k-mer are not reported, except for a small percentage (set by the -f switch of the bc subcommand)
of them which are reported (correctly with count 1). All other k-mers are reported with the correct
count.

The drawback of this method is that it requires to parse the entire reads data set twice and
the memory usage of the Bloom counter is greater than that of the Bloom �lter (slightly less than
twice as much).

4

Chapter 2

FAQ

2.1 How to read compressed �les (or other format)?newmacroname

Jelly�sh only reads FASTA or FASTQ formatted input �les. By reading from pipes, jelly�sh can
read compressed �les, like this:

zcat *.fastq.gz | jellyfish count /dev/fd/0 ...

or by using the '<()' redirection provided by the shell (e.g. bash, zsh):

jellyfish count <(zcat file1.fastq.gz) <(zcat file2.fasta.gz) ...

2.2 How to read multiple �les at once?

Often, jelly�sh can parse an input sequence �le faster than gzip or fastq-dump (to parse SRA �les)
can output the sequence. This leads to many threads in jelly�sh going partially unused. Jelly�sh
can be instructed to open multiple �le at once. For example, to read two short read archive �les
simultaneously:

jellyfish count -F 2 <(fastq-dump -Z file1.sra) <(fastq-dump -Z file2.sra) ...

Another way is to use �generators�. First, create a �le containing, one per line, commands to generate
sequence. Then pass this �le to jelly�sh and the number of generators to run simultaneously.
Jelly�sh will spawn subprocesses running the commands passed and read their standard output for
sequence. By default, the commands are run using the shell in the SHELL environment variable,
and this can be changed by the -S switch. Multiple generators will be run simultaneously as
speci�ed by the -G switch. For example:

ls *.fasta.gz | xargs -n 1 echo gunzip -c > generators

jellyfish count -g generators -G 4 ...

The �rst command created the command list into the 'generators' �le, each command unzipping
one FASTA �le in the current directory. The second command runs jelly�sh with 4 concurrent
generators.

5

2.3 How to reduce the output size?

The output �le was design to be easy to read, but the �le generated can be rather large. By default,
a 4 bytes counter value is saved for every k-mer (i.e. a maximum count of over 4 billion). Instead,
a counter size of 2 bytes or 1 byte can be used with the switch --out-counter-len, which reduces
signi�cantly the output size.

The count of k-mers which cannot be represented with the given number of bytes will have
a value equal to the maximum value that can be represented. Meaning, if the counter �eld uses
1 byte, any k-mers with count greater or equal to 255 will be reported of having a count 255.

Also, low frequency and high frequency k-mers can be skipped using the -L and -U switches
respectively. Although it might be more appropriate to �lter out the low frequency k-mers using
Bloom �lters, as shown in section 1.2.

6

Chapter 3

Subcommands

3.1 histo

The histo subcommand outputs the histogram of k-mers frequencies. The last bin, with value one
above the high setting set by the -h switch (10 000 by default), is a catch all: all k-mers with a
count greater than the high setting are tallied in that one bin. If the low setting is set (-l switch),
then the �rst bin, with value one below the low setting, is also similarly a catch all.

By default, the bins with a zero count are skipped. This can be changed with the -f switch.

3.2 dump

The dump subcommand outputs a list of all the k-mers in the �le associated with their count. By
default, the output is in FASTA format, where the header line contains the count of the k-mer and
the sequence part is the sequence of the k-mer. This format has the advantage that the output
contains the sequence of k-mers and can be directly fed into another program expecting the very
common FASTA format. A more convenient column format (for human beings) is selected with the
-c switch.

Low frequency and high frequency k-mers can be skipped with the -L and -U switches respec-
tively.

In the output of the dump subcommand, the k-mers are sorted according to the hash function
used by Jelly�sh. The output can be considered to be �fairly pseudo-random�. By �fairly� we mean
that NO guarantee is made about the actual randomness of this order, it is just good enough for
the hash table to work properly. And by �pseudo-random� we mean that the order is actually
deterministic: given the same hash function, the output will be always the same and two di�erent
�les generated with the same hash function can be merged easily.

3.3 query

The query subcommand outputs the k-mers and their counts for some subset of k-mers. It will
outputs the counts of all the k-mers passed on the command line or of all the k-mers in the

7

sequence read from the FASTA or FASTQ formatted �le passed to the switch -s (this switch can
be given multiple times).

3.4 info

The info subcommand outputs some information about the jelly�sh �le and the command used to
generated it, in which directory and at what time the command was run. Hopefully, the information
given should be enough to rerun jelly�sh under the same conditions and reproduce the output �le.
In particular, the -c switch outputs the command, properly escaped and ready to run in a shell.

The header is saved in JSON format and contains more information than is written by the
default. The full header in JSON format can be written out using the -j switch.

3.5 merge

The merge subcommand is a little direct use with version version 2 of jelly�sh. When intermediary
�les were written to disk, because not all k-mers would �t in memory, they can be merged into one
�le containing the �nal result with the merge subcommand. The count will merge intermediary �les
automatically as needed.

3.6 cite

The cite subcommand prints the citation for the jelly�sh paper. With the -b, it is formatted in
Bibtex format. How convenient!

8

