////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2009. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_tree file. Modified by Ion Gaztanaga 2005. // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef BOOST_CONTAINERS_TREE_HPP #define BOOST_CONTAINERS_TREE_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef BOOST_CONTAINERS_PERFECT_FORWARDING #include #endif #include //std::pair #include #include namespace boost { namespace container { namespace containers_detail { template struct value_compare_impl : public KeyCompare { typedef Value value_type; typedef KeyCompare key_compare; typedef KeyOfValue key_of_value; typedef Key key_type; value_compare_impl(key_compare kcomp) : key_compare(kcomp) {} const key_compare &key_comp() const { return static_cast(*this); } key_compare &key_comp() { return static_cast(*this); } template bool operator()(const A &a, const B &b) const { return key_compare::operator()(KeyOfValue()(a), KeyOfValue()(b)); } }; template struct rbtree_hook { typedef typename containers_detail::bi::make_set_base_hook < containers_detail::bi::void_pointer , containers_detail::bi::link_mode , containers_detail::bi::optimize_size >::type type; }; template struct rbtree_type { typedef T type; }; template struct rbtree_type< std::pair > { typedef pair type; }; template struct rbtree_node : public rbtree_hook::type { typedef typename rbtree_hook::type hook_type; typedef T value_type; typedef typename rbtree_type::type internal_type; typedef rbtree_node node_type; #ifndef BOOST_CONTAINERS_PERFECT_FORWARDING rbtree_node() : m_data() {} rbtree_node(const rbtree_node &other) : m_data(other.m_data) {} #define BOOST_PP_LOCAL_MACRO(n) \ template \ rbtree_node(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ : m_data(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)) \ {} \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #else //#ifndef BOOST_CONTAINERS_PERFECT_FORWARDING rbtree_node() : m_data() {} template rbtree_node(Args &&...args) : m_data(boost::interprocess::forward(args)...) {} #endif//#ifndef BOOST_CONTAINERS_PERFECT_FORWARDING rbtree_node &operator=(const rbtree_node &other) { do_assign(other.m_data); return *this; } T &get_data() { T* ptr = reinterpret_cast(&this->m_data); return *ptr; } const T &get_data() const { const T* ptr = reinterpret_cast(&this->m_data); return *ptr; } private: internal_type m_data; template void do_assign(const std::pair &p) { const_cast(m_data.first) = p.first; m_data.second = p.second; } template void do_assign(const pair &p) { const_cast(m_data.first) = p.first; m_data.second = p.second; } template void do_assign(const V &v) { m_data = v; } public: template static void construct(node_type *ptr, BOOST_INTERPROCESS_FWD_REF(Convertible) convertible) { new(ptr) node_type(boost::interprocess::forward(convertible)); } }; }//namespace containers_detail { #if !defined(BOOST_HAS_RVALUE_REFS) template struct has_own_construct_from_it < boost::container::containers_detail::rbtree_node > { static const bool value = true; }; #endif namespace containers_detail { template struct intrusive_rbtree_type { typedef typename A::value_type value_type; typedef typename boost::pointer_to_other ::type void_pointer; typedef typename containers_detail::rbtree_node node_type; typedef node_compare node_compare_type; typedef typename containers_detail::bi::make_rbtree ,containers_detail::bi::base_hook::type> ,containers_detail::bi::constant_time_size ,containers_detail::bi::size_type >::type container_type; typedef container_type type ; }; } //namespace containers_detail { namespace containers_detail { template class rbtree : protected containers_detail::node_alloc_holder >::type > { typedef typename containers_detail::intrusive_rbtree_type >::type Icont; typedef containers_detail::node_alloc_holder AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef rbtree < Key, Value, KeyOfValue , KeyCompare, A> ThisType; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef typename Icont::iterator iiterator; typedef typename Icont::const_iterator iconst_iterator; typedef containers_detail::allocator_destroyer Destroyer; typedef typename AllocHolder::allocator_v1 allocator_v1; typedef typename AllocHolder::allocator_v2 allocator_v2; typedef typename AllocHolder::alloc_version alloc_version; class RecyclingCloner; friend class RecyclingCloner; class RecyclingCloner { public: RecyclingCloner(AllocHolder &holder, Icont &irbtree) : m_holder(holder), m_icont(irbtree) {} NodePtr operator()(const Node &other) const { // if(!m_icont.empty()){ if(NodePtr p = m_icont.unlink_leftmost_without_rebalance()){ //First recycle a node (this can't throw) //NodePtr p = m_icont.unlink_leftmost_without_rebalance(); try{ //This can throw *p = other; return p; } catch(...){ //If there is an exception destroy the whole source m_holder.destroy_node(p); while((p = m_icont.unlink_leftmost_without_rebalance())){ m_holder.destroy_node(p); } throw; } } else{ return m_holder.create_node(other); } } AllocHolder &m_holder; Icont &m_icont; }; BOOST_COPYABLE_AND_MOVABLE(rbtree) public: typedef Key key_type; typedef Value value_type; typedef A allocator_type; typedef KeyCompare key_compare; typedef value_compare_impl< Key, Value , KeyCompare, KeyOfValue> value_compare; typedef typename A::pointer pointer; typedef typename A::const_pointer const_pointer; typedef typename A::reference reference; typedef typename A::const_reference const_reference; typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef difference_type rbtree_difference_type; typedef pointer rbtree_pointer; typedef const_pointer rbtree_const_pointer; typedef reference rbtree_reference; typedef const_reference rbtree_const_reference; typedef NodeAlloc stored_allocator_type; private: template struct key_node_compare : private KeyValueCompare { key_node_compare(KeyValueCompare comp) : KeyValueCompare(comp) {} template bool operator()(const Node &n, const KeyType &k) const { return KeyValueCompare::operator()(n.get_data(), k); } template bool operator()(const KeyType &k, const Node &n) const { return KeyValueCompare::operator()(k, n.get_data()); } }; typedef key_node_compare KeyNodeCompare; public: //rbtree const_iterator class const_iterator : public std::iterator < std::bidirectional_iterator_tag , value_type , rbtree_difference_type , rbtree_const_pointer , rbtree_const_reference> { protected: typedef typename Icont::iterator iiterator; iiterator m_it; explicit const_iterator(iiterator it) : m_it(it){} void prot_incr() { ++m_it; } void prot_decr() { --m_it; } private: iiterator get() { return this->m_it; } public: friend class rbtree ; typedef rbtree_difference_type difference_type; //Constructors const_iterator() : m_it() {} //Pointer like operators const_reference operator*() const { return m_it->get_data(); } const_pointer operator->() const { return const_pointer(&m_it->get_data()); } //Increment / Decrement const_iterator& operator++() { prot_incr(); return *this; } const_iterator operator++(int) { iiterator tmp = m_it; ++*this; return const_iterator(tmp); } const_iterator& operator--() { prot_decr(); return *this; } const_iterator operator--(int) { iiterator tmp = m_it; --*this; return const_iterator(tmp); } //Comparison operators bool operator== (const const_iterator& r) const { return m_it == r.m_it; } bool operator!= (const const_iterator& r) const { return m_it != r.m_it; } }; //rbtree iterator class iterator : public const_iterator { private: explicit iterator(iiterator it) : const_iterator(it) {} iiterator get() { return this->m_it; } public: friend class rbtree ; typedef rbtree_pointer pointer; typedef rbtree_reference reference; //Constructors iterator(){} //Pointer like operators reference operator*() const { return this->m_it->get_data(); } pointer operator->() const { return pointer(&this->m_it->get_data()); } //Increment / Decrement iterator& operator++() { this->prot_incr(); return *this; } iterator operator++(int) { iiterator tmp = this->m_it; ++*this; return iterator(tmp); } iterator& operator--() { this->prot_decr(); return *this; } iterator operator--(int) { iterator tmp = *this; --*this; return tmp; } }; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; rbtree(const key_compare& comp = key_compare(), const allocator_type& a = allocator_type()) : AllocHolder(a, comp) {} template rbtree(InputIterator first, InputIterator last, const key_compare& comp, const allocator_type& a, bool unique_insertion) : AllocHolder(a, comp) { typedef typename std::iterator_traits::iterator_category ItCat; priv_create_and_insert_nodes(first, last, unique_insertion, alloc_version(), ItCat()); } template rbtree( ordered_range_t, InputIterator first, InputIterator last , const key_compare& comp = key_compare(), const allocator_type& a = allocator_type()) : AllocHolder(a, comp) { typedef typename std::iterator_traits::iterator_category ItCat; priv_create_and_insert_ordered_nodes(first, last, alloc_version(), ItCat()); } rbtree(const rbtree& x) : AllocHolder(x, x.key_comp()) { this->icont().clone_from (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc())); } rbtree(BOOST_INTERPROCESS_RV_REF(rbtree) x) : AllocHolder(x, x.key_comp()) { this->swap(x); } ~rbtree() {} //AllocHolder clears the tree rbtree& operator=(BOOST_INTERPROCESS_COPY_ASSIGN_REF(rbtree) x) { if (this != &x) { //Transfer all the nodes to a temporary tree //If anything goes wrong, all the nodes will be destroyed //automatically Icont other_tree(this->icont().value_comp()); other_tree.swap(this->icont()); //Now recreate the source tree reusing nodes stored by other_tree this->icont().clone_from (x.icont() , RecyclingCloner(*this, other_tree) //, AllocHolder::cloner(*this) , Destroyer(this->node_alloc())); //If there are remaining nodes, destroy them NodePtr p; while((p = other_tree.unlink_leftmost_without_rebalance())){ AllocHolder::destroy_node(p); } } return *this; } rbtree& operator=(BOOST_INTERPROCESS_RV_REF(rbtree) mx) { this->clear(); this->swap(mx); return *this; } public: // accessors: value_compare value_comp() const { return this->icont().value_comp().value_comp(); } key_compare key_comp() const { return this->icont().value_comp().value_comp().key_comp(); } allocator_type get_allocator() const { return allocator_type(this->node_alloc()); } const stored_allocator_type &get_stored_allocator() const { return this->node_alloc(); } stored_allocator_type &get_stored_allocator() { return this->node_alloc(); } iterator begin() { return iterator(this->icont().begin()); } const_iterator begin() const { return this->cbegin(); } iterator end() { return iterator(this->icont().end()); } const_iterator end() const { return this->cend(); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return this->crbegin(); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return this->crend(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return const_iterator(this->non_const_icont().begin()); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return const_iterator(this->non_const_icont().end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return const_reverse_iterator(cend()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return const_reverse_iterator(cbegin()); } bool empty() const { return !this->size(); } size_type size() const { return this->icont().size(); } size_type max_size() const { return AllocHolder::max_size(); } void swap(ThisType& x) { AllocHolder::swap(x); } public: typedef typename Icont::insert_commit_data insert_commit_data; // insert/erase std::pair insert_unique_check (const key_type& key, insert_commit_data &data) { std::pair ret = this->icont().insert_unique_check(key, KeyNodeCompare(value_comp()), data); return std::pair(iterator(ret.first), ret.second); } std::pair insert_unique_check (const_iterator hint, const key_type& key, insert_commit_data &data) { std::pair ret = this->icont().insert_unique_check(hint.get(), key, KeyNodeCompare(value_comp()), data); return std::pair(iterator(ret.first), ret.second); } iterator insert_unique_commit(const value_type& v, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(v); iiterator it(this->icont().insert_unique_commit(*tmp, data)); return iterator(it); } template iterator insert_unique_commit (BOOST_INTERPROCESS_FWD_REF(MovableConvertible) mv, insert_commit_data &data) { NodePtr tmp = AllocHolder::create_node(boost::interprocess::forward(mv)); iiterator it(this->icont().insert_unique_commit(*tmp, data)); return iterator(it); } std::pair insert_unique(const value_type& v) { insert_commit_data data; std::pair ret = this->insert_unique_check(KeyOfValue()(v), data); if(!ret.second) return ret; return std::pair (this->insert_unique_commit(v, data), true); } template std::pair insert_unique(BOOST_INTERPROCESS_FWD_REF(MovableConvertible) mv) { insert_commit_data data; std::pair ret = this->insert_unique_check(KeyOfValue()(mv), data); if(!ret.second) return ret; return std::pair (this->insert_unique_commit(boost::interprocess::forward(mv), data), true); } private: iterator emplace_unique_impl(NodePtr p) { value_type &v = p->get_data(); insert_commit_data data; std::pair ret = this->insert_unique_check(KeyOfValue()(v), data); if(!ret.second){ Destroyer(this->node_alloc())(p); return ret.first; } return iterator(iiterator(this->icont().insert_unique_commit(*p, data))); } iterator emplace_unique_hint_impl(const_iterator hint, NodePtr p) { value_type &v = p->get_data(); insert_commit_data data; std::pair ret = this->insert_unique_check(hint, KeyOfValue()(v), data); if(!ret.second){ Destroyer(this->node_alloc())(p); return ret.first; } return iterator(iiterator(this->icont().insert_unique_commit(*p, data))); } public: #ifdef BOOST_CONTAINERS_PERFECT_FORWARDING template iterator emplace_unique(Args&&... args) { return this->emplace_unique_impl(AllocHolder::create_node(boost::interprocess::forward(args)...)); } template iterator emplace_hint_unique(const_iterator hint, Args&&... args) { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(boost::interprocess::forward(args)...)); } template iterator emplace_equal(Args&&... args) { NodePtr p(AllocHolder::create_node(boost::interprocess::forward(args)...)); return iterator(this->icont().insert_equal(this->icont().end(), *p)); } template iterator emplace_hint_equal(const_iterator hint, Args&&... args) { NodePtr p(AllocHolder::create_node(boost::interprocess::forward(args)...)); return iterator(this->icont().insert_equal(hint.get(), *p)); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator emplace_unique() { return this->emplace_unique_impl(AllocHolder::create_node()); } iterator emplace_hint_unique(const_iterator hint) { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node()); } iterator emplace_equal() { NodePtr p(AllocHolder::create_node()); return iterator(this->icont().insert_equal(this->icont().end(), *p)); } iterator emplace_hint_equal(const_iterator hint) { NodePtr p(AllocHolder::create_node()); return iterator(this->icont().insert_equal(hint.get(), *p)); } #define BOOST_PP_LOCAL_MACRO(n) \ template \ iterator emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ return this->emplace_unique_impl \ (AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ } \ \ template \ iterator emplace_hint_unique(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ return this->emplace_unique_hint_impl \ (hint, AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ } \ \ template \ iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ return iterator(this->icont().insert_equal(this->icont().end(), *p)); \ } \ \ template \ iterator emplace_hint_equal(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { \ NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ return iterator(this->icont().insert_equal(hint.get(), *p)); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator insert_unique(const_iterator hint, const value_type& v) { insert_commit_data data; std::pair ret = this->insert_unique_check(hint, KeyOfValue()(v), data); if(!ret.second) return ret.first; return this->insert_unique_commit(v, data); } template iterator insert_unique(const_iterator hint, BOOST_INTERPROCESS_FWD_REF(MovableConvertible) mv) { insert_commit_data data; std::pair ret = this->insert_unique_check(hint, KeyOfValue()(mv), data); if(!ret.second) return ret.first; return this->insert_unique_commit(boost::interprocess::forward(mv), data); } template void insert_unique(InputIterator first, InputIterator last) { if(this->empty()){ //Insert with end hint, to achieve linear //complexity if [first, last) is ordered const_iterator end(this->end()); for( ; first != last; ++first) this->insert_unique(end, *first); } else{ for( ; first != last; ++first) this->insert_unique(*first); } } iterator insert_equal(const value_type& v) { NodePtr p(AllocHolder::create_node(v)); return iterator(this->icont().insert_equal(this->icont().end(), *p)); } template iterator insert_equal(BOOST_INTERPROCESS_FWD_REF(MovableConvertible) mv) { NodePtr p(AllocHolder::create_node(boost::interprocess::forward(mv))); return iterator(this->icont().insert_equal(this->icont().end(), *p)); } iterator insert_equal(const_iterator hint, const value_type& v) { NodePtr p(AllocHolder::create_node(v)); return iterator(this->icont().insert_equal(hint.get(), *p)); } template iterator insert_equal(const_iterator hint, BOOST_INTERPROCESS_FWD_REF(MovableConvertible) mv) { NodePtr p(AllocHolder::create_node(boost::interprocess::forward(mv))); return iterator(this->icont().insert_equal(hint.get(), *p)); } template void insert_equal(InputIterator first, InputIterator last) { //Insert with end hint, to achieve linear //complexity if [first, last) is ordered const_iterator end(this->cend()); for( ; first != last; ++first) this->insert_equal(end, *first); } iterator erase(const_iterator position) { return iterator(this->icont().erase_and_dispose(position.get(), Destroyer(this->node_alloc()))); } size_type erase(const key_type& k) { return AllocHolder::erase_key(k, KeyNodeCompare(value_comp()), alloc_version()); } iterator erase(const_iterator first, const_iterator last) { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); } void clear() { AllocHolder::clear(alloc_version()); } // set operations: iterator find(const key_type& k) { return iterator(this->icont().find(k, KeyNodeCompare(value_comp()))); } const_iterator find(const key_type& k) const { return const_iterator(this->non_const_icont().find(k, KeyNodeCompare(value_comp()))); } size_type count(const key_type& k) const { return size_type(this->icont().count(k, KeyNodeCompare(value_comp()))); } iterator lower_bound(const key_type& k) { return iterator(this->icont().lower_bound(k, KeyNodeCompare(value_comp()))); } const_iterator lower_bound(const key_type& k) const { return const_iterator(this->non_const_icont().lower_bound(k, KeyNodeCompare(value_comp()))); } iterator upper_bound(const key_type& k) { return iterator(this->icont().upper_bound(k, KeyNodeCompare(value_comp()))); } const_iterator upper_bound(const key_type& k) const { return const_iterator(this->non_const_icont().upper_bound(k, KeyNodeCompare(value_comp()))); } std::pair equal_range(const key_type& k) { std::pair ret = this->icont().equal_range(k, KeyNodeCompare(value_comp())); return std::pair(iterator(ret.first), iterator(ret.second)); } std::pair equal_range(const key_type& k) const { std::pair ret = this->non_const_icont().equal_range(k, KeyNodeCompare(value_comp())); return std::pair (const_iterator(ret.first), const_iterator(ret.second)); } private: //Iterator range version template void priv_create_and_insert_nodes (InpIterator beg, InpIterator end, bool unique, allocator_v1, std::input_iterator_tag) { if(unique){ for (; beg != end; ++beg){ this->insert_unique(*beg); } } else{ for (; beg != end; ++beg){ this->insert_equal(*beg); } } } template void priv_create_and_insert_nodes (InpIterator beg, InpIterator end, bool unique, allocator_v2, std::input_iterator_tag) { //Just forward to the default one priv_create_and_insert_nodes(beg, end, unique, allocator_v1(), std::input_iterator_tag()); } class insertion_functor; friend class insertion_functor; class insertion_functor { Icont &icont_; public: insertion_functor(Icont &icont) : icont_(icont) {} void operator()(Node &n) { this->icont_.insert_equal(this->icont_.cend(), n); } }; template void priv_create_and_insert_nodes (FwdIterator beg, FwdIterator end, bool unique, allocator_v2, std::forward_iterator_tag) { if(beg != end){ if(unique){ priv_create_and_insert_nodes(beg, end, unique, allocator_v2(), std::input_iterator_tag()); } else{ //Optimized allocation and construction this->allocate_many_and_construct (beg, std::distance(beg, end), insertion_functor(this->icont())); } } } //Iterator range version template void priv_create_and_insert_ordered_nodes (InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag) { const_iterator cend_n(this->cend()); for (; beg != end; ++beg){ this->insert_before(cend_n, *beg); } } template void priv_create_and_insert_ordered_nodes (InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag) { //Just forward to the default one priv_create_and_insert_ordered_nodes(beg, end, allocator_v1(), std::input_iterator_tag()); } class back_insertion_functor; friend class back_insertion_functor; class back_insertion_functor { Icont &icont_; public: back_insertion_functor(Icont &icont) : icont_(icont) {} void operator()(Node &n) { this->icont_.push_back(n); } }; template void priv_create_and_insert_ordered_nodes (FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag) { if(beg != end){ //Optimized allocation and construction this->allocate_many_and_construct (beg, std::distance(beg, end), back_insertion_functor(this->icont())); } } }; template inline bool operator==(const rbtree& x, const rbtree& y) { return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); } template inline bool operator<(const rbtree& x, const rbtree& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline bool operator!=(const rbtree& x, const rbtree& y) { return !(x == y); } template inline bool operator>(const rbtree& x, const rbtree& y) { return y < x; } template inline bool operator<=(const rbtree& x, const rbtree& y) { return !(y < x); } template inline bool operator>=(const rbtree& x, const rbtree& y) { return !(x < y); } template inline void swap(rbtree& x, rbtree& y) { x.swap(y); } } //namespace containers_detail { } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ } //namespace boost { #include #endif //BOOST_CONTAINERS_TREE_HPP