/* Copyright 2005-2007 Adobe Systems Incorporated Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). See http://opensource.adobe.com/gil for most recent version including documentation. */ /*************************************************************************************************/ #ifndef GIL_REDUCE_HPP #define GIL_REDUCE_HPP #include #include #include #include #include #include #include #include #include #include #include "../../metafunctions.hpp" #include "../../typedefs.hpp" #include "dynamic_at_c.hpp" //////////////////////////////////////////////////////////////////////////////////////// /// \file /// \brief Constructs for static-to-dynamic integer convesion /// \author Lubomir Bourdev and Hailin Jin \n /// Adobe Systems Incorporated /// \date 2005-2007 \n Last updated on May 4, 2006 /// //////////////////////////////////////////////////////////////////////////////////////// #ifdef GIL_REDUCE_CODE_BLOAT // Max number of cases in the cross-expension of binary operation for it to be reduced as unary #define GIL_BINARY_REDUCE_LIMIT 226 namespace boost { namespace mpl { /////////////////////////////////////////////////////// /// Mapping vector - represents the mapping of one type vector to another /// It is not a full-blown MPL Random Access Type sequence; just has at_c and size implemented /// /// SrcTypes, DstTypes: MPL Random Access Type Sequences /// /// Implements size and at_c to behave as if this is an MPL vector of integers /////////////////////////////////////////////////////// template struct mapping_vector {}; template struct at_c, K> { static const std::size_t value=size::value - order::type>::type::value +1; typedef size_t type; }; template struct size > { typedef typename size::type type; static const std::size_t value=type::value; }; /////////////////////////////////////////////////////// /// copy_to_vector - copies a sequence (mpl::set) to vector. /// /// Temporary solution because I couldn't get mpl::copy to do this. /// This is what I tried: /// mpl::copy > >::type; /// It works when SET is mpl::vector, but not when SET is mpl::set... /////////////////////////////////////////////////////// namespace detail { template struct copy_to_vector_impl { private: typedef typename deref::type T; typedef typename next::type next; typedef typename copy_to_vector_impl::type rest; public: typedef typename push_front::type type; }; template struct copy_to_vector_impl { typedef vector::type> type; }; } template struct copy_to_vector { typedef typename detail::copy_to_vector_impl::type, size::value>::type type; }; template <> struct copy_to_vector > { typedef vector0<> type; }; } } // boost::mpl namespace boost { namespace gil { /////////////////////////////////////////////////////// /// /// unary_reduce, binary_reduce - given an MPL Random Access Sequence, /// dynamically specified index to that container, the bits of an instance of the corresponding type and /// a generic operation, invokes the operation on the given type /// /////////////////////////////////////////////////////// /////////////////////////////////////////////////////// /// /// \brief Unary reduce. /// /// Given a set of types and an operation, reduces each type in the set (to reduced_t), then removes duplicates (to unique_t) /// To apply the operation, first constructs a lookup table that maps each element from Types to its place in unique_t and uses it to map /// the index to anther index (in map_index). Then invokes apply_operation_base on the unique types with the new index. /// /////////////////////////////////////////////////////// template struct unary_reduce_impl { typedef typename mpl::transform >::type reduced_t; typedef typename mpl::copy, mpl::insert > >::type unique_t; static const bool is_single=mpl::size::value==1; }; template ::is_single> struct unary_reduce : public unary_reduce_impl { typedef typename unary_reduce_impl::reduced_t reduced_t; typedef typename unary_reduce_impl::unique_t unique_t; static unsigned short inline map_index(std::size_t index) { typedef typename mpl::mapping_vector indices_t; return gil::at_c(index); } template GIL_FORCEINLINE static typename Op::result_type applyc(const Bits& bits, std::size_t index, Op op) { return apply_operation_basec(bits,map_index(index),op); } template GIL_FORCEINLINE static typename Op::result_type apply(Bits& bits, std::size_t index, Op op) { return apply_operation_base(bits,map_index(index),op); } }; template struct unary_reduce : public unary_reduce_impl { typedef typename unary_reduce_impl::unique_t unique_t; static unsigned short inline map_index(std::size_t index) { return 0; } template GIL_FORCEINLINE static typename Op::result_type applyc(const Bits& bits, std::size_t index, Op op) { return op(*gil_reinterpret_cast_c::type*>(&bits)); } template GIL_FORCEINLINE static typename Op::result_type apply(Bits& bits, std::size_t index, Op op) { return op(*gil_reinterpret_cast::type*>(&bits)); } }; /////////////////////////////////////////////////////// /// /// \brief Binary reduce. /// /// Given two sets of types, Types1 and Types2, first performs unary reduction on each. Then checks if the product of their sizes is above /// the GIL_BINARY_REDUCE_LIMIT limit. If so, the operation is too complex to be binary-reduced and uses a specialization of binary_reduce_impl /// to simply call the binary apply_operation_base (which performs two nested 1D apply operations) /// If the operation is not too complex, uses the other specialization of binary_reduce_impl to create a cross-product of the input types /// and performs unary reduction on the result (bin_reduced_t). To apply the binary operation, it simply invokes a unary apply_operation_base /// on the reduced cross-product types /// /////////////////////////////////////////////////////// namespace detail { struct pair_generator { template struct apply { typedef std::pair::type*, const typename mpl::at_c::type*> type; }; }; // When the types are not too large, applies reduce on their cross product template struct binary_reduce_impl { //private: typedef typename mpl::copy_to_vector::type vec1_types; typedef typename mpl::copy_to_vector::type vec2_types; typedef mpl::cross_vector, pair_generator> BIN_TYPES; typedef unary_reduce bin_reduced_t; static unsigned short inline map_index(std::size_t index1, std::size_t index2) { unsigned short r1=Unary1::map_index(index1); unsigned short r2=Unary2::map_index(index2); return bin_reduced_t::map_index(r2*mpl::size::value + r1); } public: typedef typename bin_reduced_t::unique_t unique_t; template static typename Op::result_type inline apply(const Bits1& bits1, std::size_t index1, const Bits2& bits2, std::size_t index2, Op op) { std::pair pr(&bits1, &bits2); return apply_operation_basec(pr, map_index(index1,index2),op); } }; // When the types are large performs a double-dispatch. Binary reduction is not done. template struct binary_reduce_impl { template static typename Op::result_type inline apply(const Bits1& bits1, std::size_t index1, const Bits2& bits2, std::size_t index2, Op op) { return apply_operation_base(bits1, index1, bits2, index2, op); } }; } template struct binary_reduce { //private: typedef unary_reduce unary1_t; typedef unary_reduce unary2_t; static const std::size_t CROSS_SIZE = mpl::size::value * mpl::size::value; typedef detail::binary_reduce_implGIL_BINARY_REDUCE_LIMIT)> impl; public: template static typename Op::result_type inline apply(const Bits1& bits1, std::size_t index1, const Bits2& bits2, std::size_t index2, Op op) { return impl::apply(bits1,index1,bits2,index2,op); } }; template GIL_FORCEINLINE typename UnaryOp::result_type apply_operation(variant& arg, UnaryOp op) { return unary_reduce::template apply(arg._bits, arg._index ,op); } template GIL_FORCEINLINE typename UnaryOp::result_type apply_operation(const variant& arg, UnaryOp op) { return unary_reduce::template applyc(arg._bits, arg._index ,op); } template GIL_FORCEINLINE typename BinaryOp::result_type apply_operation(const variant& arg1, const variant& arg2, BinaryOp op) { return binary_reduce::template apply(arg1._bits, arg1._index, arg2._bits, arg2._index, op); } #undef GIL_BINARY_REDUCE_LIMIT } } // namespace gil namespace boost { namespace mpl { /////////////////////////////////////////////////////// /// \brief Represents the virtual cross-product of the types generated from VecOfVecs. /// \ingroup CrossVector /// INPUT: /// VecOfVecs - a vector of vector types. For example [ [A1,A2,A3], [B1,B2], [C1,C2,C3,C4] ] /// Each element must be a non-empty mpl vector /// TypeGen - a metafunction that generates a type from a vector of types, each of which can be /// selected from the corresponding vector in VecOfVecs. For example, [A1, B2, C4] /// /// Represents the virtual cross-product of the types generated from VecOfVecs. /// For example, [ TypeGen[A1,B1,C1], TypeGen[A2,B1,C1], TypeGen[A3,B1,C1], /// TypeGen[A1,B2,C1], TypeGen[A2,B2,C1], TypeGen[A3,B2,C1], /// TypeGen[A1,B1,C2], TypeGen[A2,B1,C2], TypeGen[A3,B1,C2], ... ] /// /// Models an immutable MPL Random Access Sequence /// Traversal, random-access, etc, is defined, but mutable operations, /// such as push_back and pop_front are not supported /////////////////////////////////////////////////////// template struct cross_vector {}; /// \brief Iterator of cross_vector /// \ingroup CrossVectorIterator template struct cross_iterator { typedef mpl::random_access_iterator_tag category; }; /////////////////////////////////////////////////////// /// Implementation of the iterator functions of cross vector /////////////////////////////////////////////////////// /// \brief Dereferences a cross-vector iterator /// \ingroup CrossVectorIterator /// Creates a vector of the sizes of each type vector in VecOfVecs, then uses it as a basis /// to represent the iterator's position K as a vector of indices. Extracts the corresponding type of /// each input vector and passes the element types to the type generation function, which returns the dereferenced type template struct deref > { private: typedef typename detail::select_subvector_c::type DerefTypes; public: typedef typename TypeGen::template apply::type type; }; /// \brief Increments a cross-vector iterator. /// \ingroup CrossVectorIterator template struct next > { typedef cross_iterator type; }; /// \brief Decrements a cross-vector iterator. /// \ingroup CrossVectorIterator template struct prior > { typedef cross_iterator type; }; /// \brief Advances a cross-vector iterator. /// \ingroup CrossVectorIterator template struct advance, Distance > { typedef cross_iterator type; }; /// \brief Computes the distance between two cross-vector iterator-s. /// \ingroup CrossVectorIterator // (shortened the names of the template arguments - otherwise doxygen cannot parse this...) template struct distance, cross_iterator > { typedef size_t type; }; /////////////////////////////////////////////////////// /// Implementation of cross vector /////////////////////////////////////////////////////// /// \brief Computes the size of a cross vector as the product of the sizes of all vectors in VecOfVecs /// \ingroup CrossVector template struct size > { typedef typename fold, times<_1, size<_2> > >::type type; static const std::size_t value=type::value; }; /// \brief Determines whether a cross vector is empty /// \ingroup CrossVector template struct empty > { typedef typename empty::type type; }; /// \brief Returns the K-th element of a cross vector /// \ingroup CrossVector template struct at, K> { private: typedef cross_iterator KthIterator; public: typedef typename deref::type type; }; /// \brief Returns an iterator to the first element of a cross vector /// \ingroup CrossVector template struct begin > { typedef cross_iterator type; }; /// \brief Returns an iterator to the last element of a cross vector /// \ingroup CrossVector template struct end > { private: typedef cross_vector this_t; public: typedef cross_iterator::value> type; }; /// \brief Returns the first element of a cross vector /// \ingroup CrossVector template struct front > { private: typedef cross_vector this_t; public: typedef typename deref::type>::type type; }; /// \brief Returns the last element of a cross vector /// \ingroup CrossVector template struct back > { private: typedef cross_vector this_t; typedef typename size::type size; typedef typename minus >::type last_index; public: typedef typename at::type type; }; /// \brief Transforms the elements of a cross vector /// \ingroup CrossVector template struct transform, OPP > { typedef typename lambda::type Op; struct adapter { template struct apply { typedef typename TypeGen::template apply::type orig_t; typedef typename Op::template apply::type type; }; }; typedef cross_vector type; }; } } // boost::mpl namespace boost { namespace gil { template struct type_to_index; template struct view_is_basic; struct rgb_t; struct lab_t; struct hsb_t; struct cmyk_t; struct rgba_t; struct error_t; namespace detail { //////////////////////////////////////////////////////// //// //// Generic reduce operation //// //////////////////////////////////////////////////////// template struct reduce { typedef T type; }; //////////////////////////////////////////////////////// //// //// Unary reduce_view operation. Splits into basic and non-basic views. //// Algorithm-specific reduce should specialize for basic views //// //////////////////////////////////////////////////////// template struct reduce_view_basic { typedef View type; }; template struct reduce > : public reduce_view_basic,view_is_basic >::value> {}; //////////////////////////////////////////////////////// //// //// Unary reduce_image operation. Splits into basic and non-basic images. //// Algorithm-specific reduce should specialize for basic images //// //////////////////////////////////////////////////////// template struct reduce_image_basic { typedef Img type; }; template struct reduce > : public reduce_image_basic,image_is_basic >::value > {}; //////////////////////////////////////////////////////// //// //// Binary reduce_view operation. Splits into basic and non-basic views. //// Algorithm-specific reduce should specialize for basic views //// //////////////////////////////////////////////////////// template struct reduce_views_basic { typedef std::pair type; }; template struct reduce*, const image_view*> > : public reduce_views_basic,image_view, mpl::and_ >, view_is_basic > >::value > {}; //////////////////////////////////////////////////////// //// //// Color space unary reduce operation. Reduce a color space to a base with the same number of channels //// //////////////////////////////////////////////////////// template struct reduce_color_space { typedef Cs type; }; template <> struct reduce_color_space { typedef rgb_t type; }; template <> struct reduce_color_space { typedef rgb_t type; }; template <> struct reduce_color_space { typedef rgba_t type; }; /* //////////////////////////////////////////////////////// //// //// Color space binary reduce operation. Given a source and destination color spaces, //// returns a reduced source and destination color spaces that have the same mapping of channels //// //// Precondition: The two color spaces must be compatible (i.e. must have the same set of channels) //////////////////////////////////////////////////////// template struct type_vec_to_integer_impl { typedef typename mpl::back::type last; typedef typename mpl::pop_back::type rest; static const int value = type_vec_to_integer_impl::value * Basis + last::value; }; template struct type_vec_to_integer_impl { static const int value=0; }; template struct type_vec_to_integer { static const int value = type_vec_to_integer_impl::value>::value; }; // Given two color spaces and the mapping of the channels between them, returns the reduced pair of color spaces // The default version performs no reduction template struct reduce_color_spaces_impl { typedef SrcColorSpace first_t; typedef DstColorSpace second_t; }; // 012: RGB-RGB, bgr-bgr, lab-lab, hsb-hsb template struct reduce_color_spaces_impl { typedef rgb_t first_t; typedef rgb_t second_t; }; // 210: RGB-bgr, bgr-RGB template struct reduce_color_spaces_impl { typedef rgb_t first_t; typedef bgr_t second_t; }; // 0123: RGBA-RGBA, bgra-bgra, argb-argb, abgr-abgr cmyk-cmyk template struct reduce_color_spaces_impl { typedef rgba_t first_t; typedef rgba_t second_t; }; // 3210: RGBA-abgr, bgra-argb, argb-bgra, abgr-RGBA template struct reduce_color_spaces_impl { typedef rgba_t first_t; typedef abgr_t second_t; }; // 1230: RGBA-argb, bgra-abgr template struct reduce_color_spaces_impl { typedef rgba_t first_t; typedef argb_t second_t; }; // 2103: RGBA-bgra, bgra-RGBA (uses subclass to ensure that base color space is not reduced to derived) template struct reduce_color_spaces_impl { typedef rgba_t first_t; typedef bgra_t second_t; }; // 3012: argb-RGBA, abgr-bgra template struct reduce_color_spaces_impl { typedef argb_t first_t; typedef rgba_t second_t; }; // 0321: argb-abgr, abgr-argb template struct reduce_color_spaces_impl { typedef argb_t first_t; typedef abgr_t second_t; }; template struct reduce_color_spaces { typedef typename channel_order::type src_order_t; typedef typename channel_order::type dst_order_t; typedef typename mpl::transform >::type mapping; static const int mapping_val = type_vec_to_integer::value; typedef typename reduce_color_spaces_impl::first_t _first_t; typedef typename reduce_color_spaces_impl::second_t _second_t; typedef typename mpl::and_, mpl::not_< color_space_is_base<_second_t> > > swap_t; public: typedef typename mpl::if_::type first_t; typedef typename mpl::if_::type second_t; }; */ // TODO: Use the old code for reduce_color_spaces above to do color layout reduction template struct reduce_color_layouts { typedef SrcLayout first_t; typedef DstLayout second_t; }; //////////////////////////////////////////////////////// //// //// Reduce for copy_pixels //// //////////////////////////////////////////////////////// struct copy_pixels_fn; /* // 1D reduce for copy_pixels reduces the channel to mutable and the color space to its base with same dimensions template struct reduce_view_basic { private: typedef typename reduce_color_space::type Cs; // reduce the color space typedef layout layout_t; public: typedef typename derived_view_type::type type; }; */ // Incompatible views cannot be used in copy_pixels - will throw std::bad_cast template struct reduce_copy_pixop_compat { typedef error_t type; }; // For compatible basic views, reduce their color spaces based on their channel mapping. // Make the source immutable and the destination mutable (they should already be that way) template struct reduce_copy_pixop_compat { typedef layout layout1; typedef layout layout2; typedef typename reduce_color_layouts::first_t L1; typedef typename reduce_color_layouts::second_t L2; typedef typename derived_view_type::type DV1; typedef typename derived_view_type::type DV2; typedef std::pair type; }; // The general 2D version branches into compatible and incompatible views template struct reduce_views_basic : public reduce_copy_pixop_compat, view_is_mutable >::value > { }; //////////////////////////////////////////////////////// //// //// Reduce for variant destructor (basic views have no destructor) //// //////////////////////////////////////////////////////// struct destructor_op; template struct reduce_view_basic { typedef gray8_view_t type; }; //////////////////////////////////////////////////////// //// //// Reduce for get_dimensions (basic views and images have the same structure and the dimensions are contained at the beginning) //// //////////////////////////////////////////////////////// struct any_type_get_dimensions; template struct reduce_view_basic { typedef gray8_view_t type; }; template struct reduce_image_basic { typedef gray8_image_t type; }; //////////////////////////////////////////////////////// //// //// Reduce for get_num_channels (only color space matters) //// //////////////////////////////////////////////////////// struct any_type_get_num_channels; template struct reduce_view_basic { typedef typename View::color_space_t::base Cs; typedef typename view_type::type>::type type; }; template struct reduce_image_basic { typedef typename Img::color_space_t::base Cs; typedef typename image_type::type>::type type; }; //////////////////////////////////////////////////////// //// //// Reduce for resample_pixels (same as copy_pixels) //// //////////////////////////////////////////////////////// template struct resample_pixels_fn; template struct reduce_view_basic, V, IsBasic> : public reduce_view_basic {}; template struct reduce_views_basic, V1, V2, IsBasic> : public reduce_views_basic {}; //////////////////////////////////////////////////////// //// //// Reduce for copy_and_convert_pixels //// (the only reduction could be made when views are compatible and have the same mapping, planarity and stepness) //// //////////////////////////////////////////////////////// template class copy_and_convert_pixels_fn; // the only thing for 1D reduce is making them all mutable... template struct reduce_view_basic, View, IsBasic> : public derived_view_type { }; // For 2D reduce, if they have the same channels and color spaces (i.e. the same pixels) then copy_and_convert is just copy. // In this case, reduce their common color space. In general make the first immutable and the second mutable template struct reduce_views_basic, V1, V2, AreBasic> { typedef is_same Same; typedef reduce_color_space CsR; typedef typename mpl::if_::type Cs1; typedef typename mpl::if_::type Cs2; typedef typename derived_view_type, use_default, use_default, mpl::false_>::type DV1; typedef typename derived_view_type, use_default, use_default, mpl::true_ >::type DV2; typedef std::pair type; }; //integral_image_generator //resize_clobber_image_fnobj //image_default_construct_fnobj //fill_converted_pixels_fn //bind(gil::detail::copy_pixels_fn(), _1, dst) //bind(gil::detail::copy_pixels_fn(), src,_1) //bind(detail::copy_and_convert_pixels_fn(), _1, dst) //bind(detail::copy_and_convert_pixels_fn(), src, _1) //gil::detail::fill_pixels_fn(val) //detail::copy_construct_in_place_fn //detail::equal_to_fn::base_t> //detail::any_image_get_view::view_t> //detail::any_image_get_const_view::view_t> //detail::flipped_up_down_view_fn > //detail::flipped_left_right_view_fn::dynamic_step_t> //detail::tranposed_view_fn::dynamic_step_t> //detail::rotated90cw_view_fn::dynamic_step_t> //detail::rotated90ccw_view_fn::dynamic_step_t> //detail::rotated180_view_fn::dynamic_step_t> //detail::subimage_view_fn > //detail::subsampled_view_fn::dynamic_step_t> //detail::nth_channel_view_fn > //detail::color_converted_view_fn, DstP>::type > } } } // namespace boost::gil #endif // GIL_REDUCE_CODE_BLOAT #endif