/* Copyright 2005-2007 Adobe Systems Incorporated Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). See http://opensource.adobe.com/gil for most recent version including documentation. */ /*************************************************************************************************/ #ifndef GIL_DYNAMICIMAGE_VARIANT_HPP #define GIL_DYNAMICIMAGE_VARIANT_HPP //////////////////////////////////////////////////////////////////////////////////////// /// \file /// \brief Support for run-time instantiated types /// \author Lubomir Bourdev and Hailin Jin \n /// Adobe Systems Incorporated /// \date 2005-2007 \n Last updated on September 18, 2007 /// //////////////////////////////////////////////////////////////////////////////////////// #include "../../gil_config.hpp" #include "../../utilities.hpp" #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace gil { namespace detail { template struct type_to_index; template struct reduce; struct destructor_op { typedef void result_type; template result_type operator()(const T& t) const { t.~T(); } }; template void copy_construct_in_place(const T& t, Bits& bits); template struct copy_construct_in_place_fn; } /** \brief Represents a concrete instance of a run-time specified type from a set of types \class variant \ingroup Variant A concept is typically modeled by a collection of different types. They may be instantiations of a templated type with different template parameters or even completely unrelated types. We call the type with which the concept is instantiated in a given place in the code "the concrete type". The concrete type must be chosen at compile time, which sometimes is a severe limitation. Consider, for example, having an image concept modeled by an image class templated over the color space. It would be difficult to write a function that reads an image from file preserving its native color space, since the type of the return value is only available at run time. It would be difficult to store images of different color spaces in the same container or apply operations on them uniformly. The variant class addresses this deficiency. It allows for run-time instantiation of a class from a given set of allowed classes specified at compile time. For example, the set of allowed classes may include 8-bit and 16-bit RGB and CMYK images. Such a variant can be constructed with rgb8_image_t and then assigned a cmyk16_image_t. The variant has a templated constructor, which allows us to construct it with any concrete type instantiation. It can also perform a generic operation on the concrete type via a call to apply_operation. The operation must be provided as a function object whose application operator has a single parameter which can be instantiated with any of the allowed types of the variant. variant breaks down the instantiated type into a non-templated underlying base type and a unique instantiation type identifier. In the most common implementation the concrete instantiation in stored 'in-place' - in 'bits_t'. bits_t contains sufficient space to fit the largest of the instantiated objects. GIL's variant is similar to boost::variant in spirit (hence we borrow the name from there) but it differs in several ways from the current boost implementation. Most notably, it does not take a variable number of template parameters but a single parameter defining the type enumeration. As such it can be used more effectively in generic code. The Types parameter specifies the set of allowable types. It models MPL Random Access Container */ template // models MPL Random Access Container class variant { // size in bytes of the largest type in Types static const std::size_t MAX_SIZE = mpl::fold, mpl::max > >::type::value; static const std::size_t NUM_TYPES = mpl::size::value; public: typedef Types types_t; typedef struct { char data[MAX_SIZE]; } base_t; // empty space equal to the size of the largest type in Types // Default constructor - default construct the first type variant() : _index(0) { new(&_bits) typename mpl::at_c::type(); } virtual ~variant() { apply_operation(*this, detail::destructor_op()); } // Throws std::bad_cast if T is not in Types template explicit variant(const T& obj){ _index=type_id(); if (_index==NUM_TYPES) throw std::bad_cast(); detail::copy_construct_in_place(obj, _bits); } // When doSwap is true, swaps obj with the contents of the variant. obj will contain default-constructed instance after the call template explicit variant(T& obj, bool do_swap); template variant& operator=(const T& obj) { variant tmp(obj); swap(*this,tmp); return *this; } variant& operator=(const variant& v) { variant tmp(v ); swap(*this,tmp); return *this; } variant(const variant& v) : _index(v._index) { apply_operation(v, detail::copy_construct_in_place_fn(_bits)); } template void move_in(T& obj) { variant tmp(obj, true); swap(*this,tmp); } template friend bool operator==(const variant& x, const variant& y); template friend bool operator!=(const variant& x, const variant& y); template static bool has_type() { return type_id()!=NUM_TYPES; } template const T& _dynamic_cast() const { if (!current_type_is()) throw std::bad_cast(); return *gil_reinterpret_cast_c(&_bits); } template T& _dynamic_cast() { if (!current_type_is()) throw std::bad_cast(); return *gil_reinterpret_cast < T*>(&_bits); } template bool current_type_is() const { return type_id()==_index; } base_t bits() const { return _bits; } std::size_t index() const { return _index; } private: template static std::size_t type_id() { return detail::type_to_index::value; } template friend void swap(variant& x, variant& y); template friend typename UnaryOp::result_type apply_operation(variant& var, UnaryOp op); template friend typename UnaryOp::result_type apply_operation(const variant& var, UnaryOp op); template friend typename BinaryOp::result_type apply_operation(const variant& arg1, const variant& arg2, BinaryOp op); base_t _bits; std::size_t _index; }; namespace detail { template void copy_construct_in_place(const T& t, Bits& bits) { T& b=*gil_reinterpret_cast(&bits); new(&b)T(t); // default-construct } template struct copy_construct_in_place_fn { typedef void result_type; Bits& _dst; copy_construct_in_place_fn(Bits& dst) : _dst(dst) {} template void operator()(const T& src) const { copy_construct_in_place(src,_dst); } }; template struct equal_to_fn { const Bits& _dst; equal_to_fn(const Bits& dst) : _dst(dst) {} typedef bool result_type; template result_type operator()(const T& x) const { return x==*gil_reinterpret_cast_c(&_dst); } }; } // When doSwap is true, swaps obj with the contents of the variant. obj will contain default-constructed instance after the call template template variant::variant(T& obj, bool do_swap) { _index=type_id(); if (_index==NUM_TYPES) throw std::bad_cast(); if (do_swap) { new(&_bits) T(); // default construct swap(obj, *gil_reinterpret_cast(&_bits)); } else detail::copy_construct_in_place(const_cast(obj), _bits); } template void swap(variant& x, variant& y) { std::swap(x._bits,y._bits); std::swap(x._index, y._index); } template inline bool operator==(const variant& x, const variant& y) { return x._index==y._index && apply_operation(x,detail::equal_to_fn::base_t>(y._bits)); } template inline bool operator!=(const variant& x, const variant& y) { return !(x==y); } } } // namespace boost::gil #endif