// (C) Copyright John Maddock 2005. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED #define BOOST_MATH_COMPLEX_ATANH_INCLUDED #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED # include #endif #ifndef BOOST_MATH_LOG1P_INCLUDED # include #endif #include #ifdef BOOST_NO_STDC_NAMESPACE namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } #endif namespace boost{ namespace math{ template std::complex atanh(const std::complex& z) { // // References: // // Eric W. Weisstein. "Inverse Hyperbolic Tangent." // From MathWorld--A Wolfram Web Resource. // http://mathworld.wolfram.com/InverseHyperbolicTangent.html // // Also: The Wolfram Functions Site, // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/ // // Also "Abramowitz and Stegun. Handbook of Mathematical Functions." // at : http://jove.prohosting.com/~skripty/toc.htm // static const T half_pi = static_cast(1.57079632679489661923132169163975144L); static const T pi = static_cast(3.141592653589793238462643383279502884197L); static const T one = static_cast(1.0L); static const T two = static_cast(2.0L); static const T four = static_cast(4.0L); static const T zero = static_cast(0); static const T a_crossover = static_cast(0.3L); T x = std::fabs(z.real()); T y = std::fabs(z.imag()); T real, imag; // our results T safe_upper = detail::safe_max(two); T safe_lower = detail::safe_min(static_cast(2)); // // Begin by handling the special cases specified in C99: // if(detail::test_is_nan(x)) { if(detail::test_is_nan(y)) return std::complex(x, x); else if(std::numeric_limits::has_infinity && (y == std::numeric_limits::infinity())) return std::complex(0, ((z.imag() < 0) ? -half_pi : half_pi)); else return std::complex(x, x); } else if(detail::test_is_nan(y)) { if(x == 0) return std::complex(x, y); if(std::numeric_limits::has_infinity && (x == std::numeric_limits::infinity())) return std::complex(0, y); else return std::complex(y, y); } else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper)) { T xx = x*x; T yy = y*y; T x2 = x * two; /// // The real part is given by: // // real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x)) // // However, when x is either large (x > 1/E) or very small // (x < E) then this effectively simplifies // to log(1), leading to wildly inaccurate results. // By dividing the above (top and bottom) by (1 + x^2 + y^2) we get: // // real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2)))) // // which is much more sensitive to the value of x, when x is not near 1 // (remember we can compute log(1+x) for small x very accurately). // // The cross-over from one method to the other has to be determined // experimentally, the value used below appears correct to within a // factor of 2 (and there are larger errors from other parts // of the input domain anyway). // T alpha = two*x / (one + xx + yy); if(alpha < a_crossover) { real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); } else { T xm1 = x - one; real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy); } real /= four; if(z.real() < 0) real = -real; imag = std::atan2((y * two), (one - xx - yy)); imag /= two; if(z.imag() < 0) imag = -imag; } else { // // This section handles exception cases that would normally cause // underflow or overflow in the main formulas. // // Begin by working out the real part, we need to approximate // alpha = 2x / (1 + x^2 + y^2) // without either overflow or underflow in the squared terms. // T alpha = 0; if(x >= safe_upper) { // this is really a test for infinity, // but we may not have the necessary numeric_limits support: if((x > (std::numeric_limits::max)()) || (y > (std::numeric_limits::max)())) { alpha = 0; } else if(y >= safe_upper) { // Big x and y: divide alpha through by x*y: alpha = (two/y) / (x/y + y/x); } else if(y > one) { // Big x: divide through by x: alpha = two / (x + y*y/x); } else { // Big x small y, as above but neglect y^2/x: alpha = two/x; } } else if(y >= safe_upper) { if(x > one) { // Big y, medium x, divide through by y: alpha = (two*x/y) / (y + x*x/y); } else { // Small x and y, whatever alpha is, it's too small to calculate: alpha = 0; } } else { // one or both of x and y are small, calculate divisor carefully: T div = one; if(x > safe_lower) div += x*x; if(y > safe_lower) div += y*y; alpha = two*x/div; } if(alpha < a_crossover) { real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); } else { // We can only get here as a result of small y and medium sized x, // we can simply neglect the y^2 terms: BOOST_ASSERT(x >= safe_lower); BOOST_ASSERT(x <= safe_upper); //BOOST_ASSERT(y <= safe_lower); T xm1 = x - one; real = std::log(1 + two*x + x*x) - std::log(xm1*xm1); } real /= four; if(z.real() < 0) real = -real; // // Now handle imaginary part, this is much easier, // if x or y are large, then the formula: // atan2(2y, 1 - x^2 - y^2) // evaluates to +-(PI - theta) where theta is negligible compared to PI. // if((x >= safe_upper) || (y >= safe_upper)) { imag = pi; } else if(x <= safe_lower) { // // If both x and y are small then atan(2y), // otherwise just x^2 is negligible in the divisor: // if(y <= safe_lower) imag = std::atan2(two*y, one); else { if((y == zero) && (x == zero)) imag = 0; else imag = std::atan2(two*y, one - y*y); } } else { // // y^2 is negligible: // if((y == zero) && (x == one)) imag = 0; else imag = std::atan2(two*y, 1 - x*x); } imag /= two; if(z.imag() < 0) imag = -imag; } return std::complex(real, imag); } } } // namespaces #endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED