// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP #define BOOST_MATH_TOOLS_POLYNOMIAL_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include #include #include #include #include namespace boost{ namespace math{ namespace tools{ template T chebyshev_coefficient(unsigned n, unsigned m) { BOOST_MATH_STD_USING if(m > n) return 0; if((n & 1) != (m & 1)) return 0; if(n == 0) return 1; T result = T(n) / 2; unsigned r = n - m; r /= 2; BOOST_ASSERT(n - 2 * r == m); if(r & 1) result = -result; result /= n - r; result *= boost::math::binomial_coefficient(n - r, r); result *= ldexp(1.0f, m); return result; } template Seq polynomial_to_chebyshev(const Seq& s) { // Converts a Polynomial into Chebyshev form: typedef typename Seq::value_type value_type; typedef typename Seq::difference_type difference_type; Seq result(s); difference_type order = s.size() - 1; difference_type even_order = order & 1 ? order - 1 : order; difference_type odd_order = order & 1 ? order : order - 1; for(difference_type i = even_order; i >= 0; i -= 2) { value_type val = s[i]; for(difference_type k = even_order; k > i; k -= 2) { val -= result[k] * chebyshev_coefficient(static_cast(k), static_cast(i)); } val /= chebyshev_coefficient(static_cast(i), static_cast(i)); result[i] = val; } result[0] *= 2; for(difference_type i = odd_order; i >= 0; i -= 2) { value_type val = s[i]; for(difference_type k = odd_order; k > i; k -= 2) { val -= result[k] * chebyshev_coefficient(static_cast(k), static_cast(i)); } val /= chebyshev_coefficient(static_cast(i), static_cast(i)); result[i] = val; } return result; } template T evaluate_chebyshev(const Seq& a, const T& x) { // Clenshaw's formula: typedef typename Seq::difference_type difference_type; T yk2 = 0; T yk1 = 0; T yk = 0; for(difference_type i = a.size() - 1; i >= 1; --i) { yk2 = yk1; yk1 = yk; yk = 2 * x * yk1 - yk2 + a[i]; } return a[0] / 2 + yk * x - yk1; } template class polynomial { public: // typedefs: typedef typename std::vector::value_type value_type; typedef typename std::vector::size_type size_type; // construct: polynomial(){} template polynomial(const U* data, unsigned order) : m_data(data, data + order + 1) { } template polynomial(const U& point) { m_data.push_back(point); } // copy: polynomial(const polynomial& p) : m_data(p.m_data) { } template polynomial(const polynomial& p) { for(unsigned i = 0; i < p.size(); ++i) { m_data.push_back(boost::math::tools::real_cast(p[i])); } } // access: size_type size()const { return m_data.size(); } size_type degree()const { return m_data.size() - 1; } value_type& operator[](size_type i) { return m_data[i]; } const value_type& operator[](size_type i)const { return m_data[i]; } T evaluate(T z)const { return boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size());; } std::vector chebyshev()const { return polynomial_to_chebyshev(m_data); } // operators: template polynomial& operator +=(const U& value) { if(m_data.size() == 0) m_data.push_back(value); else { m_data[0] += value; } return *this; } template polynomial& operator -=(const U& value) { if(m_data.size() == 0) m_data.push_back(-value); else { m_data[0] -= value; } return *this; } template polynomial& operator *=(const U& value) { for(size_type i = 0; i < m_data.size(); ++i) m_data[i] *= value; return *this; } template polynomial& operator +=(const polynomial& value) { size_type s1 = (std::min)(m_data.size(), value.size()); for(size_type i = 0; i < s1; ++i) m_data[i] += value[i]; for(size_type i = s1; i < value.size(); ++i) m_data.push_back(value[i]); return *this; } template polynomial& operator -=(const polynomial& value) { size_type s1 = (std::min)(m_data.size(), value.size()); for(size_type i = 0; i < s1; ++i) m_data[i] -= value[i]; for(size_type i = s1; i < value.size(); ++i) m_data.push_back(-value[i]); return *this; } template polynomial& operator *=(const polynomial& value) { // TODO: FIXME: use O(N log(N)) algorithm!!! BOOST_ASSERT(value.size()); polynomial base(*this); *this *= value[0]; for(size_type i = 1; i < value.size(); ++i) { polynomial t(base); t *= value[i]; size_type s = size() - i; for(size_type j = 0; j < s; ++j) { m_data[i+j] += t[j]; } for(size_type j = s; j < t.size(); ++j) m_data.push_back(t[j]); } return *this; } private: std::vector m_data; }; template inline polynomial operator + (const polynomial& a, const polynomial& b) { polynomial result(a); result += b; return result; } template inline polynomial operator - (const polynomial& a, const polynomial& b) { polynomial result(a); result -= b; return result; } template inline polynomial operator * (const polynomial& a, const polynomial& b) { polynomial result(a); result *= b; return result; } template inline polynomial operator + (const polynomial& a, const U& b) { polynomial result(a); result += b; return result; } template inline polynomial operator - (const polynomial& a, const U& b) { polynomial result(a); result -= b; return result; } template inline polynomial operator * (const polynomial& a, const U& b) { polynomial result(a); result *= b; return result; } template inline polynomial operator + (const U& a, const polynomial& b) { polynomial result(b); result += a; return result; } template inline polynomial operator - (const U& a, const polynomial& b) { polynomial result(a); result -= b; return result; } template inline polynomial operator * (const U& a, const polynomial& b) { polynomial result(b); result *= a; return result; } template inline std::basic_ostream& operator << (std::basic_ostream& os, const polynomial& poly) { os << "{ "; for(unsigned i = 0; i < poly.size(); ++i) { if(i) os << ", "; os << poly[i]; } os << " }"; return os; } } // namespace tools } // namespace math } // namespace boost #endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP