/* Copyright 2008 Intel Corporation Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). */ #ifndef BOOST_POLYGON_POLYGON_45_FORMATION_HPP #define BOOST_POLYGON_POLYGON_45_FORMATION_HPP namespace boost { namespace polygon{ template struct PolyLineByConcept {}; template class PolyLine45PolygonData; template class PolyLine45HoleData; //polygon45formation algorithm template struct polygon_45_formation : public boolean_op_45 { typedef point_data Point; typedef polygon_45_data Polygon45; typedef polygon_45_with_holes_data Polygon45WithHoles; typedef typename boolean_op_45::Vertex45 Vertex45; typedef typename boolean_op_45::lessVertex45 lessVertex45; typedef typename boolean_op_45::Count2 Count2; typedef typename boolean_op_45::Scan45Count Scan45Count; typedef std::pair Scan45Vertex; typedef typename boolean_op_45::template Scan45::template boolean_op_45_output_functor<0> > Scan45; class PolyLine45 { public: typedef typename std::list::const_iterator iterator; // default constructor of point does not initialize x and y inline PolyLine45() : points() {} //do nothing default constructor // initialize a polygon from x,y values, it is assumed that the first is an x // and that the input is a well behaved polygon template inline PolyLine45& set(iT inputBegin, iT inputEnd) { points.clear(); //just in case there was some old data there while(inputBegin != inputEnd) { points.insert(points.end(), *inputBegin); ++inputBegin; } return *this; } // copy constructor (since we have dynamic memory) inline PolyLine45(const PolyLine45& that) : points(that.points) {} // assignment operator (since we have dynamic memory do a deep copy) inline PolyLine45& operator=(const PolyLine45& that) { points = that.points; return *this; } // get begin iterator, returns a pointer to a const Unit inline iterator begin() const { return points.begin(); } // get end iterator, returns a pointer to a const Unit inline iterator end() const { return points.end(); } inline std::size_t size() const { return points.size(); } //public data member std::list points; }; class ActiveTail45 { private: //data PolyLine45* tailp_; ActiveTail45 *otherTailp_; std::list holesList_; bool head_; public: /** * @brief iterator over coordinates of the figure */ typedef typename PolyLine45::iterator iterator; /** * @brief iterator over holes contained within the figure */ typedef typename std::list::const_iterator iteratorHoles; //default constructor inline ActiveTail45() : tailp_(0), otherTailp_(0), holesList_(), head_(0) {} //constructor inline ActiveTail45(const Vertex45& vertex, ActiveTail45* otherTailp = 0) : tailp_(0), otherTailp_(0), holesList_(), head_(0) { tailp_ = new PolyLine45; tailp_->points.push_back(vertex.pt); bool headArray[4] = {false, true, true, true}; bool inverted = vertex.count == -1; head_ = headArray[vertex.rise+1] ^ inverted; otherTailp_ = otherTailp; } inline ActiveTail45(Point point, ActiveTail45* otherTailp, bool head = true) : tailp_(0), otherTailp_(0), holesList_(), head_(0) { tailp_ = new PolyLine45; tailp_->points.push_back(point); head_ = head; otherTailp_ = otherTailp; } inline ActiveTail45(ActiveTail45* otherTailp) : tailp_(0), otherTailp_(0), holesList_(), head_(0) { tailp_ = otherTailp->tailp_; otherTailp_ = otherTailp; } //copy constructor inline ActiveTail45(const ActiveTail45& that) : tailp_(0), otherTailp_(0), holesList_(), head_(0) { (*this) = that; } //destructor inline ~ActiveTail45() { destroyContents(); } //assignment operator inline ActiveTail45& operator=(const ActiveTail45& that) { tailp_ = new PolyLine45(*(that.tailp_)); head_ = that.head_; otherTailp_ = that.otherTailp_; holesList_ = that.holesList_; return *this; } //equivalence operator inline bool operator==(const ActiveTail45& b) const { return tailp_ == b.tailp_ && head_ == b.head_; } /** * @brief get the pointer to the polyline that this is an active tail of */ inline PolyLine45* getTail() const { return tailp_; } /** * @brief get the pointer to the polyline at the other end of the chain */ inline PolyLine45* getOtherTail() const { return otherTailp_->tailp_; } /** * @brief get the pointer to the activetail at the other end of the chain */ inline ActiveTail45* getOtherActiveTail() const { return otherTailp_; } /** * @brief test if another active tail is the other end of the chain */ inline bool isOtherTail(const ActiveTail45& b) const { return &b == otherTailp_; } /** * @brief update this end of chain pointer to new polyline */ inline ActiveTail45& updateTail(PolyLine45* newTail) { tailp_ = newTail; return *this; } inline bool join(ActiveTail45* tail) { if(tail == otherTailp_) { //std::cout << "joining to other tail!\n"; return false; } if(tail->head_ == head_) { //std::cout << "joining head to head!\n"; return false; } if(!tailp_) { //std::cout << "joining empty tail!\n"; return false; } if(!(otherTailp_->head_)) { otherTailp_->copyHoles(*tail); otherTailp_->copyHoles(*this); } else { tail->otherTailp_->copyHoles(*this); tail->otherTailp_->copyHoles(*tail); } PolyLine45* tail1 = tailp_; PolyLine45* tail2 = tail->tailp_; if(head_) std::swap(tail1, tail2); tail1->points.splice(tail1->points.end(), tail2->points); delete tail2; otherTailp_->tailp_ = tail1; tail->otherTailp_->tailp_ = tail1; otherTailp_->otherTailp_ = tail->otherTailp_; tail->otherTailp_->otherTailp_ = otherTailp_; tailp_ = 0; tail->tailp_ = 0; tail->otherTailp_ = 0; otherTailp_ = 0; return true; } /** * @brief associate a hole to this active tail by the specified policy */ inline ActiveTail45* addHole(ActiveTail45* hole) { holesList_.push_back(hole); copyHoles(*hole); copyHoles(*(hole->otherTailp_)); return this; } /** * @brief get the list of holes */ inline const std::list& getHoles() const { return holesList_; } /** * @brief copy holes from that to this */ inline void copyHoles(ActiveTail45& that) { holesList_.splice(holesList_.end(), that.holesList_); } /** * @brief find out if solid to right */ inline bool solidToRight() const { return !head_; } inline bool solidToLeft() const { return head_; } /** * @brief get vertex */ inline Point getPoint() const { if(head_) return tailp_->points.front(); return tailp_->points.back(); } /** * @brief add a coordinate to the polygon at this active tail end, properly handle degenerate edges by removing redundant coordinate */ inline void pushPoint(Point point) { if(head_) { //if(tailp_->points.size() < 2) { // tailp_->points.push_front(point); // return; //} typename std::list::iterator iter = tailp_->points.begin(); if(iter == tailp_->points.end()) { tailp_->points.push_front(point); return; } Unit firstY = (*iter).y(); Unit firstX = (*iter).x(); ++iter; if(iter == tailp_->points.end()) { tailp_->points.push_front(point); return; } if((iter->y() == point.y() && firstY == point.y()) || (iter->x() == point.x() && firstX == point.x())){ --iter; *iter = point; } else { tailp_->points.push_front(point); } return; } //if(tailp_->points.size() < 2) { // tailp_->points.push_back(point); // return; //} typename std::list::reverse_iterator iter = tailp_->points.rbegin(); if(iter == tailp_->points.rend()) { tailp_->points.push_back(point); return; } Unit firstY = (*iter).y(); Unit firstX = (*iter).x(); ++iter; if(iter == tailp_->points.rend()) { tailp_->points.push_back(point); return; } if((iter->y() == point.y() && firstY == point.y()) || (iter->x() == point.x() && firstX == point.x())){ --iter; *iter = point; } else { tailp_->points.push_back(point); } } /** * @brief joins the two chains that the two active tail tails are ends of * checks for closure of figure and writes out polygons appropriately * returns a handle to a hole if one is closed */ template static inline ActiveTail45* joinChains(Point point, ActiveTail45* at1, ActiveTail45* at2, bool solid, cT& output) { if(at1->otherTailp_ == at2) { //if(at2->otherTailp_ != at1) std::cout << "half closed error\n"; //we are closing a figure at1->pushPoint(point); at2->pushPoint(point); if(solid) { //we are closing a solid figure, write to output //std::cout << "test1\n"; at1->copyHoles(*(at1->otherTailp_)); //std::cout << "test2\n"; //Polygon45WithHolesImpl poly(polyData); //std::cout << poly << std::endl; //std::cout << "test3\n"; typedef typename cT::value_type pType; output.push_back(pType()); typedef typename geometry_concept::type cType; typename PolyLineByConcept::type polyData(at1); assign(output.back(), polyData); //std::cout << "test4\n"; //std::cout << "delete " << at1->otherTailp_ << std::endl; //at1->print(); //at1->otherTailp_->print(); delete at1->otherTailp_; //at1->print(); //at1->otherTailp_->print(); //std::cout << "test5\n"; //std::cout << "delete " << at1 << std::endl; delete at1; //std::cout << "test6\n"; return 0; } else { //we are closing a hole, return the tail end active tail of the figure return at1; } } //we are not closing a figure at1->pushPoint(point); at1->join(at2); delete at1; delete at2; return 0; } inline void destroyContents() { if(otherTailp_) { //std::cout << "delete p " << tailp_ << std::endl; if(tailp_) delete tailp_; tailp_ = 0; otherTailp_->otherTailp_ = 0; otherTailp_->tailp_ = 0; otherTailp_ = 0; } for(typename std::list::iterator itr = holesList_.begin(); itr != holesList_.end(); ++itr) { //std::cout << "delete p " << (*itr) << std::endl; if(*itr) { if((*itr)->otherTailp_) { delete (*itr)->otherTailp_; (*itr)->otherTailp_ = 0; } delete (*itr); } (*itr) = 0; } holesList_.clear(); } // inline void print() { // std::cout << this << " " << tailp_ << " " << otherTailp_ << " " << holesList_.size() << " " << head_ << std::endl; // } static inline std::pair createActiveTail45sAsPair(Point point, bool solid, ActiveTail45* phole, bool fractureHoles) { ActiveTail45* at1 = 0; ActiveTail45* at2 = 0; if(phole && fractureHoles) { //std::cout << "adding hole\n"; at1 = phole; //assert solid == false, we should be creating a corner with solid below and to the left if there was a hole at2 = at1->getOtherActiveTail(); at2->pushPoint(point); at1->pushPoint(point); } else { at1 = new ActiveTail45(point, at2, solid); at2 = new ActiveTail45(at1); at1->otherTailp_ = at2; at2->head_ = !solid; if(phole) at2->addHole(phole); //assert fractureHoles == false } return std::pair(at1, at2); } }; template class Vertex45CountT { public: typedef ct count_type; inline Vertex45CountT() #ifndef BOOST_POLYGON_MSVC : counts() #endif { counts[0] = counts[1] = counts[2] = counts[3] = 0; } //inline Vertex45CountT(ct count) { counts[0] = counts[1] = counts[2] = counts[3] = count; } inline Vertex45CountT(const ct& count1, const ct& count2, const ct& count3, const ct& count4) #ifndef BOOST_POLYGON_MSVC : counts() #endif { counts[0] = count1; counts[1] = count2; counts[2] = count3; counts[3] = count4; } inline Vertex45CountT(const Vertex45& vertex) #ifndef BOOST_POLYGON_MSVC : counts() #endif { counts[0] = counts[1] = counts[2] = counts[3] = 0; (*this) += vertex; } inline Vertex45CountT(const Vertex45CountT& count) #ifndef BOOST_POLYGON_MSVC : counts() #endif { (*this) = count; } inline bool operator==(const Vertex45CountT& count) const { for(unsigned int i = 0; i < 4; ++i) { if(counts[i] != count.counts[i]) return false; } return true; } inline bool operator!=(const Vertex45CountT& count) const { return !((*this) == count); } inline Vertex45CountT& operator=(ct count) { counts[0] = counts[1] = counts[2] = counts[3] = count; return *this; } inline Vertex45CountT& operator=(const Vertex45CountT& count) { for(unsigned int i = 0; i < 4; ++i) { counts[i] = count.counts[i]; } return *this; } inline ct& operator[](int index) { return counts[index]; } inline ct operator[](int index) const {return counts[index]; } inline Vertex45CountT& operator+=(const Vertex45CountT& count){ for(unsigned int i = 0; i < 4; ++i) { counts[i] += count.counts[i]; } return *this; } inline Vertex45CountT& operator-=(const Vertex45CountT& count){ for(unsigned int i = 0; i < 4; ++i) { counts[i] -= count.counts[i]; } return *this; } inline Vertex45CountT operator+(const Vertex45CountT& count) const { return Vertex45CountT(*this)+=count; } inline Vertex45CountT operator-(const Vertex45CountT& count) const { return Vertex45CountT(*this)-=count; } inline Vertex45CountT invert() const { return Vertex45CountT()-=(*this); } inline Vertex45CountT& operator+=(const Vertex45& element){ counts[element.rise+1] += element.count; return *this; } inline bool is_45() const { return counts[0] != 0 || counts[2] != 0; } private: ct counts[4]; }; typedef Vertex45CountT Vertex45Count; // inline std::ostream& operator<< (std::ostream& o, const Vertex45Count& c) { // o << c[0] << ", " << c[1] << ", "; // o << c[2] << ", " << c[3]; // return o; // } template class Vertex45CompactT { public: Point pt; ct count; typedef typename boolean_op_45::template Vertex45T Vertex45T; inline Vertex45CompactT() : pt(), count() {} inline Vertex45CompactT(const Point& point, int riseIn, int countIn) : pt(point), count() { count[riseIn+1] = countIn; } template inline Vertex45CompactT(const typename boolean_op_45::template Vertex45T& vertex) : pt(vertex.pt), count() { count[vertex.rise+1] = vertex.count; } inline Vertex45CompactT(const Vertex45CompactT& vertex) : pt(vertex.pt), count(vertex.count) {} inline Vertex45CompactT& operator=(const Vertex45CompactT& vertex){ pt = vertex.pt; count = vertex.count; return *this; } inline bool operator==(const Vertex45CompactT& vertex) const { return pt == vertex.pt && count == vertex.count; } inline bool operator!=(const Vertex45CompactT& vertex) const { return !((*this) == vertex); } inline bool operator==(const std::pair& vertex) const { return false; } inline bool operator!=(const std::pair& vertex) const { return !((*this) == vertex); } inline bool operator<(const Vertex45CompactT& vertex) const { if(pt.x() < vertex.pt.x()) return true; if(pt.x() == vertex.pt.x()) { return pt.y() < vertex.pt.y(); } return false; } inline bool operator>(const Vertex45CompactT& vertex) const { return vertex < (*this); } inline bool operator<=(const Vertex45CompactT& vertex) const { return !((*this) > vertex); } inline bool operator>=(const Vertex45CompactT& vertex) const { return !((*this) < vertex); } inline bool haveVertex45(int index) const { return count[index]; } inline Vertex45T operator[](int index) const { return Vertex45T(pt, index-1, count[index]); } }; typedef Vertex45CompactT Vertex45Compact; // inline std::ostream& operator<< (std::ostream& o, const Vertex45Compact& c) { // o << c.pt << ", " << c.count; // return o; // } class Polygon45Formation { private: //definitions typedef std::map Polygon45FormationData; typedef typename Polygon45FormationData::iterator iterator; typedef typename Polygon45FormationData::const_iterator const_iterator; //data Polygon45FormationData scanData_; Unit x_; int justBefore_; int fractureHoles_; public: inline Polygon45Formation() : scanData_(), x_((std::numeric_limits::min)()), justBefore_(false), fractureHoles_(0) { lessVertex45 lessElm(&x_, &justBefore_); scanData_ = Polygon45FormationData(lessElm); } inline Polygon45Formation(bool fractureHoles) : scanData_(), x_((std::numeric_limits::min)()), justBefore_(false), fractureHoles_(fractureHoles) { lessVertex45 lessElm(&x_, &justBefore_); scanData_ = Polygon45FormationData(lessElm); } inline Polygon45Formation(const Polygon45Formation& that) : scanData_(), x_((std::numeric_limits::min)()), justBefore_(false), fractureHoles_(0) { (*this) = that; } inline Polygon45Formation& operator=(const Polygon45Formation& that) { x_ = that.x_; justBefore_ = that.justBefore_; fractureHoles_ = that.fractureHoles_; lessVertex45 lessElm(&x_, &justBefore_); scanData_ = Polygon45FormationData(lessElm); for(const_iterator itr = that.scanData_.begin(); itr != that.scanData_.end(); ++itr){ scanData_.insert(scanData_.end(), *itr); } return *this; } //cT is an output container of Polygon45 or Polygon45WithHoles //iT is an iterator over Vertex45 elements //inputBegin - inputEnd is a range of sorted iT that represents //one or more scanline stops worth of data template void scan(cT& output, iT inputBegin, iT inputEnd) { //std::cout << "1\n"; while(inputBegin != inputEnd) { //std::cout << "2\n"; x_ = (*inputBegin).pt.x(); //std::cout << "SCAN FORMATION " << x_ << std::endl; //std::cout << "x_ = " << x_ << std::endl; //std::cout << "scan line size: " << scanData_.size() << std::endl; inputBegin = processEvent_(output, inputBegin, inputEnd); } } private: //functions template inline std::pair processPoint_(cT& output, cT2& elements, Point point, Vertex45Count& counts, ActiveTail45** tails, Vertex45Count& incoming) { //std::cout << point << std::endl; //std::cout << counts[0] << " "; //std::cout << counts[1] << " "; //std::cout << counts[2] << " "; //std::cout << counts[3] << "\n"; //std::cout << incoming[0] << " "; //std::cout << incoming[1] << " "; //std::cout << incoming[2] << " "; //std::cout << incoming[3] << "\n"; //join any closing solid corners ActiveTail45* returnValue = 0; int returnCount = 0; for(int i = 0; i < 3; ++i) { //std::cout << i << std::endl; if(counts[i] == -1) { //std::cout << "fixed i\n"; for(int j = i + 1; j < 4; ++j) { //std::cout << j << std::endl; if(counts[j]) { if(counts[j] == 1) { //std::cout << "case1: " << i << " " << j << std::endl; //if a figure is closed it will be written out by this function to output ActiveTail45::joinChains(point, tails[i], tails[j], true, output); counts[i] = 0; counts[j] = 0; tails[i] = 0; tails[j] = 0; } break; } } } } //find any pairs of incoming edges that need to create pair for leading solid //std::cout << "checking case2\n"; for(int i = 0; i < 3; ++i) { //std::cout << i << std::endl; if(incoming[i] == 1) { //std::cout << "fixed i\n"; for(int j = i + 1; j < 4; ++j) { //std::cout << j << std::endl; if(incoming[j]) { if(incoming[j] == -1) { //std::cout << "case2: " << i << " " << j << std::endl; //std::cout << "creating active tail pair\n"; std::pair tailPair = ActiveTail45::createActiveTail45sAsPair(point, true, 0, fractureHoles_ != 0); //tailPair.first->print(); //tailPair.second->print(); if(j == 3) { //vertical active tail becomes return value returnValue = tailPair.first; returnCount = 1; } else { Vertex45 vertex(point, i -1, incoming[i]); //std::cout << "new element " << j-1 << " " << -1 << std::endl; elements.push_back(std::pair(Vertex45(point, j -1, -1), tailPair.first)); } //std::cout << "new element " << i-1 << " " << 1 << std::endl; elements.push_back(std::pair(Vertex45(point, i -1, 1), tailPair.second)); incoming[i] = 0; incoming[j] = 0; } break; } } } } //find any active tail that needs to pass through to an incoming edge //we expect to find no more than two pass through //find pass through with solid on top //std::cout << "checking case 3\n"; for(int i = 0; i < 4; ++i) { //std::cout << i << std::endl; if(counts[i] != 0) { if(counts[i] == 1) { //std::cout << "fixed i\n"; for(int j = 3; j >= 0; --j) { if(incoming[j] != 0) { if(incoming[j] == 1) { //std::cout << "case3: " << i << " " << j << std::endl; //tails[i]->print(); //pass through solid on top tails[i]->pushPoint(point); //std::cout << "after push\n"; if(j == 3) { returnValue = tails[i]; returnCount = -1; } else { elements.push_back(std::pair(Vertex45(point, j -1, incoming[j]), tails[i])); } tails[i] = 0; counts[i] = 0; incoming[j] = 0; } break; } } } break; } } //std::cout << "checking case 4\n"; //find pass through with solid on bottom for(int i = 3; i >= 0; --i) { if(counts[i] != 0) { if(counts[i] == -1) { for(int j = 0; j < 4; ++j) { if(incoming[j] != 0) { if(incoming[j] == -1) { //std::cout << "case4: " << i << " " << j << std::endl; //pass through solid on bottom tails[i]->pushPoint(point); if(j == 3) { returnValue = tails[i]; returnCount = 1; } else { //std::cout << "new element " << j-1 << " " << incoming[j] << std::endl; elements.push_back(std::pair(Vertex45(point, j -1, incoming[j]), tails[i])); } tails[i] = 0; counts[i] = 0; incoming[j] = 0; } break; } } } break; } } //find the end of a hole or the beginning of a hole //find end of a hole for(int i = 0; i < 3; ++i) { if(counts[i] != 0) { for(int j = i+1; j < 4; ++j) { if(counts[j] != 0) { //std::cout << "case5: " << i << " " << j << std::endl; //we are ending a hole and may potentially close a figure and have to handle the hole returnValue = ActiveTail45::joinChains(point, tails[i], tails[j], false, output); tails[i] = 0; tails[j] = 0; counts[i] = 0; counts[j] = 0; break; } } break; } } //find beginning of a hole for(int i = 0; i < 3; ++i) { if(incoming[i] != 0) { for(int j = i+1; j < 4; ++j) { if(incoming[j] != 0) { //std::cout << "case6: " << i << " " << j << std::endl; //we are beginning a empty space ActiveTail45* holep = 0; if(counts[3] == 0) holep = tails[3]; std::pair tailPair = ActiveTail45::createActiveTail45sAsPair(point, false, holep, fractureHoles_ != 0); if(j == 3) { returnValue = tailPair.first; returnCount = -1; } else { //std::cout << "new element " << j-1 << " " << incoming[j] << std::endl; elements.push_back(std::pair(Vertex45(point, j -1, incoming[j]), tailPair.first)); } //std::cout << "new element " << i-1 << " " << incoming[i] << std::endl; elements.push_back(std::pair(Vertex45(point, i -1, incoming[i]), tailPair.second)); incoming[i] = 0; incoming[j] = 0; break; } } break; } } //assert that tails, counts and incoming are all null return std::pair(returnCount, returnValue); } template inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) { //std::cout << "processEvent_\n"; justBefore_ = true; //collect up all elements from the tree that are at the y //values of events in the input queue //create vector of new elements to add into tree ActiveTail45* verticalTail = 0; int verticalCount = 0; iT currentIter = inputBegin; std::vector elementIters; std::vector > elements; while(currentIter != inputEnd && currentIter->pt.x() == x_) { //std::cout << "loop\n"; Unit currentY = (*currentIter).pt.y(); iterator iter = lookUp_(currentY); //int counts[4] = {0, 0, 0, 0}; Vertex45Count counts; ActiveTail45* tails[4] = {0, 0, 0, verticalTail}; //std::cout << "finding elements in tree\n"; while(iter != scanData_.end() && iter->first.evalAtX(x_) == currentY) { //std::cout << "loop2\n"; elementIters.push_back(iter); int index = iter->first.rise + 1; //std::cout << index << " " << iter->first.count << std::endl; counts[index] = iter->first.count; tails[index] = iter->second; ++iter; } //int incoming[4] = {0, 0, 0, 0}; Vertex45Count incoming; //std::cout << "aggregating\n"; do { //std::cout << "loop3\n"; Vertex45Compact currentVertex(*currentIter); incoming += currentVertex.count; ++currentIter; } while(currentIter != inputEnd && currentIter->pt.y() == currentY && currentIter->pt.x() == x_); //now counts and tails have the data from the left and //incoming has the data from the right at this point //cancel out any end points //std::cout << counts[0] << " "; //std::cout << counts[1] << " "; //std::cout << counts[2] << " "; //std::cout << counts[3] << "\n"; //std::cout << incoming[0] << " "; //std::cout << incoming[1] << " "; //std::cout << incoming[2] << " "; //std::cout << incoming[3] << "\n"; if(verticalTail) { counts[3] = -verticalCount; } incoming[3] *= -1; for(unsigned int i = 0; i < 4; ++i) incoming[i] += counts[i]; //std::cout << "calling processPoint_\n"; std::pair result = processPoint_(output, elements, Point(x_, currentY), counts, tails, incoming); verticalCount = result.first; verticalTail = result.second; //if(verticalTail) std::cout << "have vertical tail\n"; //std::cout << "verticalCount: " << verticalCount << std::endl; if(verticalTail && !verticalCount) { //we got a hole out of the point we just processed //iter is still at the next y element above the current y value in the tree //std::cout << "checking whether ot handle hole\n"; if(currentIter == inputEnd || currentIter->pt.x() != x_ || currentIter->pt.y() >= iter->first.evalAtX(x_)) { //std::cout << "handle hole here\n"; if(fractureHoles_) { //std::cout << "fracture hole here\n"; //we need to handle the hole now and not at the next input vertex ActiveTail45* at = iter->second; Point point(x_, iter->first.evalAtX(x_)); verticalTail->getOtherActiveTail()->pushPoint(point); iter->second = verticalTail->getOtherActiveTail(); at->pushPoint(point); verticalTail->join(at); delete at; delete verticalTail; verticalTail = 0; } else { //std::cout << "push hole onto list\n"; iter->second->addHole(verticalTail); verticalTail = 0; } } } } //std::cout << "erasing\n"; //erase all elements from the tree for(typename std::vector::iterator iter = elementIters.begin(); iter != elementIters.end(); ++iter) { //std::cout << "erasing loop\n"; scanData_.erase(*iter); } //switch comparison tie breaking policy justBefore_ = false; //add new elements into tree //std::cout << "inserting\n"; for(typename std::vector >::iterator iter = elements.begin(); iter != elements.end(); ++iter) { //std::cout << "inserting loop\n"; scanData_.insert(scanData_.end(), *iter); } //std::cout << "end processEvent\n"; return currentIter; } inline iterator lookUp_(Unit y){ //if just before then we need to look from 1 not -1 return scanData_.lower_bound(Vertex45(Point(x_, y), -1+2*justBefore_, 0)); } }; template static inline bool testPolygon45FormationRect(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(true); std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 0, -1)); data.push_back(Vertex45(Point(10, 0), 0, -1)); data.push_back(Vertex45(Point(10, 0), 2, -1)); data.push_back(Vertex45(Point(10, 10), 2, 1)); data.push_back(Vertex45(Point(10, 10), 0, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } template static inline bool testPolygon45FormationP1(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(true); std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 1, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 1, -1)); data.push_back(Vertex45(Point(10, 10), 1, -1)); data.push_back(Vertex45(Point(10, 10), 2, -1)); data.push_back(Vertex45(Point(10, 20), 2, 1)); data.push_back(Vertex45(Point(10, 20), 1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } //polygon45set class template static inline bool testPolygon45FormationP2(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(true); std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 1, -1)); data.push_back(Vertex45(Point(10, 0), 0, -1)); data.push_back(Vertex45(Point(10, 0), 1, 1)); data.push_back(Vertex45(Point(10, 10), 1, 1)); data.push_back(Vertex45(Point(10, 10), 0, -1)); data.push_back(Vertex45(Point(20, 10), 1, -1)); data.push_back(Vertex45(Point(20, 10), 0, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } //polygon45set class template static inline bool testPolygon45FormationStar1(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(true); std::vector polys; std::vector data; // result == 0 8 -1 1 data.push_back(Vertex45(Point(0, 8), -1, 1)); // result == 0 8 1 -1 data.push_back(Vertex45(Point(0, 8), 1, -1)); // result == 4 0 1 1 data.push_back(Vertex45(Point(4, 0), 1, 1)); // result == 4 0 2 1 data.push_back(Vertex45(Point(4, 0), 2, 1)); // result == 4 4 2 -1 data.push_back(Vertex45(Point(4, 4), 2, -1)); // result == 4 4 -1 -1 data.push_back(Vertex45(Point(4, 4), -1, -1)); // result == 4 12 1 1 data.push_back(Vertex45(Point(4, 12), 1, 1)); // result == 4 12 2 1 data.push_back(Vertex45(Point(4, 12), 2, 1)); // result == 4 16 2 -1 data.push_back(Vertex45(Point(4, 16), 2, 1)); // result == 4 16 -1 -1 data.push_back(Vertex45(Point(4, 16), -1, -1)); // result == 6 2 1 -1 data.push_back(Vertex45(Point(6, 2), 1, -1)); // result == 6 14 -1 1 data.push_back(Vertex45(Point(6, 14), -1, 1)); // result == 6 2 -1 1 data.push_back(Vertex45(Point(6, 2), -1, 1)); // result == 6 14 1 -1 data.push_back(Vertex45(Point(6, 14), 1, -1)); // result == 8 0 -1 -1 data.push_back(Vertex45(Point(8, 0), -1, -1)); // result == 8 0 2 -1 data.push_back(Vertex45(Point(8, 0), 2, -1)); // result == 8 4 2 1 data.push_back(Vertex45(Point(8, 4), 2, 1)); // result == 8 4 1 1 data.push_back(Vertex45(Point(8, 4), 1, 1)); // result == 8 12 -1 -1 data.push_back(Vertex45(Point(8, 12), -1, -1)); // result == 8 12 2 -1 data.push_back(Vertex45(Point(8, 12), 2, -1)); // result == 8 16 2 1 data.push_back(Vertex45(Point(8, 16), 2, 1)); // result == 8 16 1 1 data.push_back(Vertex45(Point(8, 16), 1, 1)); // result == 12 8 1 -1 data.push_back(Vertex45(Point(12, 8), 1, -1)); // result == 12 8 -1 1 data.push_back(Vertex45(Point(12, 8), -1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } template static inline bool testPolygon45FormationStar2(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(true); std::vector polys; Scan45 scan45; std::vector result; std::vector vertices; //is a Rectnagle(0, 0, 10, 10); Count2 count(1, 0); Count2 ncount(-1, 0); vertices.push_back(Scan45Vertex(Point(0,4), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(16,4), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(8,12), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0)))); count = Count2(0, 1); ncount = count.invert(); vertices.push_back(Scan45Vertex(Point(0,8), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(16,8), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(8,0), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0)))); sortScan45Vector(vertices); stdcout << "scanning\n"; scan45.scan(result, vertices.begin(), vertices.end()); std::sort(result.begin(), result.end()); pf.scan(polys, result.begin(), result.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } template static inline bool testPolygon45FormationStarHole1(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(true); std::vector polys; std::vector data; // result == 0 8 -1 1 data.push_back(Vertex45(Point(0, 8), -1, 1)); // result == 0 8 1 -1 data.push_back(Vertex45(Point(0, 8), 1, -1)); // result == 4 0 1 1 data.push_back(Vertex45(Point(4, 0), 1, 1)); // result == 4 0 2 1 data.push_back(Vertex45(Point(4, 0), 2, 1)); // result == 4 4 2 -1 data.push_back(Vertex45(Point(4, 4), 2, -1)); // result == 4 4 -1 -1 data.push_back(Vertex45(Point(4, 4), -1, -1)); // result == 4 12 1 1 data.push_back(Vertex45(Point(4, 12), 1, 1)); // result == 4 12 2 1 data.push_back(Vertex45(Point(4, 12), 2, 1)); // result == 4 16 2 -1 data.push_back(Vertex45(Point(4, 16), 2, 1)); // result == 4 16 -1 -1 data.push_back(Vertex45(Point(4, 16), -1, -1)); // result == 6 2 1 -1 data.push_back(Vertex45(Point(6, 2), 1, -1)); // result == 6 14 -1 1 data.push_back(Vertex45(Point(6, 14), -1, 1)); // result == 6 2 -1 1 data.push_back(Vertex45(Point(6, 2), -1, 1)); // result == 6 14 1 -1 data.push_back(Vertex45(Point(6, 14), 1, -1)); // result == 8 0 -1 -1 data.push_back(Vertex45(Point(8, 0), -1, -1)); // result == 8 0 2 -1 data.push_back(Vertex45(Point(8, 0), 2, -1)); // result == 8 4 2 1 data.push_back(Vertex45(Point(8, 4), 2, 1)); // result == 8 4 1 1 data.push_back(Vertex45(Point(8, 4), 1, 1)); // result == 8 12 -1 -1 data.push_back(Vertex45(Point(8, 12), -1, -1)); // result == 8 12 2 -1 data.push_back(Vertex45(Point(8, 12), 2, -1)); // result == 8 16 2 1 data.push_back(Vertex45(Point(8, 16), 2, 1)); // result == 8 16 1 1 data.push_back(Vertex45(Point(8, 16), 1, 1)); // result == 12 8 1 -1 data.push_back(Vertex45(Point(12, 8), 1, -1)); // result == 12 8 -1 1 data.push_back(Vertex45(Point(12, 8), -1, 1)); data.push_back(Vertex45(Point(6, 4), 1, -1)); data.push_back(Vertex45(Point(6, 4), 2, -1)); data.push_back(Vertex45(Point(6, 8), -1, 1)); data.push_back(Vertex45(Point(6, 8), 2, 1)); data.push_back(Vertex45(Point(8, 6), -1, -1)); data.push_back(Vertex45(Point(8, 6), 1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } template static inline bool testPolygon45FormationStarHole2(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(false); std::vector polys; std::vector data; // result == 0 8 -1 1 data.push_back(Vertex45(Point(0, 8), -1, 1)); // result == 0 8 1 -1 data.push_back(Vertex45(Point(0, 8), 1, -1)); // result == 4 0 1 1 data.push_back(Vertex45(Point(4, 0), 1, 1)); // result == 4 0 2 1 data.push_back(Vertex45(Point(4, 0), 2, 1)); // result == 4 4 2 -1 data.push_back(Vertex45(Point(4, 4), 2, -1)); // result == 4 4 -1 -1 data.push_back(Vertex45(Point(4, 4), -1, -1)); // result == 4 12 1 1 data.push_back(Vertex45(Point(4, 12), 1, 1)); // result == 4 12 2 1 data.push_back(Vertex45(Point(4, 12), 2, 1)); // result == 4 16 2 -1 data.push_back(Vertex45(Point(4, 16), 2, 1)); // result == 4 16 -1 -1 data.push_back(Vertex45(Point(4, 16), -1, -1)); // result == 6 2 1 -1 data.push_back(Vertex45(Point(6, 2), 1, -1)); // result == 6 14 -1 1 data.push_back(Vertex45(Point(6, 14), -1, 1)); // result == 6 2 -1 1 data.push_back(Vertex45(Point(6, 2), -1, 1)); // result == 6 14 1 -1 data.push_back(Vertex45(Point(6, 14), 1, -1)); // result == 8 0 -1 -1 data.push_back(Vertex45(Point(8, 0), -1, -1)); // result == 8 0 2 -1 data.push_back(Vertex45(Point(8, 0), 2, -1)); // result == 8 4 2 1 data.push_back(Vertex45(Point(8, 4), 2, 1)); // result == 8 4 1 1 data.push_back(Vertex45(Point(8, 4), 1, 1)); // result == 8 12 -1 -1 data.push_back(Vertex45(Point(8, 12), -1, -1)); // result == 8 12 2 -1 data.push_back(Vertex45(Point(8, 12), 2, -1)); // result == 8 16 2 1 data.push_back(Vertex45(Point(8, 16), 2, 1)); // result == 8 16 1 1 data.push_back(Vertex45(Point(8, 16), 1, 1)); // result == 12 8 1 -1 data.push_back(Vertex45(Point(12, 8), 1, -1)); // result == 12 8 -1 1 data.push_back(Vertex45(Point(12, 8), -1, 1)); data.push_back(Vertex45(Point(6, 4), 1, -1)); data.push_back(Vertex45(Point(6, 4), 2, -1)); data.push_back(Vertex45(Point(6, 12), -1, 1)); data.push_back(Vertex45(Point(6, 12), 2, 1)); data.push_back(Vertex45(Point(10, 8), -1, -1)); data.push_back(Vertex45(Point(10, 8), 1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } template static inline bool testPolygon45Formation(stream_type& stdcout) { stdcout << "testing polygon formation\n"; Polygon45Formation pf(false); std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 100), 2, -1)); data.push_back(Vertex45(Point(0, 100), 0, -1)); data.push_back(Vertex45(Point(100, 0), 0, -1)); data.push_back(Vertex45(Point(100, 0), 2, -1)); data.push_back(Vertex45(Point(100, 100), 2, 1)); data.push_back(Vertex45(Point(100, 100), 0, 1)); data.push_back(Vertex45(Point(2, 2), 0, -1)); data.push_back(Vertex45(Point(2, 2), 2, -1)); data.push_back(Vertex45(Point(2, 10), 2, 1)); data.push_back(Vertex45(Point(2, 10), 0, 1)); data.push_back(Vertex45(Point(10, 2), 0, 1)); data.push_back(Vertex45(Point(10, 2), 2, 1)); data.push_back(Vertex45(Point(10, 10), 2, -1)); data.push_back(Vertex45(Point(10, 10), 0, -1)); data.push_back(Vertex45(Point(2, 12), 0, -1)); data.push_back(Vertex45(Point(2, 12), 2, -1)); data.push_back(Vertex45(Point(2, 22), 2, 1)); data.push_back(Vertex45(Point(2, 22), 0, 1)); data.push_back(Vertex45(Point(10, 12), 0, 1)); data.push_back(Vertex45(Point(10, 12), 2, 1)); data.push_back(Vertex45(Point(10, 22), 2, -1)); data.push_back(Vertex45(Point(10, 22), 0, -1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon formation\n"; return true; } class Polygon45Tiling { private: //definitions typedef std::map Polygon45FormationData; typedef typename Polygon45FormationData::iterator iterator; typedef typename Polygon45FormationData::const_iterator const_iterator; //data Polygon45FormationData scanData_; Unit x_; int justBefore_; public: inline Polygon45Tiling() : scanData_(), x_((std::numeric_limits::min)()), justBefore_(false) { lessVertex45 lessElm(&x_, &justBefore_); scanData_ = Polygon45FormationData(lessElm); } inline Polygon45Tiling(const Polygon45Tiling& that) : scanData_(), x_((std::numeric_limits::min)()), justBefore_(false) { (*this) = that; } inline Polygon45Tiling& operator=(const Polygon45Tiling& that) { x_ = that.x_; justBefore_ = that.justBefore_; lessVertex45 lessElm(&x_, &justBefore_); scanData_ = Polygon45FormationData(lessElm); for(const_iterator itr = that.scanData_.begin(); itr != that.scanData_.end(); ++itr){ scanData_.insert(scanData_.end(), *itr); } return *this; } //cT is an output container of Polygon45 or Polygon45WithHoles //iT is an iterator over Vertex45 elements //inputBegin - inputEnd is a range of sorted iT that represents //one or more scanline stops worth of data template void scan(cT& output, iT inputBegin, iT inputEnd) { //std::cout << "1\n"; while(inputBegin != inputEnd) { //std::cout << "2\n"; x_ = (*inputBegin).pt.x(); //std::cout << "SCAN FORMATION " << x_ << std::endl; //std::cout << "x_ = " << x_ << std::endl; //std::cout << "scan line size: " << scanData_.size() << std::endl; inputBegin = processEvent_(output, inputBegin, inputEnd); } } private: //functions inline void getVerticalPair_(std::pair& verticalPair, iterator previter) { ActiveTail45* iterTail = (*previter).second; Point prevPoint(x_, previter->first.evalAtX(x_)); iterTail->pushPoint(prevPoint); std::pair tailPair = ActiveTail45::createActiveTail45sAsPair(prevPoint, true, 0, false); verticalPair.first = iterTail; verticalPair.second = tailPair.first; (*previter).second = tailPair.second; } template inline std::pair processPoint_(cT& output, cT2& elements, std::pair& verticalPair, iterator previter, Point point, Vertex45Count& counts, ActiveTail45** tails, Vertex45Count& incoming) { //std::cout << point << std::endl; //std::cout << counts[0] << " "; //std::cout << counts[1] << " "; //std::cout << counts[2] << " "; //std::cout << counts[3] << "\n"; //std::cout << incoming[0] << " "; //std::cout << incoming[1] << " "; //std::cout << incoming[2] << " "; //std::cout << incoming[3] << "\n"; //join any closing solid corners ActiveTail45* returnValue = 0; std::pair verticalPairOut; verticalPairOut.first = 0; verticalPairOut.second = 0; int returnCount = 0; for(int i = 0; i < 3; ++i) { //std::cout << i << std::endl; if(counts[i] == -1) { //std::cout << "fixed i\n"; for(int j = i + 1; j < 4; ++j) { //std::cout << j << std::endl; if(counts[j]) { if(counts[j] == 1) { //std::cout << "case1: " << i << " " << j << std::endl; //if a figure is closed it will be written out by this function to output ActiveTail45::joinChains(point, tails[i], tails[j], true, output); counts[i] = 0; counts[j] = 0; tails[i] = 0; tails[j] = 0; } break; } } } } //find any pairs of incoming edges that need to create pair for leading solid //std::cout << "checking case2\n"; for(int i = 0; i < 3; ++i) { //std::cout << i << std::endl; if(incoming[i] == 1) { //std::cout << "fixed i\n"; for(int j = i + 1; j < 4; ++j) { //std::cout << j << std::endl; if(incoming[j]) { if(incoming[j] == -1) { //std::cout << "case2: " << i << " " << j << std::endl; //std::cout << "creating active tail pair\n"; std::pair tailPair = ActiveTail45::createActiveTail45sAsPair(point, true, 0, false); //tailPair.first->print(); //tailPair.second->print(); if(j == 3) { //vertical active tail becomes return value returnValue = tailPair.first; returnCount = 1; } else { Vertex45 vertex(point, i -1, incoming[i]); //std::cout << "new element " << j-1 << " " << -1 << std::endl; elements.push_back(std::pair(Vertex45(point, j -1, -1), tailPair.first)); } //std::cout << "new element " << i-1 << " " << 1 << std::endl; elements.push_back(std::pair(Vertex45(point, i -1, 1), tailPair.second)); incoming[i] = 0; incoming[j] = 0; } break; } } } } //find any active tail that needs to pass through to an incoming edge //we expect to find no more than two pass through //find pass through with solid on top //std::cout << "checking case 3\n"; for(int i = 0; i < 4; ++i) { //std::cout << i << std::endl; if(counts[i] != 0) { if(counts[i] == 1) { //std::cout << "fixed i\n"; for(int j = 3; j >= 0; --j) { if(incoming[j] != 0) { if(incoming[j] == 1) { //std::cout << "case3: " << i << " " << j << std::endl; //tails[i]->print(); //pass through solid on top if(i != 3) tails[i]->pushPoint(point); //std::cout << "after push\n"; if(j == 3) { returnValue = tails[i]; returnCount = -1; } else { verticalPairOut.first = tails[i]; std::pair tailPair = ActiveTail45::createActiveTail45sAsPair(point, true, 0, false); verticalPairOut.second = tailPair.first; elements.push_back(std::pair(Vertex45(point, j -1, incoming[j]), tailPair.second)); } tails[i] = 0; counts[i] = 0; incoming[j] = 0; } break; } } } break; } } //std::cout << "checking case 4\n"; //find pass through with solid on bottom for(int i = 3; i >= 0; --i) { if(counts[i] != 0) { if(counts[i] == -1) { for(int j = 0; j < 4; ++j) { if(incoming[j] != 0) { if(incoming[j] == -1) { //std::cout << "case4: " << i << " " << j << std::endl; //pass through solid on bottom if(i == 3) { //std::cout << "new element " << j-1 << " " << incoming[j] << std::endl; if(j == 3) { returnValue = tails[i]; returnCount = 1; } else { tails[i]->pushPoint(point); elements.push_back(std::pair(Vertex45(point, j -1, incoming[j]), tails[i])); } } else if(j == 3) { if(verticalPair.first == 0) { getVerticalPair_(verticalPair, previter); } ActiveTail45::joinChains(point, tails[i], verticalPair.first, true, output); returnValue = verticalPair.second; returnCount = 1; } else { if(verticalPair.first == 0) { getVerticalPair_(verticalPair, previter); } ActiveTail45::joinChains(point, tails[i], verticalPair.first, true, output); verticalPair.second->pushPoint(point); elements.push_back(std::pair(Vertex45(point, j -1, incoming[j]), verticalPair.second)); } tails[i] = 0; counts[i] = 0; incoming[j] = 0; } break; } } } break; } } //find the end of a hole or the beginning of a hole //find end of a hole for(int i = 0; i < 3; ++i) { if(counts[i] != 0) { for(int j = i+1; j < 4; ++j) { if(counts[j] != 0) { //std::cout << "case5: " << i << " " << j << std::endl; //we are ending a hole and may potentially close a figure and have to handle the hole tails[i]->pushPoint(point); verticalPairOut.first = tails[i]; if(j == 3) { verticalPairOut.second = tails[j]; } else { if(verticalPair.first == 0) { getVerticalPair_(verticalPair, previter); } ActiveTail45::joinChains(point, tails[j], verticalPair.first, true, output); verticalPairOut.second = verticalPair.second; } tails[i] = 0; tails[j] = 0; counts[i] = 0; counts[j] = 0; break; } } break; } } //find beginning of a hole for(int i = 0; i < 3; ++i) { if(incoming[i] != 0) { for(int j = i+1; j < 4; ++j) { if(incoming[j] != 0) { //std::cout << "case6: " << i << " " << j << std::endl; //we are beginning a empty space if(verticalPair.first == 0) { getVerticalPair_(verticalPair, previter); } verticalPair.second->pushPoint(point); if(j == 3) { returnValue = verticalPair.first; returnCount = -1; } else { std::pair tailPair = ActiveTail45::createActiveTail45sAsPair(point, true, 0, false); //std::cout << "new element " << j-1 << " " << incoming[j] << std::endl; elements.push_back(std::pair(Vertex45(point, j -1, incoming[j]), tailPair.second)); verticalPairOut.second = tailPair.first; verticalPairOut.first = verticalPair.first; } //std::cout << "new element " << i-1 << " " << incoming[i] << std::endl; elements.push_back(std::pair(Vertex45(point, i -1, incoming[i]), verticalPair.second)); incoming[i] = 0; incoming[j] = 0; break; } } break; } } verticalPair = verticalPairOut; //assert that verticalPair is either both null, or neither null //assert that returnValue is null if verticalPair is not null //assert that tails, counts and incoming are all null return std::pair(returnCount, returnValue); } template inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) { //std::cout << "processEvent_\n"; justBefore_ = true; //collect up all elements from the tree that are at the y //values of events in the input queue //create vector of new elements to add into tree ActiveTail45* verticalTail = 0; std::pair verticalPair; verticalPair.first = 0; verticalPair.second = 0; int verticalCount = 0; iT currentIter = inputBegin; std::vector elementIters; std::vector > elements; while(currentIter != inputEnd && currentIter->pt.x() == x_) { //std::cout << "loop\n"; Unit currentY = (*currentIter).pt.y(); iterator iter = lookUp_(currentY); //int counts[4] = {0, 0, 0, 0}; Vertex45Count counts; ActiveTail45* tails[4] = {0, 0, 0, verticalTail}; //std::cout << "finding elements in tree\n"; iterator previter = iter; if(previter != scanData_.end() && previter->first.evalAtX(x_) >= currentY && previter != scanData_.begin()) --previter; while(iter != scanData_.end() && iter->first.evalAtX(x_) == currentY) { //std::cout << "loop2\n"; elementIters.push_back(iter); int index = iter->first.rise + 1; //std::cout << index << " " << iter->first.count << std::endl; counts[index] = iter->first.count; tails[index] = iter->second; ++iter; } //int incoming[4] = {0, 0, 0, 0}; Vertex45Count incoming; //std::cout << "aggregating\n"; do { //std::cout << "loop3\n"; Vertex45Compact currentVertex(*currentIter); incoming += currentVertex.count; ++currentIter; } while(currentIter != inputEnd && currentIter->pt.y() == currentY && currentIter->pt.x() == x_); //now counts and tails have the data from the left and //incoming has the data from the right at this point //cancel out any end points //std::cout << counts[0] << " "; //std::cout << counts[1] << " "; //std::cout << counts[2] << " "; //std::cout << counts[3] << "\n"; //std::cout << incoming[0] << " "; //std::cout << incoming[1] << " "; //std::cout << incoming[2] << " "; //std::cout << incoming[3] << "\n"; if(verticalTail) { counts[3] = -verticalCount; } incoming[3] *= -1; for(unsigned int i = 0; i < 4; ++i) incoming[i] += counts[i]; //std::cout << "calling processPoint_\n"; std::pair result = processPoint_(output, elements, verticalPair, previter, Point(x_, currentY), counts, tails, incoming); verticalCount = result.first; verticalTail = result.second; if(verticalPair.first != 0 && iter != scanData_.end() && (currentIter == inputEnd || currentIter->pt.x() != x_ || currentIter->pt.y() > (*iter).first.evalAtX(x_))) { //splice vertical pair into edge above ActiveTail45* tailabove = (*iter).second; Point point(x_, (*iter).first.evalAtX(x_)); verticalPair.second->pushPoint(point); ActiveTail45::joinChains(point, tailabove, verticalPair.first, true, output); (*iter).second = verticalPair.second; verticalPair.first = 0; verticalPair.second = 0; } } //std::cout << "erasing\n"; //erase all elements from the tree for(typename std::vector::iterator iter = elementIters.begin(); iter != elementIters.end(); ++iter) { //std::cout << "erasing loop\n"; scanData_.erase(*iter); } //switch comparison tie breaking policy justBefore_ = false; //add new elements into tree //std::cout << "inserting\n"; for(typename std::vector >::iterator iter = elements.begin(); iter != elements.end(); ++iter) { //std::cout << "inserting loop\n"; scanData_.insert(scanData_.end(), *iter); } //std::cout << "end processEvent\n"; return currentIter; } inline iterator lookUp_(Unit y){ //if just before then we need to look from 1 not -1 return scanData_.lower_bound(Vertex45(Point(x_, y), -1+2*justBefore_, 0)); } }; template static inline bool testPolygon45TilingRect(stream_type& stdcout) { stdcout << "testing polygon tiling\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 0, -1)); data.push_back(Vertex45(Point(10, 0), 0, -1)); data.push_back(Vertex45(Point(10, 0), 2, -1)); data.push_back(Vertex45(Point(10, 10), 2, 1)); data.push_back(Vertex45(Point(10, 10), 0, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingP1(stream_type& stdcout) { stdcout << "testing polygon tiling\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 1, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 1, -1)); data.push_back(Vertex45(Point(10, 10), 1, -1)); data.push_back(Vertex45(Point(10, 10), 2, -1)); data.push_back(Vertex45(Point(10, 20), 2, 1)); data.push_back(Vertex45(Point(10, 20), 1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingP2(stream_type& stdcout) { stdcout << "testing polygon tiling\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 1, -1)); data.push_back(Vertex45(Point(10, 0), 0, -1)); data.push_back(Vertex45(Point(10, 0), 1, 1)); data.push_back(Vertex45(Point(10, 10), 1, 1)); data.push_back(Vertex45(Point(10, 10), 0, -1)); data.push_back(Vertex45(Point(20, 10), 1, -1)); data.push_back(Vertex45(Point(20, 10), 0, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingP3(stream_type& stdcout) { stdcout << "testing polygon tiling\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 0, -1)); data.push_back(Vertex45(Point(20, 0), 0, -1)); data.push_back(Vertex45(Point(20, 0), 2, -1)); data.push_back(Vertex45(Point(10, 10), 1, -1)); data.push_back(Vertex45(Point(10, 10), 0, 1)); data.push_back(Vertex45(Point(20, 20), 1, 1)); data.push_back(Vertex45(Point(20, 20), 2, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingP4(stream_type& stdcout) { stdcout << "testing polygon tiling p4\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 0, -1)); data.push_back(Vertex45(Point(10, 0), -1, 1)); data.push_back(Vertex45(Point(10, 0), 0, -1)); data.push_back(Vertex45(Point(20, 10), 2, 1)); data.push_back(Vertex45(Point(20, 10), 0, 1)); data.push_back(Vertex45(Point(20, -10), -1, -1)); data.push_back(Vertex45(Point(20, -10), 2, -1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingP5(stream_type& stdcout) { stdcout << "testing polygon tiling P5\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 0, -1)); data.push_back(Vertex45(Point(10, 0), 0, -1)); data.push_back(Vertex45(Point(10, 0), 2, -1)); data.push_back(Vertex45(Point(10, 10), 2, 1)); data.push_back(Vertex45(Point(10, 10), 0, 1)); data.push_back(Vertex45(Point(1, 1), 0, -1)); data.push_back(Vertex45(Point(1, 1), 1, 1)); data.push_back(Vertex45(Point(2, 1), 0, 1)); data.push_back(Vertex45(Point(2, 1), 1, -1)); data.push_back(Vertex45(Point(2, 2), 1, -1)); data.push_back(Vertex45(Point(2, 2), 0, 1)); data.push_back(Vertex45(Point(3, 2), 1, 1)); data.push_back(Vertex45(Point(3, 2), 0, -1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingP6(stream_type& stdcout) { stdcout << "testing polygon tiling P6\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 10), 2, -1)); data.push_back(Vertex45(Point(0, 10), 0, -1)); data.push_back(Vertex45(Point(10, 0), 0, -1)); data.push_back(Vertex45(Point(10, 0), 2, -1)); data.push_back(Vertex45(Point(10, 10), 2, 1)); data.push_back(Vertex45(Point(10, 10), 0, 1)); data.push_back(Vertex45(Point(1, 1), 0, -1)); data.push_back(Vertex45(Point(1, 1), 2, -1)); data.push_back(Vertex45(Point(1, 2), 2, 1)); data.push_back(Vertex45(Point(1, 2), 0, 1)); data.push_back(Vertex45(Point(2, 1), 0, 1)); data.push_back(Vertex45(Point(2, 1), 2, 1)); data.push_back(Vertex45(Point(2, 2), 2, -1)); data.push_back(Vertex45(Point(2, 2), 0, -1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingStar1(stream_type& stdcout) { stdcout << "testing polygon tiling star1\n"; Polygon45Tiling pf; std::vector polys; std::vector data; // result == 0 8 -1 1 data.push_back(Vertex45(Point(0, 8), -1, 1)); // result == 0 8 1 -1 data.push_back(Vertex45(Point(0, 8), 1, -1)); // result == 4 0 1 1 data.push_back(Vertex45(Point(4, 0), 1, 1)); // result == 4 0 2 1 data.push_back(Vertex45(Point(4, 0), 2, 1)); // result == 4 4 2 -1 data.push_back(Vertex45(Point(4, 4), 2, -1)); // result == 4 4 -1 -1 data.push_back(Vertex45(Point(4, 4), -1, -1)); // result == 4 12 1 1 data.push_back(Vertex45(Point(4, 12), 1, 1)); // result == 4 12 2 1 data.push_back(Vertex45(Point(4, 12), 2, 1)); // result == 4 16 2 -1 data.push_back(Vertex45(Point(4, 16), 2, 1)); // result == 4 16 -1 -1 data.push_back(Vertex45(Point(4, 16), -1, -1)); // result == 6 2 1 -1 data.push_back(Vertex45(Point(6, 2), 1, -1)); // result == 6 14 -1 1 data.push_back(Vertex45(Point(6, 14), -1, 1)); // result == 6 2 -1 1 data.push_back(Vertex45(Point(6, 2), -1, 1)); // result == 6 14 1 -1 data.push_back(Vertex45(Point(6, 14), 1, -1)); // result == 8 0 -1 -1 data.push_back(Vertex45(Point(8, 0), -1, -1)); // result == 8 0 2 -1 data.push_back(Vertex45(Point(8, 0), 2, -1)); // result == 8 4 2 1 data.push_back(Vertex45(Point(8, 4), 2, 1)); // result == 8 4 1 1 data.push_back(Vertex45(Point(8, 4), 1, 1)); // result == 8 12 -1 -1 data.push_back(Vertex45(Point(8, 12), -1, -1)); // result == 8 12 2 -1 data.push_back(Vertex45(Point(8, 12), 2, -1)); // result == 8 16 2 1 data.push_back(Vertex45(Point(8, 16), 2, 1)); // result == 8 16 1 1 data.push_back(Vertex45(Point(8, 16), 1, 1)); // result == 12 8 1 -1 data.push_back(Vertex45(Point(12, 8), 1, -1)); // result == 12 8 -1 1 data.push_back(Vertex45(Point(12, 8), -1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingStar2(stream_type& stdcout) { stdcout << "testing polygon tiling\n"; Polygon45Tiling pf; std::vector polys; Scan45 scan45; std::vector result; std::vector vertices; //is a Rectnagle(0, 0, 10, 10); Count2 count(1, 0); Count2 ncount(-1, 0); vertices.push_back(Scan45Vertex(Point(0,4), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(16,4), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(8,12), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0)))); count = Count2(0, 1); ncount = count.invert(); vertices.push_back(Scan45Vertex(Point(0,8), Scan45Count(count, ncount, Count2(0, 0), Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(16,8), Scan45Count(Count2(0, 0), count, ncount, Count2(0, 0)))); vertices.push_back(Scan45Vertex(Point(8,0), Scan45Count(ncount, Count2(0, 0), count, Count2(0, 0)))); sortScan45Vector(vertices); stdcout << "scanning\n"; scan45.scan(result, vertices.begin(), vertices.end()); std::sort(result.begin(), result.end()); pf.scan(polys, result.begin(), result.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingStarHole1(stream_type& stdcout) { stdcout << "testing polygon tiling star hole 1\n"; Polygon45Tiling pf; std::vector polys; std::vector data; // result == 0 8 -1 1 data.push_back(Vertex45(Point(0, 8), -1, 1)); // result == 0 8 1 -1 data.push_back(Vertex45(Point(0, 8), 1, -1)); // result == 4 0 1 1 data.push_back(Vertex45(Point(4, 0), 1, 1)); // result == 4 0 2 1 data.push_back(Vertex45(Point(4, 0), 2, 1)); // result == 4 4 2 -1 data.push_back(Vertex45(Point(4, 4), 2, -1)); // result == 4 4 -1 -1 data.push_back(Vertex45(Point(4, 4), -1, -1)); // result == 4 12 1 1 data.push_back(Vertex45(Point(4, 12), 1, 1)); // result == 4 12 2 1 data.push_back(Vertex45(Point(4, 12), 2, 1)); // result == 4 16 2 -1 data.push_back(Vertex45(Point(4, 16), 2, 1)); // result == 4 16 -1 -1 data.push_back(Vertex45(Point(4, 16), -1, -1)); // result == 6 2 1 -1 data.push_back(Vertex45(Point(6, 2), 1, -1)); // result == 6 14 -1 1 data.push_back(Vertex45(Point(6, 14), -1, 1)); // result == 6 2 -1 1 data.push_back(Vertex45(Point(6, 2), -1, 1)); // result == 6 14 1 -1 data.push_back(Vertex45(Point(6, 14), 1, -1)); // result == 8 0 -1 -1 data.push_back(Vertex45(Point(8, 0), -1, -1)); // result == 8 0 2 -1 data.push_back(Vertex45(Point(8, 0), 2, -1)); // result == 8 4 2 1 data.push_back(Vertex45(Point(8, 4), 2, 1)); // result == 8 4 1 1 data.push_back(Vertex45(Point(8, 4), 1, 1)); // result == 8 12 -1 -1 data.push_back(Vertex45(Point(8, 12), -1, -1)); // result == 8 12 2 -1 data.push_back(Vertex45(Point(8, 12), 2, -1)); // result == 8 16 2 1 data.push_back(Vertex45(Point(8, 16), 2, 1)); // result == 8 16 1 1 data.push_back(Vertex45(Point(8, 16), 1, 1)); // result == 12 8 1 -1 data.push_back(Vertex45(Point(12, 8), 1, -1)); // result == 12 8 -1 1 data.push_back(Vertex45(Point(12, 8), -1, 1)); data.push_back(Vertex45(Point(6, 4), 1, -1)); data.push_back(Vertex45(Point(6, 4), 2, -1)); data.push_back(Vertex45(Point(6, 8), -1, 1)); data.push_back(Vertex45(Point(6, 8), 2, 1)); data.push_back(Vertex45(Point(8, 6), -1, -1)); data.push_back(Vertex45(Point(8, 6), 1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45TilingStarHole2(stream_type& stdcout) { stdcout << "testing polygon tiling star hole 2\n"; Polygon45Tiling pf; std::vector polys; std::vector data; // result == 0 8 -1 1 data.push_back(Vertex45(Point(0, 8), -1, 1)); // result == 0 8 1 -1 data.push_back(Vertex45(Point(0, 8), 1, -1)); // result == 4 0 1 1 data.push_back(Vertex45(Point(4, 0), 1, 1)); // result == 4 0 2 1 data.push_back(Vertex45(Point(4, 0), 2, 1)); // result == 4 4 2 -1 data.push_back(Vertex45(Point(4, 4), 2, -1)); // result == 4 4 -1 -1 data.push_back(Vertex45(Point(4, 4), -1, -1)); // result == 4 12 1 1 data.push_back(Vertex45(Point(4, 12), 1, 1)); // result == 4 12 2 1 data.push_back(Vertex45(Point(4, 12), 2, 1)); // result == 4 16 2 -1 data.push_back(Vertex45(Point(4, 16), 2, 1)); // result == 4 16 -1 -1 data.push_back(Vertex45(Point(4, 16), -1, -1)); // result == 6 2 1 -1 data.push_back(Vertex45(Point(6, 2), 1, -1)); // result == 6 14 -1 1 data.push_back(Vertex45(Point(6, 14), -1, 1)); // result == 6 2 -1 1 data.push_back(Vertex45(Point(6, 2), -1, 1)); // result == 6 14 1 -1 data.push_back(Vertex45(Point(6, 14), 1, -1)); // result == 8 0 -1 -1 data.push_back(Vertex45(Point(8, 0), -1, -1)); // result == 8 0 2 -1 data.push_back(Vertex45(Point(8, 0), 2, -1)); // result == 8 4 2 1 data.push_back(Vertex45(Point(8, 4), 2, 1)); // result == 8 4 1 1 data.push_back(Vertex45(Point(8, 4), 1, 1)); // result == 8 12 -1 -1 data.push_back(Vertex45(Point(8, 12), -1, -1)); // result == 8 12 2 -1 data.push_back(Vertex45(Point(8, 12), 2, -1)); // result == 8 16 2 1 data.push_back(Vertex45(Point(8, 16), 2, 1)); // result == 8 16 1 1 data.push_back(Vertex45(Point(8, 16), 1, 1)); // result == 12 8 1 -1 data.push_back(Vertex45(Point(12, 8), 1, -1)); // result == 12 8 -1 1 data.push_back(Vertex45(Point(12, 8), -1, 1)); data.push_back(Vertex45(Point(6, 4), 1, -1)); data.push_back(Vertex45(Point(6, 4), 2, -1)); data.push_back(Vertex45(Point(6, 12), -1, 1)); data.push_back(Vertex45(Point(6, 12), 2, 1)); data.push_back(Vertex45(Point(10, 8), -1, -1)); data.push_back(Vertex45(Point(10, 8), 1, 1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } template static inline bool testPolygon45Tiling(stream_type& stdcout) { stdcout << "testing polygon tiling\n"; Polygon45Tiling pf; std::vector polys; std::vector data; data.push_back(Vertex45(Point(0, 0), 0, 1)); data.push_back(Vertex45(Point(0, 0), 2, 1)); data.push_back(Vertex45(Point(0, 100), 2, -1)); data.push_back(Vertex45(Point(0, 100), 0, -1)); data.push_back(Vertex45(Point(100, 0), 0, -1)); data.push_back(Vertex45(Point(100, 0), 2, -1)); data.push_back(Vertex45(Point(100, 100), 2, 1)); data.push_back(Vertex45(Point(100, 100), 0, 1)); data.push_back(Vertex45(Point(2, 2), 0, -1)); data.push_back(Vertex45(Point(2, 2), 2, -1)); data.push_back(Vertex45(Point(2, 10), 2, 1)); data.push_back(Vertex45(Point(2, 10), 0, 1)); data.push_back(Vertex45(Point(10, 2), 0, 1)); data.push_back(Vertex45(Point(10, 2), 2, 1)); data.push_back(Vertex45(Point(10, 10), 2, -1)); data.push_back(Vertex45(Point(10, 10), 0, -1)); data.push_back(Vertex45(Point(2, 12), 0, -1)); data.push_back(Vertex45(Point(2, 12), 2, -1)); data.push_back(Vertex45(Point(2, 22), 2, 1)); data.push_back(Vertex45(Point(2, 22), 0, 1)); data.push_back(Vertex45(Point(10, 12), 0, 1)); data.push_back(Vertex45(Point(10, 12), 2, 1)); data.push_back(Vertex45(Point(10, 22), 2, -1)); data.push_back(Vertex45(Point(10, 22), 0, -1)); std::sort(data.begin(), data.end()); pf.scan(polys, data.begin(), data.end()); stdcout << "result size: " << polys.size() << std::endl; for(std::size_t i = 0; i < polys.size(); ++i) { stdcout << polys[i] << std::endl; } stdcout << "done testing polygon tiling\n"; return true; } }; template class PolyLine45HoleData { public: typedef typename polygon_45_formation::ActiveTail45 ActiveTail45; typedef typename ActiveTail45::iterator iterator; typedef polygon_45_concept geometry_type; typedef Unit coordinate_type; typedef point_data Point; typedef Point point_type; // typedef iterator_points_to_compact compact_iterator_type; typedef iterator iterator_type; typedef typename coordinate_traits::area_type area_type; inline PolyLine45HoleData() : p_(0) {} inline PolyLine45HoleData(ActiveTail45* p) : p_(p) {} //use default copy and assign inline iterator begin() const { return p_->getTail()->begin(); } inline iterator end() const { return p_->getTail()->end(); } inline std::size_t size() const { return 0; } template inline PolyLine45HoleData& set(iT inputBegin, iT inputEnd) { return *this; } private: ActiveTail45* p_; }; template class PolyLine45PolygonData { public: typedef typename polygon_45_formation::ActiveTail45 ActiveTail45; typedef typename ActiveTail45::iterator iterator; typedef PolyLine45HoleData holeType; typedef polygon_45_with_holes_concept geometry_type; typedef Unit coordinate_type; typedef point_data Point; typedef Point point_type; // typedef iterator_points_to_compact compact_iterator_type; typedef iterator iterator_type; typedef holeType hole_type; typedef typename coordinate_traits::area_type area_type; class iteratorHoles { private: typename ActiveTail45::iteratorHoles itr_; public: typedef PolyLine45HoleData holeType; typedef holeType value_type; typedef std::forward_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; typedef const value_type* pointer; //immutable typedef const value_type& reference; //immutable inline iteratorHoles() : itr_() {} inline iteratorHoles(typename ActiveTail45::iteratorHoles itr) : itr_(itr) {} inline iteratorHoles(const iteratorHoles& that) : itr_(that.itr_) {} inline iteratorHoles& operator=(const iteratorHoles& that) { itr_ = that.itr_; return *this; } inline bool operator==(const iteratorHoles& that) { return itr_ == that.itr_; } inline bool operator!=(const iteratorHoles& that) { return itr_ != that.itr_; } inline iteratorHoles& operator++() { ++itr_; return *this; } inline const iteratorHoles operator++(int) { iteratorHoles tmp = *this; ++(*this); return tmp; } inline holeType operator*() { return *itr_; } }; typedef iteratorHoles iterator_holes_type; inline PolyLine45PolygonData() : p_(0) {} inline PolyLine45PolygonData(ActiveTail45* p) : p_(p) {} //use default copy and assign inline iterator begin() const { return p_->getTail()->begin(); } inline iterator end() const { return p_->getTail()->end(); } inline iteratorHoles begin_holes() const { return iteratorHoles(p_->getHoles().begin()); } inline iteratorHoles end_holes() const { return iteratorHoles(p_->getHoles().end()); } inline ActiveTail45* yield() { return p_; } //stub out these four required functions that will not be used but are needed for the interface inline std::size_t size_holes() const { return 0; } inline std::size_t size() const { return 0; } template inline PolyLine45PolygonData& set(iT inputBegin, iT inputEnd) { return *this; } // initialize a polygon from x,y values, it is assumed that the first is an x // and that the input is a well behaved polygon template inline PolyLine45PolygonData& set_holes(iT inputBegin, iT inputEnd) { return *this; } private: ActiveTail45* p_; }; template struct PolyLineByConcept { typedef PolyLine45PolygonData type; }; template struct PolyLineByConcept { typedef PolyLine45PolygonData type; }; template struct PolyLineByConcept { typedef PolyLine45HoleData type; }; template struct PolyLineByConcept { typedef PolyLine45HoleData type; }; template struct geometry_concept > { typedef polygon_45_with_holes_concept type; }; template struct geometry_concept > { typedef polygon_45_concept type; }; } } #endif