from __future__ import division, print_function, absolute_import from itertools import groupby from warnings import warn import numpy as np from scipy.sparse import find, coo_matrix EPS = np.finfo(float).eps def validate_first_step(first_step, t0, t_bound): """Assert that first_step is valid and return it.""" if first_step <= 0: raise ValueError("`first_step` must be positive.") if first_step > np.abs(t_bound - t0): raise ValueError("`first_step` exceeds bounds.") return first_step def validate_max_step(max_step): """Assert that max_Step is valid and return it.""" if max_step <= 0: raise ValueError("`max_step` must be positive.") return max_step def warn_extraneous(extraneous): """Display a warning for extraneous keyword arguments. The initializer of each solver class is expected to collect keyword arguments that it doesn't understand and warn about them. This function prints a warning for each key in the supplied dictionary. Parameters ---------- extraneous : dict Extraneous keyword arguments """ if extraneous: warn("The following arguments have no effect for a chosen solver: {}." .format(", ".join("`{}`".format(x) for x in extraneous))) def validate_tol(rtol, atol, n): """Validate tolerance values.""" if rtol < 100 * EPS: warn("`rtol` is too low, setting to {}".format(100 * EPS)) rtol = 100 * EPS atol = np.asarray(atol) if atol.ndim > 0 and atol.shape != (n,): raise ValueError("`atol` has wrong shape.") if np.any(atol < 0): raise ValueError("`atol` must be positive.") return rtol, atol def norm(x): """Compute RMS norm.""" return np.linalg.norm(x) / x.size ** 0.5 def select_initial_step(fun, t0, y0, f0, direction, order, rtol, atol): """Empirically select a good initial step. The algorithm is described in [1]_. Parameters ---------- fun : callable Right-hand side of the system. t0 : float Initial value of the independent variable. y0 : ndarray, shape (n,) Initial value of the dependent variable. f0 : ndarray, shape (n,) Initial value of the derivative, i. e. ``fun(t0, y0)``. direction : float Integration direction. order : float Error estimator order. It means that the error controlled by the algorithm is proportional to ``step_size ** (order + 1)`. rtol : float Desired relative tolerance. atol : float Desired absolute tolerance. Returns ------- h_abs : float Absolute value of the suggested initial step. References ---------- .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential Equations I: Nonstiff Problems", Sec. II.4. """ if y0.size == 0: return np.inf scale = atol + np.abs(y0) * rtol d0 = norm(y0 / scale) d1 = norm(f0 / scale) if d0 < 1e-5 or d1 < 1e-5: h0 = 1e-6 else: h0 = 0.01 * d0 / d1 y1 = y0 + h0 * direction * f0 f1 = fun(t0 + h0 * direction, y1) d2 = norm((f1 - f0) / scale) / h0 if d1 <= 1e-15 and d2 <= 1e-15: h1 = max(1e-6, h0 * 1e-3) else: h1 = (0.01 / max(d1, d2)) ** (1 / (order + 1)) return min(100 * h0, h1) class OdeSolution(object): """Continuous ODE solution. It is organized as a collection of `DenseOutput` objects which represent local interpolants. It provides an algorithm to select a right interpolant for each given point. The interpolants cover the range between `t_min` and `t_max` (see Attributes below). Evaluation outside this interval is not forbidden, but the accuracy is not guaranteed. When evaluating at a breakpoint (one of the values in `ts`) a segment with the lower index is selected. Parameters ---------- ts : array_like, shape (n_segments + 1,) Time instants between which local interpolants are defined. Must be strictly increasing or decreasing (zero segment with two points is also allowed). interpolants : list of DenseOutput with n_segments elements Local interpolants. An i-th interpolant is assumed to be defined between ``ts[i]`` and ``ts[i + 1]``. Attributes ---------- t_min, t_max : float Time range of the interpolation. """ def __init__(self, ts, interpolants): ts = np.asarray(ts) d = np.diff(ts) # The first case covers integration on zero segment. if not ((ts.size == 2 and ts[0] == ts[-1]) or np.all(d > 0) or np.all(d < 0)): raise ValueError("`ts` must be strictly increasing or decreasing.") self.n_segments = len(interpolants) if ts.shape != (self.n_segments + 1,): raise ValueError("Numbers of time stamps and interpolants " "don't match.") self.ts = ts self.interpolants = interpolants if ts[-1] >= ts[0]: self.t_min = ts[0] self.t_max = ts[-1] self.ascending = True self.ts_sorted = ts else: self.t_min = ts[-1] self.t_max = ts[0] self.ascending = False self.ts_sorted = ts[::-1] def _call_single(self, t): # Here we preserve a certain symmetry that when t is in self.ts, # then we prioritize a segment with a lower index. if self.ascending: ind = np.searchsorted(self.ts_sorted, t, side='left') else: ind = np.searchsorted(self.ts_sorted, t, side='right') segment = min(max(ind - 1, 0), self.n_segments - 1) if not self.ascending: segment = self.n_segments - 1 - segment return self.interpolants[segment](t) def __call__(self, t): """Evaluate the solution. Parameters ---------- t : float or array_like with shape (n_points,) Points to evaluate at. Returns ------- y : ndarray, shape (n_states,) or (n_states, n_points) Computed values. Shape depends on whether `t` is a scalar or a 1-d array. """ t = np.asarray(t) if t.ndim == 0: return self._call_single(t) order = np.argsort(t) reverse = np.empty_like(order) reverse[order] = np.arange(order.shape[0]) t_sorted = t[order] # See comment in self._call_single. if self.ascending: segments = np.searchsorted(self.ts_sorted, t_sorted, side='left') else: segments = np.searchsorted(self.ts_sorted, t_sorted, side='right') segments -= 1 segments[segments < 0] = 0 segments[segments > self.n_segments - 1] = self.n_segments - 1 if not self.ascending: segments = self.n_segments - 1 - segments ys = [] group_start = 0 for segment, group in groupby(segments): group_end = group_start + len(list(group)) y = self.interpolants[segment](t_sorted[group_start:group_end]) ys.append(y) group_start = group_end ys = np.hstack(ys) ys = ys[:, reverse] return ys NUM_JAC_DIFF_REJECT = EPS ** 0.875 NUM_JAC_DIFF_SMALL = EPS ** 0.75 NUM_JAC_DIFF_BIG = EPS ** 0.25 NUM_JAC_MIN_FACTOR = 1e3 * EPS NUM_JAC_FACTOR_INCREASE = 10 NUM_JAC_FACTOR_DECREASE = 0.1 def num_jac(fun, t, y, f, threshold, factor, sparsity=None): """Finite differences Jacobian approximation tailored for ODE solvers. This function computes finite difference approximation to the Jacobian matrix of `fun` with respect to `y` using forward differences. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to ``d f_i / d y_j``. A special feature of this function is the ability to correct the step size from iteration to iteration. The main idea is to keep the finite difference significantly separated from its round-off error which approximately equals ``EPS * np.abs(f)``. It reduces a possibility of a huge error and assures that the estimated derivative are reasonably close to the true values (i.e. the finite difference approximation is at least qualitatively reflects the structure of the true Jacobian). Parameters ---------- fun : callable Right-hand side of the system implemented in a vectorized fashion. t : float Current time. y : ndarray, shape (n,) Current state. f : ndarray, shape (n,) Value of the right hand side at (t, y). threshold : float Threshold for `y` value used for computing the step size as ``factor * np.maximum(np.abs(y), threshold)``. Typically the value of absolute tolerance (atol) for a solver should be passed as `threshold`. factor : ndarray with shape (n,) or None Factor to use for computing the step size. Pass None for the very evaluation, then use the value returned from this function. sparsity : tuple (structure, groups) or None Sparsity structure of the Jacobian, `structure` must be csc_matrix. Returns ------- J : ndarray or csc_matrix, shape (n, n) Jacobian matrix. factor : ndarray, shape (n,) Suggested `factor` for the next evaluation. """ y = np.asarray(y) n = y.shape[0] if n == 0: return np.empty((0, 0)), factor if factor is None: factor = np.full(n, EPS ** 0.5) else: factor = factor.copy() # Direct the step as ODE dictates, hoping that such a step won't lead to # a problematic region. For complex ODEs it makes sense to use the real # part of f as we use steps along real axis. f_sign = 2 * (np.real(f) >= 0).astype(float) - 1 y_scale = f_sign * np.maximum(threshold, np.abs(y)) h = (y + factor * y_scale) - y # Make sure that the step is not 0 to start with. Not likely it will be # executed often. for i in np.nonzero(h == 0)[0]: while h[i] == 0: factor[i] *= 10 h[i] = (y[i] + factor[i] * y_scale[i]) - y[i] if sparsity is None: return _dense_num_jac(fun, t, y, f, h, factor, y_scale) else: structure, groups = sparsity return _sparse_num_jac(fun, t, y, f, h, factor, y_scale, structure, groups) def _dense_num_jac(fun, t, y, f, h, factor, y_scale): n = y.shape[0] h_vecs = np.diag(h) f_new = fun(t, y[:, None] + h_vecs) diff = f_new - f[:, None] max_ind = np.argmax(np.abs(diff), axis=0) r = np.arange(n) max_diff = np.abs(diff[max_ind, r]) scale = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r])) diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale if np.any(diff_too_small): ind, = np.nonzero(diff_too_small) new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind] h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind] h_vecs[ind, ind] = h_new f_new = fun(t, y[:, None] + h_vecs[:, ind]) diff_new = f_new - f[:, None] max_ind = np.argmax(np.abs(diff_new), axis=0) r = np.arange(ind.shape[0]) max_diff_new = np.abs(diff_new[max_ind, r]) scale_new = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r])) update = max_diff[ind] * scale_new < max_diff_new * scale[ind] if np.any(update): update, = np.nonzero(update) update_ind = ind[update] factor[update_ind] = new_factor[update] h[update_ind] = h_new[update] diff[:, update_ind] = diff_new[:, update] scale[update_ind] = scale_new[update] max_diff[update_ind] = max_diff_new[update] diff /= h factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE factor = np.maximum(factor, NUM_JAC_MIN_FACTOR) return diff, factor def _sparse_num_jac(fun, t, y, f, h, factor, y_scale, structure, groups): n = y.shape[0] n_groups = np.max(groups) + 1 h_vecs = np.empty((n_groups, n)) for group in range(n_groups): e = np.equal(group, groups) h_vecs[group] = h * e h_vecs = h_vecs.T f_new = fun(t, y[:, None] + h_vecs) df = f_new - f[:, None] i, j, _ = find(structure) diff = coo_matrix((df[i, groups[j]], (i, j)), shape=(n, n)).tocsc() max_ind = np.array(abs(diff).argmax(axis=0)).ravel() r = np.arange(n) max_diff = np.asarray(np.abs(diff[max_ind, r])).ravel() scale = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, groups[r]])) diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale if np.any(diff_too_small): ind, = np.nonzero(diff_too_small) new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind] h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind] h_new_all = np.zeros(n) h_new_all[ind] = h_new groups_unique = np.unique(groups[ind]) groups_map = np.empty(n_groups, dtype=int) h_vecs = np.empty((groups_unique.shape[0], n)) for k, group in enumerate(groups_unique): e = np.equal(group, groups) h_vecs[k] = h_new_all * e groups_map[group] = k h_vecs = h_vecs.T f_new = fun(t, y[:, None] + h_vecs) df = f_new - f[:, None] i, j, _ = find(structure[:, ind]) diff_new = coo_matrix((df[i, groups_map[groups[ind[j]]]], (i, j)), shape=(n, ind.shape[0])).tocsc() max_ind_new = np.array(abs(diff_new).argmax(axis=0)).ravel() r = np.arange(ind.shape[0]) max_diff_new = np.asarray(np.abs(diff_new[max_ind_new, r])).ravel() scale_new = np.maximum( np.abs(f[max_ind_new]), np.abs(f_new[max_ind_new, groups_map[groups[ind]]])) update = max_diff[ind] * scale_new < max_diff_new * scale[ind] if np.any(update): update, = np.nonzero(update) update_ind = ind[update] factor[update_ind] = new_factor[update] h[update_ind] = h_new[update] diff[:, update_ind] = diff_new[:, update] scale[update_ind] = scale_new[update] max_diff[update_ind] = max_diff_new[update] diff.data /= np.repeat(h, np.diff(diff.indptr)) factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE factor = np.maximum(factor, NUM_JAC_MIN_FACTOR) return diff, factor