# Copyright (C) 2002, Thomas Hamelryck (thamelry@binf.ku.dk) # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. r"""Use the DSSP program to calculate secondary structure and accessibility. You need to have a working version of DSSP (and a license, free for academic use) in order to use this. For DSSP, see http://swift.cmbi.ru.nl/gv/dssp/. The following Accessible surface area (ASA) values can be used, defaulting to the Sander and Rost values: Miller Miller et al. 1987 https://doi.org/10.1016/0022-2836(87)90038-6 Sander Sander and Rost 1994 https://doi.org/10.1002/prot.340200303 Wilke Tien et al. 2013 https://doi.org/10.1371/journal.pone.0080635 The DSSP codes for secondary structure used here are: ===== ==== Code Structure ===== ==== H Alpha helix (4-12) B Isolated beta-bridge residue E Strand G 3-10 helix I Pi helix T Turn S Bend \- None ===== ==== Usage ----- The DSSP class can be used to run DSSP on a pdb file, and provides a handle to the DSSP secondary structure and accessibility. **Note** that DSSP can only handle one model, and will only run calculations on the first model in the provided PDB file. Examples -------- >>> p = PDBParser() >>> structure = p.get_structure("1MOT", "1mot.pdb") >>> model = structure[0] >>> dssp = DSSP(model, "1mot.pdb") Note that the recent DSSP executable from the DSSP-2 package was renamed from `dssp` to `mkdssp`. If using a recent DSSP release, you may need to provide the name of your DSSP executable: >>> dssp = DSSP(model, '1mot.pdb', dssp='mkdssp') DSSP data is accessed by a tuple - (chain id, residue id): >>> a_key = list(dssp.keys())[2] >>> a_key ('A', (' ', 251, ' ')) >>> dssp[a_key] (3, 'A', 'H', 0.7075471698113207, -61.2, -42.4, -2, -0.7, 4, -3.0, 1, -0.2, 5, -0.2) The dssp data returned for a single residue is a tuple in the form: ============ === Tuple Index Value ============ === 0 DSSP index 1 Amino acid 2 Secondary structure 3 Relative ASA 4 Phi 5 Psi 6 NH-->O_1_relidx 7 NH-->O_1_energy 8 O-->NH_1_relidx 9 O-->NH_1_energy 10 NH-->O_2_relidx 11 NH-->O_2_energy 12 O-->NH_2_relidx 13 O-->NH_2_energy ============ === """ from __future__ import print_function import re from Bio._py3k import StringIO import subprocess import warnings from Bio.PDB.AbstractPropertyMap import AbstractResiduePropertyMap from Bio.PDB.PDBExceptions import PDBException from Bio.PDB.PDBParser import PDBParser from Bio.PDB.Polypeptide import three_to_one # Match C in DSSP _dssp_cys = re.compile('[a-z]') # Maximal ASA of amino acids # Used for relative accessibility residue_max_acc = { # Miller max acc: Miller et al. 1987 https://doi.org/10.1016/0022-2836(87)90038-6 # Wilke: Tien et al. 2013 https://doi.org/10.1371/journal.pone.0080635 # Sander: Sander & Rost 1994 https://doi.org/10.1002/prot.340200303 'Miller': { 'ALA': 113.0, 'ARG': 241.0, 'ASN': 158.0, 'ASP': 151.0, 'CYS': 140.0, 'GLN': 189.0, 'GLU': 183.0, 'GLY': 85.0, 'HIS': 194.0, 'ILE': 182.0, 'LEU': 180.0, 'LYS': 211.0, 'MET': 204.0, 'PHE': 218.0, 'PRO': 143.0, 'SER': 122.0, 'THR': 146.0, 'TRP': 259.0, 'TYR': 229.0, 'VAL': 160.0 }, 'Wilke': { 'ALA': 129.0, 'ARG': 274.0, 'ASN': 195.0, 'ASP': 193.0, 'CYS': 167.0, 'GLN': 225.0, 'GLU': 223.0, 'GLY': 104.0, 'HIS': 224.0, 'ILE': 197.0, 'LEU': 201.0, 'LYS': 236.0, 'MET': 224.0, 'PHE': 240.0, 'PRO': 159.0, 'SER': 155.0, 'THR': 172.0, 'TRP': 285.0, 'TYR': 263.0, 'VAL': 174.0 }, 'Sander': { 'ALA': 106.0, 'ARG': 248.0, 'ASN': 157.0, 'ASP': 163.0, 'CYS': 135.0, 'GLN': 198.0, 'GLU': 194.0, 'GLY': 84.0, 'HIS': 184.0, 'ILE': 169.0, 'LEU': 164.0, 'LYS': 205.0, 'MET': 188.0, 'PHE': 197.0, 'PRO': 136.0, 'SER': 130.0, 'THR': 142.0, 'TRP': 227.0, 'TYR': 222.0, 'VAL': 142.0 } } def ss_to_index(ss): """Secondary structure symbol to index. H=0 E=1 C=2 """ if ss == 'H': return 0 if ss == 'E': return 1 if ss == 'C': return 2 assert 0 def dssp_dict_from_pdb_file(in_file, DSSP="dssp"): """Create a DSSP dictionary from a PDB file. Parameters ---------- in_file : string pdb file DSSP : string DSSP executable (argument to os.system) Returns ------- (out_dict, keys) : tuple a dictionary that maps (chainid, resid) to amino acid type, secondary structure code and accessibility. Examples -------- >>> dssp_dict=dssp_dict_from_pdb_file("1fat.pdb") >>> aa, ss, acc=dssp_dict[('A', 1)] """ # Using universal newlines is important on Python 3, this # gives unicode handles rather than bytes handles. # Newer version of DSSP executable is named 'mkdssp', # and calling 'dssp' will hence not work in some operating systems # (Debian distribution of DSSP includes a symlink for 'dssp' argument) try: p = subprocess.Popen([DSSP, in_file], universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError: # TODO: Use FileNotFoundError once drop Python 2 if DSSP == "mkdssp": raise p = subprocess.Popen(["mkdssp", in_file], universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() # Alert user for errors if err.strip(): warnings.warn(err) if not out.strip(): raise Exception('DSSP failed to produce an output') out_dict, keys = _make_dssp_dict(StringIO(out)) return out_dict, keys def make_dssp_dict(filename): """DSSP dictionary mapping identifiers to properties. Return a DSSP dictionary that maps (chainid, resid) to aa, ss and accessibility, from a DSSP file. Parameters ---------- filename : string the DSSP output file """ with open(filename, "r") as handle: return _make_dssp_dict(handle) def _make_dssp_dict(handle): """Return a DSSP dictionary, used by mask_dssp_dict (PRIVATE). DSSP dictionary maps (chainid, resid) to an amino acid, secondary structure symbol, solvent accessibility value, and hydrogen bond information (relative dssp indices and hydrogen bond energies) from an open DSSP file object. Parameters ---------- handle : file the open DSSP output file handle """ dssp = {} start = 0 keys = [] for l in handle.readlines(): sl = l.split() if len(sl) < 2: continue if sl[1] == "RESIDUE": # Start parsing from here start = 1 continue if not start: continue if l[9] == " ": # Skip -- missing residue continue dssp_index = int(l[:5]) resseq = int(l[5:10]) icode = l[10] chainid = l[11] aa = l[13] ss = l[16] if ss == " ": ss = "-" try: NH_O_1_relidx = int(l[38:45]) NH_O_1_energy = float(l[46:50]) O_NH_1_relidx = int(l[50:56]) O_NH_1_energy = float(l[57:61]) NH_O_2_relidx = int(l[61:67]) NH_O_2_energy = float(l[68:72]) O_NH_2_relidx = int(l[72:78]) O_NH_2_energy = float(l[79:83]) acc = int(l[34:38]) phi = float(l[103:109]) psi = float(l[109:115]) except ValueError as exc: # DSSP output breaks its own format when there are >9999 # residues, since only 4 digits are allocated to the seq num # field. See 3kic chain T res 321, 1vsy chain T res 6077. # Here, look for whitespace to figure out the number of extra # digits, and shift parsing the rest of the line by that amount. if l[34] != ' ': shift = l[34:].find(' ') NH_O_1_relidx = int(l[38 + shift:45 + shift]) NH_O_1_energy = float(l[46 + shift:50 + shift]) O_NH_1_relidx = int(l[50 + shift:56 + shift]) O_NH_1_energy = float(l[57 + shift:61 + shift]) NH_O_2_relidx = int(l[61 + shift:67 + shift]) NH_O_2_energy = float(l[68 + shift:72 + shift]) O_NH_2_relidx = int(l[72 + shift:78 + shift]) O_NH_2_energy = float(l[79 + shift:83 + shift]) acc = int((l[34 + shift:38 + shift])) phi = float(l[103 + shift:109 + shift]) psi = float(l[109 + shift:115 + shift]) else: raise ValueError(exc) res_id = (" ", resseq, icode) dssp[(chainid, res_id)] = (aa, ss, acc, phi, psi, dssp_index, NH_O_1_relidx, NH_O_1_energy, O_NH_1_relidx, O_NH_1_energy, NH_O_2_relidx, NH_O_2_energy, O_NH_2_relidx, O_NH_2_energy) keys.append((chainid, res_id)) return dssp, keys class DSSP(AbstractResiduePropertyMap): """Run DSSP and parse secondary structure and accessibility. Run DSSP on a pdb file, and provide a handle to the DSSP secondary structure and accessibility. **Note** that DSSP can only handle one model. Examples -------- >>> p = PDBParser() >>> structure = p.get_structure("1MOT", "1mot.pdb") >>> model = structure[0] >>> dssp = DSSP(model, "1mot.pdb") >>> # DSSP data is accessed by a tuple (chain_id, res_id) >>> a_key = list(dssp.keys())[2] >>> # (dssp index, amino acid, secondary structure, relative ASA, phi, psi, >>> # NH_O_1_relidx, NH_O_1_energy, O_NH_1_relidx, O_NH_1_energy, >>> # NH_O_2_relidx, NH_O_2_energy, O_NH_2_relidx, O_NH_2_energy) >>> dssp[a_key] (3, 'A', 'H', 0.7075471698113207, -61.2, -42.4, -2, -0.7, 4, -3.0, 1, -0.2, 5, -0.2) """ def __init__(self, model, in_file, dssp="dssp", acc_array="Sander", file_type='PDB'): """Create a DSSP object. Parameters ---------- model : Model The first model of the structure in_file : string Either a PDB file or a DSSP file. dssp : string The dssp executable (ie. the argument to os.system) acc_array : string Accessible surface area (ASA) from either Miller et al. (1987), Sander & Rost (1994), or Wilke: Tien et al. 2013, as string Sander/Wilke/Miller. Defaults to Sander. file_type: string File type switch, either PDB or DSSP with PDB as default. """ self.residue_max_acc = residue_max_acc[acc_array] # create DSSP dictionary file_type = file_type.upper() assert(file_type in ['PDB', 'DSSP']) # If the input file is a PDB file run DSSP and parse output: if file_type == 'PDB': # Newer versions of DSSP program call the binary 'mkdssp', so # calling 'dssp' will not work in some operating systems # (Debian distribution of DSSP includes a symlink for 'dssp' argument) try: dssp_dict, dssp_keys = dssp_dict_from_pdb_file(in_file, dssp) except OSError: # TODO: Use FileNotFoundError once drop Python 2 if dssp == 'dssp': dssp = 'mkdssp' elif dssp == 'mkdssp': dssp = 'dssp' else: raise dssp_dict, dssp_keys = dssp_dict_from_pdb_file(in_file, dssp) # If the input file is a DSSP file just parse it directly: elif file_type == 'DSSP': dssp_dict, dssp_keys = make_dssp_dict(in_file) dssp_map = {} dssp_list = [] def resid2code(res_id): """Serialize a residue's resseq and icode for easy comparison.""" return '%s%s' % (res_id[1], res_id[2]) # Now create a dictionary that maps Residue objects to # secondary structure and accessibility, and a list of # (residue, (secondary structure, accessibility)) tuples for key in dssp_keys: chain_id, res_id = key chain = model[chain_id] try: res = chain[res_id] except KeyError: # In DSSP, HET field is not considered in residue identifier. # Thus HETATM records may cause unnecessary exceptions. # (See 3jui chain A res 593.) # Try the lookup again with all HETATM other than water res_seq_icode = resid2code(res_id) for r in chain: if r.id[0] not in (' ', 'W'): # Compare resseq + icode if resid2code(r.id) == res_seq_icode: # Found a matching residue res = r break else: raise KeyError(res_id) # For disordered residues of point mutations, Biopython uses the # last one as default, But DSSP takes the first one (alternative # location is blank, A or 1). See 1h9h chain E resi 22. # Here we select the res in which all atoms have altloc blank, A or # 1. If no such residues are found, simply use the first one appears # (as DSSP does). if res.is_disordered() == 2: for rk in res.disordered_get_id_list(): # All atoms in the disordered residue should have the same # altloc, so it suffices to check the altloc of the first # atom. altloc = res.child_dict[rk].get_list()[0].get_altloc() if altloc in tuple('A1 '): res.disordered_select(rk) break else: # Simply select the first one res.disordered_select(res.disordered_get_id_list()[0]) # Sometimes point mutations are put into HETATM and ATOM with altloc # 'A' and 'B'. # See 3piu chain A residue 273: # # # DSSP uses the HETATM LLP as it has altloc 'A' # We check the altloc code here. elif res.is_disordered() == 1: # Check altloc of all atoms in the DisorderedResidue. If it # contains blank, A or 1, then use it. Otherwise, look for HET # residues of the same seq+icode. If not such HET residues are # found, just accept the current one. altlocs = set(a.get_altloc() for a in res.get_unpacked_list()) if altlocs.isdisjoint('A1 '): # Try again with all HETATM other than water res_seq_icode = resid2code(res_id) for r in chain: if r.id[0] not in (' ', 'W'): if resid2code(r.id) == res_seq_icode and \ r.get_list()[0].get_altloc() in tuple('A1 '): res = r break (aa, ss, acc, phi, psi, dssp_index, NH_O_1_relidx, NH_O_1_energy, O_NH_1_relidx, O_NH_1_energy, NH_O_2_relidx, NH_O_2_energy, O_NH_2_relidx, O_NH_2_energy) = dssp_dict[key] res.xtra["SS_DSSP"] = ss res.xtra["EXP_DSSP_ASA"] = acc res.xtra["PHI_DSSP"] = phi res.xtra["PSI_DSSP"] = psi res.xtra["DSSP_INDEX"] = dssp_index res.xtra["NH_O_1_RELIDX_DSSP"] = NH_O_1_relidx res.xtra["NH_O_1_ENERGY_DSSP"] = NH_O_1_energy res.xtra["O_NH_1_RELIDX_DSSP"] = O_NH_1_relidx res.xtra["O_NH_1_ENERGY_DSSP"] = O_NH_1_energy res.xtra["NH_O_2_RELIDX_DSSP"] = NH_O_2_relidx res.xtra["NH_O_2_ENERGY_DSSP"] = NH_O_2_energy res.xtra["O_NH_2_RELIDX_DSSP"] = O_NH_2_relidx res.xtra["O_NH_2_ENERGY_DSSP"] = O_NH_2_energy # Relative accessibility resname = res.get_resname() try: rel_acc = acc / self.residue_max_acc[resname] except KeyError: # Invalid value for resname rel_acc = 'NA' else: if rel_acc > 1.0: rel_acc = 1.0 res.xtra["EXP_DSSP_RASA"] = rel_acc # Verify if AA in DSSP == AA in Structure # Something went wrong if this is not true! # NB: DSSP uses X often try: resname = three_to_one(resname) except KeyError: resname = 'X' if resname == "C": # DSSP renames C in C-bridges to a,b,c,d,... # - we rename it back to 'C' if _dssp_cys.match(aa): aa = 'C' # Take care of HETATM again if (resname != aa) and (res.id[0] == ' ' or aa != 'X'): raise PDBException("Structure/DSSP mismatch at %s" % res) dssp_vals = (dssp_index, aa, ss, rel_acc, phi, psi, NH_O_1_relidx, NH_O_1_energy, O_NH_1_relidx, O_NH_1_energy, NH_O_2_relidx, NH_O_2_energy, O_NH_2_relidx, O_NH_2_energy) dssp_map[key] = dssp_vals dssp_list.append(dssp_vals) AbstractResiduePropertyMap.__init__(self, dssp_map, dssp_keys, dssp_list) if __name__ == "__main__": import sys p = PDBParser() s = p.get_structure('X', sys.argv[1]) model = s[0] d = DSSP(model, sys.argv[1]) for r in d: print(r) print("Handled %i residues" % len(d)) print(sorted(d)) if ('A', 1) in d: print(d[('A', 1)]) print(s[0]['A'][1].xtra) # Secondary structure print(''.join(item[1] for item in d))