""" Utilities for fast persistence of big data, with optional compression. """ # Author: Gael Varoquaux # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import pickle import traceback import sys import os import zlib import warnings if sys.version_info[0] >= 3: from io import BytesIO from pickle import _Unpickler as Unpickler def asbytes(s): if isinstance(s, bytes): return s return s.encode('latin1') else: try: from io import BytesIO except ImportError: # BytesIO has been added in Python 2.5 from cStringIO import StringIO as BytesIO from pickle import Unpickler asbytes = str _MEGA = 2 ** 20 _MAX_LEN = len(hex(2 ** 64)) # To detect file types _ZFILE_PREFIX = asbytes('ZF') ############################################################################### # Compressed file with Zlib def _read_magic(file_handle): """ Utility to check the magic signature of a file identifying it as a Zfile """ magic = file_handle.read(len(_ZFILE_PREFIX)) # Pickling needs file-handles at the beginning of the file file_handle.seek(0) return magic def read_zfile(file_handle): """Read the z-file and return the content as a string Z-files are raw data compressed with zlib used internally by joblib for persistence. Backward compatibility is not garantied. Do not use for external purposes. """ file_handle.seek(0) assert _read_magic(file_handle) == _ZFILE_PREFIX, \ "File does not have the right magic" length = file_handle.read(len(_ZFILE_PREFIX) + _MAX_LEN) length = length[len(_ZFILE_PREFIX):] length = int(length, 16) # We use the known length of the data to tell Zlib the size of the # buffer to allocate. data = zlib.decompress(file_handle.read(), 15, length) assert len(data) == length, ( "Incorrect data length while decompressing %s." "The file could be corrupted." % file_handle) return data def write_zfile(file_handle, data, compress=1): """Write the data in the given file as a Z-file. Z-files are raw data compressed with zlib used internally by joblib for persistence. Backward compatibility is not guarantied. Do not use for external purposes. """ file_handle.write(_ZFILE_PREFIX) length = hex(len(data)) if sys.version_info[0] < 3 and type(length) is long: # We need to remove the trailing 'L' in the hex representation length = length[:-1] # Store the length of the data file_handle.write(length.ljust(_MAX_LEN)) file_handle.write(zlib.compress(data, compress)) ############################################################################### # Utility objects for persistence. class NDArrayWrapper(object): """ An object to be persisted instead of numpy arrays. The only thing this object does, is to carry the filename in which the array has been persisted, and the array subclass. """ def __init__(self, filename, subclass): "Store the useful information for later" self.filename = filename self.subclass = subclass def read(self, unpickler): "Reconstruct the array" filename = os.path.join(unpickler._dirname, self.filename) # Load the array from the disk if unpickler.np.__version__ >= '1.3': array = unpickler.np.load(filename, mmap_mode=unpickler.mmap_mode) else: # Numpy does not have mmap_mode before 1.3 array = unpickler.np.load(filename) # Reconstruct subclasses. This does not work with old # versions of numpy if (hasattr(array, '__array_prepare__') and not self.subclass in (unpickler.np.ndarray, unpickler.np.memmap)): # We need to reconstruct another subclass new_array = unpickler.np.core.multiarray._reconstruct( self.subclass, (0,), 'b') new_array.__array_prepare__(array) array = new_array return array class ZNDArrayWrapper(NDArrayWrapper): """An object to be persisted instead of numpy arrays. This object store the Zfile filename in wich the data array has been persisted, and the meta information to retrieve it. The reason that we store the raw buffer data of the array and the meta information, rather than array representation routine (tostring) is that it enables us to use completely the strided model to avoid memory copies (a and a.T store as fast). In addition saving the heavy information separately can avoid creating large temporary buffers when unpickling data with large arrays. """ def __init__(self, filename, init_args, state): "Store the useful information for later" self.filename = filename self.state = state self.init_args = init_args def read(self, unpickler): "Reconstruct the array from the meta-information and the z-file" # Here we a simply reproducing the unpickling mechanism for numpy # arrays filename = os.path.join(unpickler._dirname, self.filename) array = unpickler.np.core.multiarray._reconstruct(*self.init_args) data = read_zfile(open(filename, 'rb')) state = self.state + (data,) array.__setstate__(state) return array ############################################################################### # Pickler classes class NumpyPickler(pickle.Pickler): """A pickler to persist of big data efficiently. The main features of this object are: * persistence of numpy arrays in separate .npy files, for which I/O is fast. * optional compression using Zlib, with a special care on avoid temporaries. """ def __init__(self, filename, compress=0, cache_size=100): self._filename = filename self._filenames = [filename, ] self.cache_size = cache_size self.compress = compress if not self.compress: self.file = open(filename, 'wb') else: self.file = BytesIO() # Count the number of npy files that we have created: self._npy_counter = 0 pickle.Pickler.__init__(self, self.file, protocol=pickle.HIGHEST_PROTOCOL) # delayed import of numpy, to avoid tight coupling try: import numpy as np except ImportError: np = None self.np = np def _write_array(self, array, filename): if not self.compress: self.np.save(filename, array) container = NDArrayWrapper(os.path.basename(filename), type(array)) else: filename += '.z' # Efficient compressed storage: # The meta data is stored in the container, and the core # numerics in a z-file _, init_args, state = array.__reduce__() # the last entry of 'state' is the data itself zfile = open(filename, 'wb') write_zfile(zfile, state[-1], compress=self.compress) zfile.close() state = state[:-1] container = ZNDArrayWrapper(os.path.basename(filename), init_args, state) return container, filename def save(self, obj): """ Subclass the save method, to save ndarray subclasses in npy files, rather than pickling them. Of course, this is a total abuse of the Pickler class. """ if self.np is not None and type(obj) in (self.np.ndarray, self.np.matrix, self.np.memmap): size = obj.size * obj.itemsize if self.compress and size < self.cache_size * _MEGA: # When compressing, as we are not writing directly to the # disk, it is more efficient to use standard pickling if type(obj) is self.np.memmap: # Pickling doesn't work with memmaped arrays obj = self.np.asarray(obj) return pickle.Pickler.save(self, obj) self._npy_counter += 1 try: filename = '%s_%02i.npy' % (self._filename, self._npy_counter) # This converts the array in a container obj, filename = self._write_array(obj, filename) self._filenames.append(filename) except: self._npy_counter -= 1 # XXX: We should have a logging mechanism print 'Failed to save %s to .npy file:\n%s' % ( type(obj), traceback.format_exc()) return pickle.Pickler.save(self, obj) def close(self): if self.compress: zfile = open(self._filename, 'wb') write_zfile(zfile, self.file.getvalue(), self.compress) zfile.close() class NumpyUnpickler(Unpickler): """A subclass of the Unpickler to unpickle our numpy pickles. """ dispatch = Unpickler.dispatch.copy() def __init__(self, filename, file_handle, mmap_mode=None): self._filename = os.path.basename(filename) self._dirname = os.path.dirname(filename) self.mmap_mode = mmap_mode self.file_handle = self._open_pickle(file_handle) Unpickler.__init__(self, self.file_handle) try: import numpy as np except ImportError: np = None self.np = np def _open_pickle(self, file_handle): return file_handle def load_build(self): """ This method is called to set the state of a newly created object. We capture it to replace our place-holder objects, NDArrayWrapper, by the array we are interested in. We replace them directly in the stack of pickler. """ Unpickler.load_build(self) if isinstance(self.stack[-1], NDArrayWrapper): if self.np is None: raise ImportError('Trying to unpickle an ndarray, ' "but numpy didn't import correctly") nd_array_wrapper = self.stack.pop() array = nd_array_wrapper.read(self) self.stack.append(array) # Be careful to register our new method. dispatch[pickle.BUILD] = load_build class ZipNumpyUnpickler(NumpyUnpickler): """A subclass of our Unpickler to unpickle on the fly from compressed storage.""" def __init__(self, filename, file_handle): NumpyUnpickler.__init__(self, filename, file_handle, mmap_mode=None) def _open_pickle(self, file_handle): return BytesIO(read_zfile(file_handle)) ############################################################################### # Utility functions def dump(value, filename, compress=0, cache_size=100): """Fast persistence of an arbitrary Python object into a files, with dedicated storage for numpy arrays. Parameters ----------- value: any Python object The object to store to disk filename: string The name of the file in which it is to be stored compress: integer for 0 to 9, optional Optional compression level for the data. 0 is no compression. Higher means more compression, but also slower read and write times. Using a value of 3 is often a good compromise. See the notes for more details. cache_size: positive number, optional Fixes the order of magnitude (in megabytes) of the cache used for in-memory compression. Note that this is just an order of magnitude estimate and that for big arrays, the code will go over this value at dump and at load time. Returns ------- filenames: list of strings The list of file names in which the data is stored. If compress is false, each array is stored in a different file. See Also -------- joblib.load : corresponding loader Notes ----- Memmapping on load cannot be used for compressed files. Thus using compression can significantly slow down loading. In addition, compressed files take extra extra memory during dump and load. """ if not isinstance(filename, basestring): # People keep inverting arguments, and the resulting error is # incomprehensible raise ValueError( 'Second argument should be a filename, %s (type %s) was given' % (filename, type(filename)) ) try: pickler = NumpyPickler(filename, compress=compress, cache_size=cache_size) pickler.dump(value) pickler.close() finally: if 'pickler' in locals() and hasattr(pickler, 'file'): pickler.file.flush() pickler.file.close() return pickler._filenames def load(filename, mmap_mode=None): """Reconstruct a Python object from a file persisted with joblib.load. Parameters ----------- filename: string The name of the file from which to load the object mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, the arrays are memory-mapped from the disk. This mode has not effect for compressed files. Note that in this case the reconstructed object might not longer match exactly the originally pickled object. Returns ------- result: any Python object The object stored in the file. See Also -------- joblib.dump : function to save an object Notes ----- This function can load numpy array files saved separately during the dump. If the mmap_mode argument is given, it is passed to np.load and arrays are loaded as memmaps. As a consequence, the reconstructed object might not match the original pickled object. Note that if the file was saved with compression, the arrays cannot be memmaped. """ file_handle = open(filename, 'rb') # We are careful to open the file hanlde early and keep it open to # avoid race-conditions on renames. That said, if data are stored in # companion files, moving the directory will create a race when # joblib tries to access the companion files. if _read_magic(file_handle) == _ZFILE_PREFIX: if mmap_mode is not None: warnings.warn('file "%(filename)s" appears to be a zip, ' 'ignoring mmap_mode "%(mmap_mode)s" flag passed' % locals(), Warning, stacklevel=2) unpickler = ZipNumpyUnpickler(filename, file_handle=file_handle) else: unpickler = NumpyUnpickler(filename, file_handle=file_handle, mmap_mode=mmap_mode) try: obj = unpickler.load() finally: if hasattr(unpickler, 'file_handle'): unpickler.file_handle.close() return obj