#include #include #include #include #include "utils.h" #include "bwt.h" #include "bntseq.h" #include "bwtsw2.h" #include "kstring.h" #include "ksw.h" #ifdef USE_MALLOC_WRAPPERS # include "malloc_wrap.h" #endif #define MIN_RATIO 0.8 #define OUTLIER_BOUND 2.0 #define MAX_STDDEV 4.0 #define EXT_STDDEV 4.0 typedef struct { int low, high, failed; double avg, std; } bsw2pestat_t; bsw2pestat_t bsw2_stat(int n, bwtsw2_t **buf, kstring_t *msg, int max_ins) { int i, k, x, p25, p50, p75, tmp, max_len = 0; uint64_t *isize; bsw2pestat_t r; memset(&r, 0, sizeof(bsw2pestat_t)); isize = calloc(n, 8); for (i = k = 0; i < n; i += 2) { bsw2hit_t *t[2]; int l; if (buf[i] == 0 || buf[i]->n != 1 || buf[i+1]->n != 1) continue; // more than 1 hits t[0] = &buf[i]->hits[0]; t[1] = &buf[i+1]->hits[0]; if (t[0]->G2 > 0.8 * t[0]->G) continue; // the best hit is not good enough if (t[1]->G2 > 0.8 * t[1]->G) continue; // the best hit is not good enough l = t[0]->k > t[1]->k? t[0]->k - t[1]->k + t[1]->len : t[1]->k - t[0]->k + t[0]->len; if (l >= max_ins) continue; // skip pairs with excessively large insert max_len = max_len > t[0]->end - t[0]->beg? max_len : t[0]->end - t[0]->beg; max_len = max_len > t[1]->end - t[1]->beg? max_len : t[1]->end - t[1]->beg; isize[k++] = l; } ks_introsort_64(k, isize); p25 = isize[(int)(.25 * k + .499)]; p50 = isize[(int)(.50 * k + .499)]; p75 = isize[(int)(.75 * k + .499)]; ksprintf(msg, "[%s] infer the insert size distribution from %d high-quality pairs.\n", __func__, k); if (k < 8) { ksprintf(msg, "[%s] fail to infer the insert size distribution: too few good pairs.\n", __func__); free(isize); r.failed = 1; return r; } tmp = (int)(p25 - OUTLIER_BOUND * (p75 - p25) + .499); r.low = tmp > max_len? tmp : max_len; if (r.low < 1) r.low = 1; r.high = (int)(p75 + OUTLIER_BOUND * (p75 - p25) + .499); if (r.low > r.high) { ksprintf(msg, "[%s] fail to infer the insert size distribution: upper bound is smaller than max read length.\n", __func__); free(isize); r.failed = 1; return r; } ksprintf(msg, "[%s] (25, 50, 75) percentile: (%d, %d, %d)\n", __func__, p25, p50, p75); ksprintf(msg, "[%s] low and high boundaries for computing mean and std.dev: (%d, %d)\n", __func__, r.low, r.high); for (i = x = 0, r.avg = 0; i < k; ++i) if (isize[i] >= r.low && isize[i] <= r.high) r.avg += isize[i], ++x; r.avg /= x; for (i = 0, r.std = 0; i < k; ++i) if (isize[i] >= r.low && isize[i] <= r.high) r.std += (isize[i] - r.avg) * (isize[i] - r.avg); r.std = sqrt(r.std / x); ksprintf(msg, "[%s] mean and std.dev: (%.2f, %.2f)\n", __func__, r.avg, r.std); tmp = (int)(p25 - 3. * (p75 - p25) + .499); r.low = tmp > max_len? tmp : max_len; if (r.low < 1) r.low = 1; r.high = (int)(p75 + 3. * (p75 - p25) + .499); if (r.low > r.avg - MAX_STDDEV * r.std) r.low = (int)(r.avg - MAX_STDDEV * r.std + .499); r.low = tmp > max_len? tmp : max_len; if (r.high < r.avg + MAX_STDDEV * r.std) r.high = (int)(r.avg + MAX_STDDEV * r.std + .499); ksprintf(msg, "[%s] low and high boundaries for proper pairs: (%d, %d)\n", __func__, r.low, r.high); free(isize); return r; } typedef struct { int n_cigar, beg, end, len; int64_t pos; uint32_t *cigar; } pairaux_t; extern unsigned char nst_nt4_table[256]; void bsw2_pair1(const bsw2opt_t *opt, int64_t l_pac, const uint8_t *pac, const bsw2pestat_t *st, const bsw2hit_t *h, int l_mseq, const char *mseq, bsw2hit_t *a, int8_t g_mat[25]) { extern void seq_reverse(int len, ubyte_t *seq, int is_comp); int64_t k, beg, end; uint8_t *seq, *ref; int i; // compute the region start and end a->n_seeds = 1; a->flag |= BSW2_FLAG_MATESW; // before calling this routine, *a has been cleared with memset(0); the flag is set with 1<<6/7 if (h->is_rev == 0) { beg = (int64_t)(h->k + st->avg - EXT_STDDEV * st->std - l_mseq + .499); if (beg < h->k) beg = h->k; end = (int64_t)(h->k + st->avg + EXT_STDDEV * st->std + .499); a->is_rev = 1; a->flag |= 16; } else { beg = (int64_t)(h->k + h->end - h->beg - st->avg - EXT_STDDEV * st->std + .499); end = (int64_t)(h->k + h->end - h->beg - st->avg + EXT_STDDEV * st->std + l_mseq + .499); if (end > h->k + (h->end - h->beg)) end = h->k + (h->end - h->beg); a->is_rev = 0; } if (beg < 1) beg = 1; if (end > l_pac) end = l_pac; if (end - beg < l_mseq) return; // generate the sequence seq = malloc(l_mseq + (end - beg)); ref = seq + l_mseq; for (k = beg; k < end; ++k) ref[k - beg] = pac[k>>2] >> ((~k&3)<<1) & 0x3; if (h->is_rev == 0) { for (i = 0; i < l_mseq; ++i) { // on the reverse strand int c = nst_nt4_table[(int)mseq[i]]; seq[l_mseq - 1 - i] = c > 3? 4 : 3 - c; } } else { for (i = 0; i < l_mseq; ++i) // on the forward strand seq[i] = nst_nt4_table[(int)mseq[i]]; } { int flag = KSW_XSUBO | KSW_XSTART | (l_mseq * g_mat[0] < 250? KSW_XBYTE : 0) | opt->t; kswr_t aln; aln = ksw_align(l_mseq, seq, end - beg, ref, 5, g_mat, opt->q, opt->r, flag, 0); a->G = aln.score; a->G2 = aln.score2; if (a->G < opt->t) a->G = 0; if (a->G2 < opt->t) a->G2 = 0; if (a->G2) a->flag |= BSW2_FLAG_TANDEM; a->k = beg + aln.tb; a->len = aln.te - aln.tb + 1; a->beg = aln.qb; a->end = aln.qe + 1; /* printf("[Q] "); for (i = 0; i < l_mseq; ++i) putchar("ACGTN"[(int)seq[i]]); putchar('\n'); printf("[R] "); for (i = 0; i < end - beg; ++i) putchar("ACGTN"[(int)ref[i]]); putchar('\n'); printf("G=%d,G2=%d,beg=%d,end=%d,k=%lld,len=%d\n", a->G, a->G2, a->beg, a->end, a->k, a->len); */ } if (a->is_rev) i = a->beg, a->beg = l_mseq - a->end, a->end = l_mseq - i; free(seq); } void bsw2_pair(const bsw2opt_t *opt, int64_t l_pac, const uint8_t *pac, int n, bsw2seq1_t *seq, bwtsw2_t **hits) { extern int bsw2_resolve_duphits(const bntseq_t *bns, const bwt_t *bwt, bwtsw2_t *b, int IS); bsw2pestat_t pes; int i, j, k, n_rescued = 0, n_moved = 0, n_fixed = 0; int8_t g_mat[25]; kstring_t msg; memset(&msg, 0, sizeof(kstring_t)); pes = bsw2_stat(n, hits, &msg, opt->max_ins); for (i = k = 0; i < 5; ++i) { for (j = 0; j < 4; ++j) g_mat[k++] = i == j? opt->a : -opt->b; g_mat[k++] = 0; } for (i = 0; i < n; i += 2) { bsw2hit_t a[2]; memset(&a, 0, sizeof(bsw2hit_t) * 2); a[0].flag = 1<<6; a[1].flag = 1<<7; for (j = 0; j < 2; ++j) { // set the read1/2 flag if (hits[i+j] == 0) continue; for (k = 0; k < hits[i+j]->n; ++k) { bsw2hit_t *p = &hits[i+j]->hits[k]; p->flag |= 1<<(6+j); } } if (pes.failed) continue; if (hits[i] == 0 || hits[i+1] == 0) continue; // one end has excessive N if (hits[i]->n != 1 && hits[i+1]->n != 1) continue; // no end has exactly one hit if (hits[i]->n > 1 || hits[i+1]->n > 1) continue; // one read has more than one hit if (!opt->skip_sw) { if (hits[i+0]->n == 1) bsw2_pair1(opt, l_pac, pac, &pes, &hits[i+0]->hits[0], seq[i+1].l, seq[i+1].seq, &a[1], g_mat); if (hits[i+1]->n == 1) bsw2_pair1(opt, l_pac, pac, &pes, &hits[i+1]->hits[0], seq[i+0].l, seq[i+0].seq, &a[0], g_mat); } // else a[0].G == a[1].G == a[0].G2 == a[1].G2 == 0 // the following enumerate all possibilities. It is tedious but necessary... if (hits[i]->n + hits[i+1]->n == 1) { // one end mapped; the other not; bwtsw2_t *p[2]; int which; if (hits[i]->n == 1) p[0] = hits[i], p[1] = hits[i+1], which = 1; else p[0] = hits[i+1], p[1] = hits[i], which = 0; if (a[which].G == 0) continue; a[which].flag |= BSW2_FLAG_RESCUED; if (p[1]->max == 0) { p[1]->max = 1; p[1]->hits = malloc(sizeof(bsw2hit_t)); } p[1]->hits[0] = a[which]; p[1]->n = 1; p[0]->hits[0].flag |= 2; p[1]->hits[0].flag |= 2; ++n_rescued; } else { // then both ends mapped int is_fixed = 0; //fprintf(stderr, "%d; %lld,%lld; %d,%d\n", a[0].is_rev, hits[i]->hits[0].k, a[0].k, hits[i]->hits[0].end, a[0].end); for (j = 0; j < 2; ++j) { // fix wrong mappings and wrong suboptimal alignment score bsw2hit_t *p = &hits[i+j]->hits[0]; if (p->G < a[j].G) { // the orginal mapping is suboptimal a[j].G2 = a[j].G2 > p->G? a[j].G2 : p->G; // FIXME: reset BSW2_FLAG_TANDEM? *p = a[j]; ++n_fixed; is_fixed = 1; } else if (p->k != a[j].k && p->G2 < a[j].G) { p->G2 = a[j].G; } else if (p->k == a[j].k && p->G2 < a[j].G2) { p->G2 = a[j].G2; } } if (hits[i]->hits[0].k == a[0].k && hits[i+1]->hits[0].k == a[1].k) { // properly paired and no ends need to be moved for (j = 0; j < 2; ++j) hits[i+j]->hits[0].flag |= 2 | (a[j].flag & BSW2_FLAG_TANDEM); } else if (hits[i]->hits[0].k == a[0].k || hits[i+1]->hits[0].k == a[1].k) { // a tandem match for (j = 0; j < 2; ++j) { hits[i+j]->hits[0].flag |= 2; if (hits[i+j]->hits[0].k != a[j].k) hits[i+j]->hits[0].flag |= BSW2_FLAG_TANDEM; } } else if (!is_fixed && (a[0].G || a[1].G)) { // it is possible to move one end if (a[0].G && a[1].G) { // now we have two "proper pairs" int G[2]; double diff; G[0] = hits[i]->hits[0].G + a[1].G; G[1] = hits[i+1]->hits[0].G + a[0].G; diff = fabs(G[0] - G[1]) / (opt->a + opt->b) / ((hits[i]->hits[0].len + a[1].len + hits[i+1]->hits[0].len + a[0].len) / 2.); if (diff > 0.05) a[G[0] > G[1]? 0 : 1].G = 0; } if (a[0].G == 0 || a[1].G == 0) { // one proper pair only bsw2hit_t *p[2]; // p[0] points the unchanged hit; p[1] to the hit to be moved int which, isize; double dev, diff; if (a[0].G) p[0] = &hits[i+1]->hits[0], p[1] = &hits[i]->hits[0], which = 0; else p[0] = &hits[i]->hits[0], p[1] = &hits[i+1]->hits[0], which = 1; isize = p[0]->is_rev? p[0]->k + p[0]->len - a[which].k : a[which].k + a[which].len - p[0]->k; dev = fabs(isize - pes.avg) / pes.std; diff = (double)(p[1]->G - a[which].G) / (opt->a + opt->b) / (p[1]->end - p[1]->beg) * 100.0; if (diff < dev * 2.) { // then move (heuristic) a[which].G2 = a[which].G; p[1][0] = a[which]; p[1]->flag |= BSW2_FLAG_MOVED | 2; p[0]->flag |= 2; ++n_moved; } } } else if (is_fixed) { hits[i+0]->hits[0].flag |= 2; hits[i+1]->hits[0].flag |= 2; } } } ksprintf(&msg, "[%s] #fixed=%d, #rescued=%d, #moved=%d\n", __func__, n_fixed, n_rescued, n_moved); fputs(msg.s, stderr); free(msg.s); }