# Copyright 2003-2008 by Leighton Pritchard. All rights reserved. # Revisions copyright 2008-2009 by Peter Cock. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. # # Contact: Leighton Pritchard, Scottish Crop Research Institute, # Invergowrie, Dundee, Scotland, DD2 5DA, UK # L.Pritchard@scri.ac.uk ################################################################################ """ LinearDrawer module Provides: o LinearDrawer - Drawing object for linear diagrams For drawing capabilities, this module uses reportlab to draw and write the diagram: http://www.reportlab.com For dealing with biological information, the package expects BioPython objects: http://www.biopython.org """ # ReportLab imports from reportlab.graphics.shapes import * from reportlab.lib import colors # GenomeDiagram imports from ._AbstractDrawer import AbstractDrawer, draw_box, draw_arrow from ._AbstractDrawer import intermediate_points, angle2trig from ._FeatureSet import FeatureSet from ._GraphSet import GraphSet from math import ceil class LinearDrawer(AbstractDrawer): """ LinearDrawer(AbstractDrawer) Inherits from: o AbstractDrawer Provides: Methods: o __init__(self, parent=None, pagesize='A3', orientation='landscape', x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None, start=None, end=None, tracklines=0, fragments=10, fragment_size=0.9, track_size=0.75) Called on instantiation o set_page_size(self, pagesize, orientation) Set the page size to the passed size and orientation o set_margins(self, x, y, xl, xr, yt, yb) Set the drawable area of the page o set_bounds(self, start, end) Set the bounds for the elements to be drawn o is_in_bounds(self, value) Returns a boolean for whether the position is actually to be drawn o __len__(self) Returns the length of sequence that will be drawn o draw(self) Place the drawing elements on the diagram o init_fragments(self) Calculate information about sequence fragment locations on the drawing o set_track_heights(self) Calculate information about the offset of each track from the fragment base o draw_test_tracks(self) Add lines demarcating each track to the drawing o draw_track(self, track) Return the contents of the passed track as drawing elements o draw_scale(self, track) Return a scale for the passed track as drawing elements o draw_tick(self, tickpos, ctr, ticklen, track, draw_label) Return a tick line and possibly a label o draw_greytrack(self, track) Return a grey background and superposed label for the passed track as drawing elements o draw_feature_set(self, set) Return the features in the passed set as drawing elements o draw_feature(self, feature) Return a single feature as drawing elements o get_feature_sigil(self, feature, x0, x1, fragment) Return a single feature as its sigil in drawing elements o draw_graph_set(self, set) Return the data in a set of graphs as drawing elements o draw_line_graph(self, graph) Return the data in a graph as a line graph in drawing elements o draw_heat_graph(self, graph) Return the data in a graph as a heat graph in drawing elements o draw_bar_graph(self, graph) Return the data in a graph as a bar graph in drawing elements o canvas_location(self, base) Return the fragment, and the offset from the left margin, of a passed position in the sequence, on the diagram. Attributes: o tracklines Boolean for whether to draw lines dilineating tracks o pagesize Tuple describing the size of the page in pixels o x0 Float X co-ord for leftmost point of drawable area o xlim Float X co-ord for rightmost point of drawable area o y0 Float Y co-ord for lowest point of drawable area o ylim Float Y co-ord for topmost point of drawable area o pagewidth Float pixel width of drawable area o pageheight Float pixel height of drawable area o xcenter Float X co-ord of center of drawable area o ycenter Float Y co-ord of center of drawable area o start Int, base to start drawing from o end Int, base to stop drawing at o length Int, size of sequence to be drawn o fragments Int, number of fragments into which to divide the drawn sequence o fragment_size Float (0->1) the proportion of the fragment height to draw in o track_size Float (0->1) the proportion of the track height to draw in o drawing Drawing canvas o drawn_tracks List of ints denoting which tracks are to be drawn o current_track_level Int denoting which track is currently being drawn o fragment_height Float total fragment height in pixels o fragment_bases Int total fragment length in bases o fragment_lines Dictionary of top and bottom y-coords of fragment, keyed by fragment number o fragment_limits Dictionary of start and end bases of each fragment, keyed by fragment number o track_offsets Dictionary of number of pixels that each track top, center and bottom is offset from the base of a fragment, keyed by track """ def __init__(self, parent=None, pagesize='A3', orientation='landscape', x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None, start=None, end=None, tracklines=0, fragments=10, fragment_size=0.9, track_size=0.75): """ __init__(self, parent, pagesize='A3', orientation='landscape', x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None, start=None, end=None, tracklines=0, fragments=10, fragment_size=0.9, track_size=0.75) o parent Diagram object containing the data that the drawer draws o pagesize String describing the ISO size of the image, or a tuple of pixels o orientation String describing the required orientation of the final drawing ('landscape' or 'portrait') o x Float (0->1) describing the relative size of the X margins to the page o y Float (0->1) describing the relative size of the Y margins to the page o xl Float (0->1) describing the relative size of the left X margin to the page (overrides x) o xl Float (0->1) describing the relative size of the left X margin to the page (overrides x) o xr Float (0->1) describing the relative size of the right X margin to the page (overrides x) o yt Float (0->1) describing the relative size of the top Y margin to the page (overrides y) o yb Float (0->1) describing the relative size of the lower Y margin to the page (overrides y) o start Int, the position to begin drawing the diagram at o end Int, the position to stop drawing the diagram at o tracklines Boolean flag to show (or not) lines delineating tracks on the diagram o fragments Int, the number of equal fragments into which the sequence should be divided for drawing o fragment_size Float(0->1) The proportion of the available height for the fragment that should be taken up in drawing o track_size The proportion of the available track height that should be taken up in drawing """ # Use the superclass' instantiation method AbstractDrawer.__init__(self, parent, pagesize, orientation, x, y, xl, xr, yt, yb, start, end, tracklines) # Useful measurements on the page self.fragments = fragments self.fragment_size = fragment_size self.track_size = track_size def draw(self): """ draw(self) Draw a linear diagram of the data in the parent Diagram object """ # Instantiate the drawing canvas self.drawing = Drawing(self.pagesize[0], self.pagesize[1]) feature_elements = [] # holds feature elements feature_labels = [] # holds feature labels greytrack_bgs = [] # holds track background greytrack_labels = [] # holds track foreground labels scale_axes = [] # holds scale axes scale_labels = [] # holds scale axis labels # Get the tracks to be drawn self.drawn_tracks = self._parent.get_drawn_levels() # Set fragment and track sizes self.init_fragments() self.set_track_heights() # Go through each track in the parent (if it is to be drawn) one by # one and collate the data as drawing elements for track_level in self.drawn_tracks: # only use tracks to be drawn self.current_track_level = track_level # establish track level track = self._parent[track_level] # get the track at that level gbgs, glabels = self.draw_greytrack(track) # get greytrack elements greytrack_bgs.append(gbgs) greytrack_labels.append(glabels) features, flabels = self.draw_track(track) # get feature and graph elements feature_elements.append(features) feature_labels.append(flabels) if track.scale: axes, slabels = self.draw_scale(track) # get scale elements scale_axes.append(axes) scale_labels.append(slabels) # Groups listed in order of addition to page (from back to front) # Draw track backgrounds # Draw features and graphs # Draw scale axes # Draw scale labels # Draw feature labels # Draw track labels element_groups = [greytrack_bgs, feature_elements, scale_axes, scale_labels, feature_labels, greytrack_labels] for element_group in element_groups: for element_list in element_group: [self.drawing.add(element) for element in element_list] if self.tracklines: # Draw test tracks over top of diagram self.draw_test_tracks() def init_fragments(self): """ init_fragments(self) Initialises useful values for calculating the positioning of diagram elements """ # Set basic heights, lengths etc self.fragment_height = 1.*self.pageheight/self.fragments # total fragment height in pixels self.fragment_bases = ceil(1.*self.length/self.fragments) # fragment length in bases # Key fragment base and top lines by fragment number self.fragment_lines = {} # Holds bottom and top line locations of fragments, keyed by fragment number fragment_crop = (1-self.fragment_size)/2 # No of pixels to crop the fragment fragy = self.ylim # Holder for current absolute fragment base for fragment in range(self.fragments): fragtop = fragy-fragment_crop * self.fragment_height # top - crop fragbtm = fragy-(1-fragment_crop) * self.fragment_height # bottom + crop self.fragment_lines[fragment] = (fragbtm, fragtop) fragy -= self.fragment_height # next fragment base # Key base starts and ends for each fragment by fragment number self.fragment_limits = {} # Holds first and last base positions in a fragment fragment_step = self.fragment_bases # bases per fragment fragment_count = 0 # Add start and end positions for each fragment to dictionary for marker in range(int(self.start), int(self.end), int(fragment_step)): self.fragment_limits[fragment_count] = (marker, marker+fragment_step) fragment_count += 1 def set_track_heights(self): """ set_track_heights(self) Since tracks may not be of identical heights, the bottom and top offsets of each track relative to the fragment top and bottom is stored in a dictionary - self.track_offsets, keyed by track number """ top_track = max(self.drawn_tracks) # The 'highest' track number to draw trackunit_sum = 0 # Total number of 'units' for the tracks trackunits = {} # The start and end units for each track, keyed by track number heightholder = 0 # placeholder variable for track in range(1, top_track+1): # for all track numbers to 'draw' try: trackheight = self._parent[track].height # Get track height except: trackheight = 1 # ...or default to 1 trackunit_sum += trackheight # increment total track unit height trackunits[track] = (heightholder, heightholder+trackheight) heightholder += trackheight # move to next height trackunit_height = 1.*self.fragment_height*self.fragment_size/trackunit_sum # Calculate top and bottom offsets for each track, relative to fragment # base track_offsets = {} # The offsets from fragment base for each track track_crop = trackunit_height*(1-self.track_size)/2. # 'step back' in pixels assert track_crop >= 0 for track in trackunits: top = trackunits[track][1]*trackunit_height-track_crop # top offset btm = trackunits[track][0]*trackunit_height+track_crop # bottom offset ctr = btm+(top-btm)/2. # center offset track_offsets[track] = (btm, ctr, top) self.track_offsets = track_offsets def draw_test_tracks(self): """ draw_test_tracks(self) Draw red lines indicating the top and bottom of each fragment, and blue ones indicating tracks to be drawn. """ # Add lines for each fragment for fbtm, ftop in list(self.fragment_lines.values()): self.drawing.add(Line(self.x0, ftop, self.xlim, ftop, strokeColor=colors.red)) # top line self.drawing.add(Line(self.x0, fbtm, self.xlim, fbtm, strokeColor=colors.red)) # bottom line # Add track lines for this fragment - but only for drawn tracks for track in self.drawn_tracks: trackbtm = fbtm + self.track_offsets[track][0] trackctr = fbtm + self.track_offsets[track][1] tracktop = fbtm + self.track_offsets[track][2] self.drawing.add(Line(self.x0, tracktop, self.xlim, tracktop, strokeColor=colors.blue)) # top line self.drawing.add(Line(self.x0, trackctr, self.xlim, trackctr, strokeColor=colors.green)) # center line self.drawing.add(Line(self.x0, trackbtm, self.xlim, trackbtm, strokeColor=colors.blue)) # bottom line def draw_track(self, track): """ draw_track(self, track) -> ([element, element,...], [element, element,...]) o track Track object Returns a tuple (list of elements in the track, list of labels in the track) """ track_elements = [] # Holds elements from features and graphs track_labels = [] # Holds labels from features and graphs # Distribution dictionary for dealing with different set types set_methods = {FeatureSet: self.draw_feature_set, GraphSet: self.draw_graph_set } for set in track.get_sets(): # Draw the feature or graph sets elements, labels = set_methods[set.__class__](set) track_elements += elements track_labels += labels return track_elements, track_labels def draw_tick(self, tickpos, ctr, ticklen, track, draw_label): """ draw_tick(self, tickpos, ctr, ticklen) -> (element, element) o tickpos Int, position of the tick on the sequence o ctr Float, Y co-ord of the center of the track o ticklen How long to draw the tick o track Track, the track the tick is drawn on o draw_label Boolean, write the tick label? Returns a drawing element that is the tick on the scale """ assert self.start <= tickpos and tickpos <= self.end, \ "Tick at %i, but showing %i to %i" \ % (tickpos, self.start, self.end) fragment, tickx = self.canvas_location(tickpos) # Tick co-ordinates assert fragment >=0, \ "Fragment %i, tickpos %i" % (fragment, tickpos) tctr = ctr + self.fragment_lines[fragment][0] # Center line of the track tickx += self.x0 # Tick X co-ord ticktop = tctr + ticklen # Y co-ord of tick top tick = Line(tickx, tctr, tickx, ticktop, strokeColor=track.scale_color) if draw_label: # Put tick position on as label if track.scale_format == 'SInt': if tickpos >= 1000000: tickstring = str(tickpos//1000000) + " Mbp" elif tickpos >= 1000: tickstring = str(tickpos//1000) + " Kbp" else: tickstring = str(tickpos) else: tickstring = str(tickpos) label = String(0, 0, tickstring, # Make label string fontName=track.scale_font, fontSize=track.scale_fontsize, fillColor=track.scale_color) labelgroup = Group(label) rotation = angle2trig(track.scale_fontangle) labelgroup.transform = (rotation[0], rotation[1], rotation[2], rotation[3], tickx, ticktop) else: labelgroup = None return tick, labelgroup def draw_scale(self, track): """ draw_scale(self, track) -> ([element, element,...], [element, element,...]) o track Track object Returns a tuple of (list of elements in the scale, list of labels in the scale) """ scale_elements = [] # Holds axes and ticks scale_labels = [] # Holds labels if not track.scale: # No scale required, exit early return [], [] # Get track location btm, ctr, top = self.track_offsets[self.current_track_level] trackheight = (top-ctr) # For each fragment, draw the scale for this track for fragment in range(self.fragments): tbtm = btm + self.fragment_lines[fragment][0] tctr = ctr + self.fragment_lines[fragment][0] ttop = top + self.fragment_lines[fragment][0] # X-axis if fragment == self.fragments - 1: frag, x = self.canvas_location(self.end) scale_elements.append(Line(self.x0, tctr, self.x0 + x, tctr, strokeColor=track.scale_color)) else: scale_elements.append(Line(self.x0, tctr, self.xlim, tctr, strokeColor=track.scale_color)) # Y-axis scale_elements.append(Line(self.x0, tbtm, self.x0, ttop, strokeColor=track.scale_color)) if track.scale_ticks: # Ticks are required on the scale # Draw large ticks #I want the ticks to be consistently positioned relative to #the start of the sequence (position 0), not relative to the #current viewpoint (self.start and self.end) ticklen = track.scale_largeticks * trackheight tickiterval = int(track.scale_largetick_interval) #Note that we could just start the list of ticks using #range(0,self.end,tickinterval) and the filter out the #ones before self.start - but this seems wasteful. #Using tickiterval * (self.start//tickiterval) is a shortcut. largeticks = [pos for pos \ in range(tickiterval * (self.start//tickiterval), int(self.end), tickiterval) \ if pos >= self.start] for tickpos in largeticks: tick, label = self.draw_tick(tickpos, ctr, ticklen, track, track.scale_largetick_labels) scale_elements.append(tick) if label is not None: # If there's a label, add it scale_labels.append(label) # Draw small ticks ticklen = track.scale_smallticks * trackheight tickiterval = int(track.scale_smalltick_interval) smallticks = [pos for pos \ in range(tickiterval * (self.start//tickiterval), int(self.end), tickiterval) \ if pos >= self.start] for tickpos in smallticks: tick, label = self.draw_tick(tickpos, ctr, ticklen, track, track.scale_smalltick_labels) scale_elements.append(tick) if label is not None: # If there's a label, add it scale_labels.append(label) # Check to see if the track contains a graph - if it does, get the # minimum and maximum values, and put them on the scale Y-axis if track.axis_labels: for set in track.get_sets(): # Check all sets... if set.__class__ is GraphSet: # ...for a graph set graph_label_min = [] graph_label_mid = [] graph_label_max = [] for graph in set.get_graphs(): quartiles = graph.quartiles() minval, maxval = quartiles[0], quartiles[4] if graph.center is None: midval = (maxval + minval)/2. graph_label_min.append("%.3f" % minval) graph_label_max.append("%.3f" % maxval) else: diff = max((graph.center-minval), (maxval-graph.center)) minval = graph.center-diff maxval = graph.center+diff midval = graph.center graph_label_mid.append("%.3f" % midval) graph_label_min.append("%.3f" % minval) graph_label_max.append("%.3f" % maxval) for fragment in range(self.fragments): # Add to all fragment axes tbtm = btm + self.fragment_lines[fragment][0] tctr = ctr + self.fragment_lines[fragment][0] ttop = top + self.fragment_lines[fragment][0] for val, pos in [(";".join(graph_label_min), tbtm), (";".join(graph_label_max), ttop), (";".join(graph_label_mid), tctr)]: label = String(0, 0, val, fontName=track.scale_font, fontSize=track.scale_fontsize, fillColor=track.scale_color) labelgroup = Group(label) rotation = angle2trig(track.scale_fontangle) labelgroup.transform = (rotation[0], rotation[1], rotation[2], rotation[3], self.x0, pos) scale_labels.append(labelgroup) return scale_elements, scale_labels def draw_greytrack(self, track): """ draw_greytrack(self) -> ([element, element,...], [element, element,...]) o track Track object Put in a grey background to the current track in all fragments, if track specifies that we should """ greytrack_bgs = [] # Holds grey track backgrounds greytrack_labels = [] # Holds grey foreground labels if not track.greytrack: # No greytrack required, return early return [], [] # Get track location btm, ctr, top = self.track_offsets[self.current_track_level] # Add greytrack to all fragments for this track for fragment in range(self.fragments): tbtm = btm + self.fragment_lines[fragment][0] tctr = ctr + self.fragment_lines[fragment][0] ttop = top + self.fragment_lines[fragment][0] box = draw_box((self.x0, tbtm), (self.xlim, ttop), # Grey track bg colors.Color(0.96,0.96, 0.96)) # is just a box greytrack_bgs.append(box) if track.greytrack_labels: # If labels are required labelstep = (self.pagewidth)/track.greytrack_labels # how far apart should they be? label = String(0, 0, track.name, # label contents fontName=track.greytrack_font, fontSize=track.greytrack_fontsize, fillColor=track.greytrack_fontcolor) # Create a new labelgroup at each position the label is required for x in range(int(self.x0), int(self.xlim), int(labelstep)): labelgroup = Group(label) rotation = angle2trig(track.greytrack_font_rotation) labelgroup.transform = (rotation[0], rotation[1], rotation[2], rotation[3], x, tbtm) if not self.xlim-x <= labelstep: # Don't overlap the end of the track greytrack_labels.append(labelgroup) return greytrack_bgs, greytrack_labels def draw_feature_set(self, set): """ draw_feature_set(self, set) -> ([element, element,...], [element, element,...]) o set FeatureSet object Returns a tuple (list of elements describing features, list of labels for elements) """ #print 'draw feature set' feature_elements = [] # Holds diagram elements belonging to the features label_elements = [] # Holds diagram elements belonging to feature labels # Collect all the elements for the feature set for feature in set.get_features(): if self.is_in_bounds(feature.start) or self.is_in_bounds(feature.end): features, labels = self.draw_feature(feature) # get elements and labels feature_elements += features label_elements += labels return feature_elements, label_elements def draw_feature(self, feature): """ draw_feature(self, feature, parent_feature=None) -> ([element, element,...], [element, element,...]) o feature Feature containing location info Returns tuple of (list of elements describing single feature, list of labels for those elements) """ if feature.hide: # Feature hidden, don't draw it... return [], [] feature_elements = [] # Holds diagram elements belonging to the feature label_elements = [] # Holds labels belonging to the feature # A single feature may be split into subfeatures, so loop over them for start, end in feature.locations: #print start, end, feature.name # Forward strand, start > end as it overlaps zero if start > end: locs = [(start, self.end), (self.start, end)] else: locs = [(start, end)] #print locs for locstart, locend in locs: #print locstart, locend, feature.name # Correct locations in case the feature overruns the drawn sequence if locstart < self.start: locstart = self.start if locend > self.end: locend = self.end feature_boxes = self.draw_feature_location(feature, locstart, locend) for box, label in feature_boxes: feature_elements.append(box) if label is not None: label_elements.append(label) return feature_elements, label_elements def draw_feature_location(self, feature, locstart, locend): feature_boxes = [] # Get start and end positions for feature/subfeatures start_fragment, start_offset = self.canvas_location(locstart) end_fragment, end_offset = self.canvas_location(locend) #print "start_fragment, start_offset", start_fragment, start_offset #print "end_fragment, end_offset", end_fragment, end_offset #print "start, end", locstart, locend # Note that there is a strange situation where a feature may be in # several parts, and one or more of those parts may end up being # drawn on a non-existent fragment. So we check that the start and # end fragments do actually exist in terms of the drawing allowed_fragments = list(self.fragment_limits.keys()) if start_fragment in allowed_fragments and end_fragment in allowed_fragments: #print feature.name, feature.start, feature.end, start_offset, end_offset if start_fragment == end_fragment: # Feature is found on one fragment feature_box, label = self.get_feature_sigil(feature, start_offset, end_offset, start_fragment) feature_boxes.append((feature_box, label)) #feature_elements.append(feature_box) #if label is not None: # There is a label for the feature # label_elements.append(label) else: # Feature is split over two or more fragments fragment = start_fragment start = start_offset # The bit that runs up to the end of the first fragment, # and any bits that subsequently span whole fragments while self.fragment_limits[fragment][1] < locend: #print fragment, self.fragment_limits[fragment][1], locend feature_box, label = self.get_feature_sigil(feature, start, self.pagewidth, fragment) fragment += 1 # move to next fragment start = 0 # start next sigil from start of fragment feature_boxes.append((feature_box, label)) #feature_elements.append(feature_box) #if label is not None: # There's a label for the feature # label_elements.append(label) # The last bit of the feature #print locend, self.end, fragment #print self.fragment_bases, self.length feature_box, label = self.get_feature_sigil(feature, 0, end_offset, fragment) feature_boxes.append((feature_box, label)) #if locstart > locend: # print locstart, locend, feature.strand, feature_boxes, feature.name return feature_boxes def get_feature_sigil(self, feature, x0, x1, fragment, **kwargs): """ get_feature_sigil(self, feature, x0, x1, fragment) -> (element, element, element) o feature Feature object o x0 Start X co-ordinate on diagram o x1 End X co-ordinate on diagram o fragment The fragment on which the feature appears Returns a drawable indicator of the feature, and any required label for it """ # Establish co-ordinates for drawing x0, x1 = self.x0 + x0, self.x0 + x1 btm, ctr, top = self.track_offsets[self.current_track_level] try: btm += self.fragment_lines[fragment][0] ctr += self.fragment_lines[fragment][0] top += self.fragment_lines[fragment][0] except: # Only called if the method screws up big time print("We've got a screw-up") print(self.start, self.end) print(self.fragment_bases) print(x0, x1) for locstart, locend in feature.locations: print(self.canvas_location(locstart)) print(self.canvas_location(locend)) print('FEATURE\n', feature) 1/0 # Distribution dictionary for various ways of drawing the feature # Each method takes the corners of a containing box and a color # as argument draw_methods = {'BOX': draw_box, 'ARROW': draw_arrow, } method = draw_methods[feature.sigil] kwargs['head_length_ratio'] = feature.arrowhead_length kwargs['shaft_height_ratio'] = feature.arrowshaft_height #Support for clickable links... needs ReportLab 2.4 or later #which added support for links in SVG output. if hasattr(feature, "url") : kwargs["hrefURL"] = feature.url kwargs["hrefTitle"] = feature.name strand = feature.strand # Get sigil for the feature, location dependent on the feature strand if strand == 1: sigil = method((x0, ctr), (x1, top), color=feature.color, orientation='right', **kwargs) elif strand == -1: sigil = method((x1, btm), (x0, ctr), color=feature.color, orientation='left', **kwargs) else: sigil = method((x0, btm), (x1, top), color=feature.color, **kwargs) if feature.label: # Feature requires a label label = String(0, 0, feature.name, fontName=feature.label_font, fontSize=feature.label_size, fillColor=feature.label_color) labelgroup = Group(label) # Feature is on top, or covers both strands (location affects # the height and rotation of the label) if feature.strand in (0, 1): rotation = angle2trig(feature.label_angle) if feature.label_position in ('start', "5'", 'left'): pos = x0 elif feature.label_position in ('middle', 'center', 'centre'): pos = (x1 + x0)/2. else: pos = x1 labelgroup.transform = (rotation[0], rotation[1], rotation[2], rotation[3], pos, top) else: # Feature on bottom strand rotation = angle2trig(feature.label_angle + 180) if feature.label_position in ('start', "5'", 'left'): pos = x1 elif feature.label_position in ('middle', 'center', 'centre'): pos = (x1 + x0)/2. else: pos = x0 labelgroup.transform = (rotation[0], rotation[1], rotation[2], rotation[3], pos, btm) else: labelgroup = None return sigil, labelgroup def draw_graph_set(self, set): """ draw_graph_set(self, set) -> ([element, element,...], [element, element,...]) o set GraphSet object Returns tuple (list of graph elements, list of graph labels) """ #print 'draw graph set' elements = [] # Holds graph elements # Distribution dictionary for how to draw the graph style_methods = {'line': self.draw_line_graph, 'heat': self.draw_heat_graph, 'bar': self.draw_bar_graph } for graph in set.get_graphs(): elements += style_methods[graph.style](graph) return elements, [] def draw_line_graph(self, graph): """ draw_line_graph(self, graph) -> [element, element,...] o graph Graph object Returns a line graph as a list of drawable elements """ #print '\tdraw_line_graph' line_elements = [] # Holds drawable elements # Get graph data data_quartiles = graph.quartiles() minval, maxval = data_quartiles[0],data_quartiles[4] btm, ctr, top = self.track_offsets[self.current_track_level] trackheight = 0.5*(top-btm) datarange = maxval - minval if datarange == 0: datarange = trackheight data = graph[self.start:self.end] # midval is the value at which the x-axis is plotted, and is the # central ring in the track if graph.center is None: midval = (maxval + minval)/2. else: midval = graph.center # Whichever is the greatest difference: max-midval or min-midval, is # taken to specify the number of pixel units resolved along the # y-axis resolution = max((midval-minval), (maxval-midval)) # Start from first data point pos, val = data[0] lastfrag, lastx = self.canvas_location(pos) lastx += self.x0 # Start xy co-ords lasty = trackheight*(val-midval)/resolution + \ self.fragment_lines[lastfrag][0] + ctr lastval = val # Add a series of lines linking consecutive data points for pos, val in data: frag, x = self.canvas_location(pos) x += self.x0 # next xy co-ords y = trackheight*(val-midval)/resolution + \ self.fragment_lines[frag][0] + ctr if frag == lastfrag: # Points on the same fragment: draw the line line_elements.append(Line(lastx, lasty, x, y, strokeColor = graph.poscolor, strokeWidth = graph.linewidth)) else: # Points not on the same fragment, so interpolate tempval = 1.*(val-lastval)/(x-lastx) tempy = trackheight*(val-midval)/resolution + \ self.fragment_lines[lastfrag][0] + ctr line_elements.append(Line(lastx, lasty, self.xlim, tempy, strokeColor = graph.poscolor, strokeWidth = graph.linewidth)) tempy = trackheight*(val-midval)/resolution + \ self.fragment_lines[frag][0] + ctr line_elements.append(Line(self.x0, tempy, x, y, strokeColor = graph.poscolor, strokeWidth = graph.linewidth)) lastfrag, lastx, lasty, lastval = frag, x, y, val return line_elements def draw_heat_graph(self, graph): """ draw_heat_graph(self, graph) -> [element, element,...] o graph Graph object Returns a list of drawable elements for the heat graph """ #print '\tdraw_heat_graph' # At each point contained in the graph data, we draw a box that is the # full height of the track, extending from the midpoint between the # previous and current data points to the midpoint between the current # and next data points heat_elements = [] # Holds drawable elements for the graph # Get graph data and information data_quartiles = graph.quartiles() minval, maxval = data_quartiles[0],data_quartiles[4] midval = (maxval + minval)/2. # mid is the value at the X-axis btm, ctr, top = self.track_offsets[self.current_track_level] trackheight = (top-btm) #print self.start, self.end newdata = intermediate_points(self.start, self.end, graph[self.start:self.end]) #print newdata # Create elements on the graph, indicating a large positive value by # the graph's poscolor, and a large negative value by the graph's # negcolor attributes for pos0, pos1, val in newdata: fragment0, x0 = self.canvas_location(pos0) fragment1, x1 = self.canvas_location(pos1) x0, x1 = self.x0 + x0, self.x0 + x1 # account for margin #print 'x1 before:', x1 # Calculate the heat color, based on the differential between # the value and the median value heat = colors.linearlyInterpolatedColor(graph.poscolor, graph.negcolor, maxval, minval, val) # Draw heat box if fragment0 == fragment1: # Box is contiguous on one fragment if pos1 >= self.fragment_limits[fragment0][1]: x1 = self.xlim ttop = top + self.fragment_lines[fragment0][0] tbtm = btm + self.fragment_lines[fragment0][0] #print 'equal', pos0, pos1, val #print pos0, pos1, fragment0, fragment1 heat_elements.append(draw_box((x0, tbtm), (x1, ttop), color=heat, border=None)) else: # box is split over two or more fragments #if pos0 >= self.fragment_limits[fragment0][0]: # fragment0 += 1 fragment = fragment0 start = x0 while self.fragment_limits[fragment][1] <= pos1: #print pos0, self.fragment_limits[fragment][1], pos1 ttop = top + self.fragment_lines[fragment][0] tbtm = btm + self.fragment_lines[fragment][0] heat_elements.append(draw_box((start, tbtm), (self.xlim, ttop), color=heat, border=None)) fragment += 1 start = self.x0 ttop = top + self.fragment_lines[fragment][0] tbtm = btm + self.fragment_lines[fragment][0] # Add the last part of the bar #print 'x1 after:', x1, '\n' heat_elements.append(draw_box((self.x0, tbtm), (x1, ttop), color=heat, border=None)) return heat_elements def draw_bar_graph(self, graph): """ draw_bar_graph(self, graph) -> [element, element,...] o graph Graph object Returns a list of drawable elements for a bar graph of the passed Graph object """ #print '\tdraw_bar_graph' # At each point contained in the graph data, we draw a vertical bar # from the track center to the height of the datapoint value (positive # values go up in one color, negative go down in the alternative # color). bar_elements = [] # Holds drawable elements for the graph # Set the number of pixels per unit for the data data_quartiles = graph.quartiles() minval, maxval = data_quartiles[0],data_quartiles[4] btm, ctr, top = self.track_offsets[self.current_track_level] trackheight = 0.5*(top-btm) datarange = maxval - minval if datarange == 0: datarange = trackheight data = graph[self.start:self.end] # midval is the value at which the x-axis is plotted, and is the # central ring in the track if graph.center is None: midval = (maxval + minval)/2. else: midval = graph.center # Convert data into 'binned' blocks, covering half the distance to the # next data point on either side, accounting for the ends of fragments # and tracks newdata = intermediate_points(self.start, self.end, graph[self.start:self.end]) # Whichever is the greatest difference: max-midval or min-midval, is # taken to specify the number of pixel units resolved along the # y-axis resolution = max((midval-minval), (maxval-midval)) if resolution == 0: resolution = trackheight # Create elements for the bar graph based on newdata for pos0, pos1, val in newdata: fragment0, x0 = self.canvas_location(pos0) fragment1, x1 = self.canvas_location(pos1) x0, x1 = self.x0 + x0, self.x0 + x1 # account for margin barval = trackheight*(val-midval)/resolution if barval >=0: # Different colors for bars that extend above... barcolor = graph.poscolor else: # ...or below the axis barcolor = graph.negcolor # Draw bar if fragment0 == fragment1: # Box is contiguous if pos1 >= self.fragment_limits[fragment0][1]: x1 = self.xlim tctr = ctr + self.fragment_lines[fragment0][0] barval += tctr bar_elements.append(draw_box((x0, tctr), (x1, barval), color=barcolor)) else: # Box is split over two or more fragments fragment = fragment0 #if pos0 >= self.fragment_limits[fragment0][0]: # fragment += 1 start = x0 while self.fragment_limits[fragment][1] < pos1: tctr = ctr + self.fragment_lines[fragment][0] thisbarval = barval + tctr bar_elements.append(draw_box((start, tctr), (self.xlim, thisbarval), color=barcolor)) fragment += 1 start = self.x0 tctr = ctr + self.fragment_lines[fragment1][0] barval += tctr # Add the last part of the bar bar_elements.append(draw_box((self.x0, tctr), (x1, barval), color=barcolor)) return bar_elements def canvas_location(self, base): """ canvas_location(self, base) -> (int, float) o base The base number on the genome sequence Returns the x-coordinate and fragment number of a base on the genome sequence, in the context of the current drawing setup """ base = int(base - self.start) # number of bases we are from the start fragment = int(base / self.fragment_bases) if fragment < 1: # First fragment base_offset = base fragment = 0 else: # Calculate number of bases from start of fragment base_offset = base % self.fragment_bases # Calculate number of pixels from start of fragment x_offset = 1. * self.pagewidth * base_offset / self.fragment_bases return fragment, x_offset