# Copyright (C) 2002, Thomas Hamelryck (thamelry@binf.ku.dk) # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Atom class, used in Structure objects.""" import warnings import numpy from Bio.PDB.Entity import DisorderedEntityWrapper from Bio.PDB.PDBExceptions import PDBConstructionWarning from Bio.PDB.Vector import Vector class Atom: def __init__(self, name, coord, bfactor, occupancy, altloc, fullname, serial_number, element=None): """ Atom object. The Atom object stores atom name (both with and without spaces), coordinates, B factor, occupancy, alternative location specifier and (optionally) anisotropic B factor and standard deviations of B factor and positions. @param name: atom name (eg. "CA"). Note that spaces are normally stripped. @type name: string @param coord: atomic coordinates (x,y,z) @type coord: Numeric array (Float0, size 3) @param bfactor: isotropic B factor @type bfactor: number @param occupancy: occupancy (0.0-1.0) @type occupancy: number @param altloc: alternative location specifier for disordered atoms @type altloc: string @param fullname: full atom name, including spaces, e.g. " CA ". Normally these spaces are stripped from the atom name. @type fullname: string @param element: atom element, e.g. "C" for Carbon, "HG" for mercury, @type fullname: uppercase string (or None if unknown) """ self.level="A" # Reference to the residue self.parent=None # the atomic data self.name=name # eg. CA, spaces are removed from atom name self.fullname=fullname # e.g. " CA ", spaces included self.coord=coord self.bfactor=bfactor self.occupancy=occupancy self.altloc=altloc self.full_id=None # (structure id, model id, chain id, residue id, atom id) self.id=name # id of atom is the atom name (e.g. "CA") self.disordered_flag=0 self.anisou_array=None self.siguij_array=None self.sigatm_array=None self.serial_number=serial_number # Dictionary that keeps addictional properties self.xtra={} if not element: warnings.warn("Atom object (name=%s) without element" % name, PDBConstructionWarning) element = "?" print(name, "--> ?") elif len(element)>2 or element != element.upper() or element != element.strip(): raise ValueError(element) self.element=element # Special methods def __repr__(self): "Print Atom object as ." return "" % self.get_id() def __sub__(self, other): """ Calculate distance between two atoms. Example: >>> distance=atom1-atom2 @param other: the other atom @type other: L{Atom} """ diff=self.coord-other.coord return numpy.sqrt(numpy.dot(diff,diff)) # set methods def set_serial_number(self, n): self.serial_number=n def set_bfactor(self, bfactor): self.bfactor=bfactor def set_coord(self, coord): self.coord=coord def set_altloc(self, altloc): self.altloc=altloc def set_occupancy(self, occupancy): self.occupancy=occupancy def set_sigatm(self, sigatm_array): """ Set standard deviation of atomic parameters. The standard deviation of atomic parameters consists of 3 positional, 1 B factor and 1 occupancy standard deviation. @param sigatm_array: standard deviations of atomic parameters. @type sigatm_array: Numeric array (length 5) """ self.sigatm_array=sigatm_array def set_siguij(self, siguij_array): """ Set standard deviations of anisotropic temperature factors. @param siguij_array: standard deviations of anisotropic temperature factors. @type siguij_array: Numeric array (length 6) """ self.siguij_array=siguij_array def set_anisou(self, anisou_array): """ Set anisotropic B factor. @param anisou_array: anisotropic B factor. @type anisou_array: Numeric array (length 6) """ self.anisou_array=anisou_array # Public methods def flag_disorder(self): """Set the disordered flag to 1. The disordered flag indicates whether the atom is disordered or not. """ self.disordered_flag=1 def is_disordered(self): "Return the disordered flag (1 if disordered, 0 otherwise)." return self.disordered_flag def set_parent(self, parent): """Set the parent residue. Arguments: o parent - Residue object """ self.parent=parent def detach_parent(self): "Remove reference to parent." self.parent=None def get_sigatm(self): "Return standard deviation of atomic parameters." return self.sigatm_array def get_siguij(self): "Return standard deviations of anisotropic temperature factors." return self.siguij_array def get_anisou(self): "Return anisotropic B factor." return self.anisou_array def get_parent(self): "Return parent residue." return self.parent def get_serial_number(self): return self.serial_number def get_name(self): "Return atom name." return self.name def get_id(self): "Return the id of the atom (which is its atom name)." return self.id def get_full_id(self): """Return the full id of the atom. The full id of an atom is the tuple (structure id, model id, chain id, residue id, atom name, altloc). """ return self.parent.get_full_id()+((self.name, self.altloc),) def get_coord(self): "Return atomic coordinates." return self.coord def get_bfactor(self): "Return B factor." return self.bfactor def get_occupancy(self): "Return occupancy." return self.occupancy def get_fullname(self): "Return the atom name, including leading and trailing spaces." return self.fullname def get_altloc(self): "Return alternative location specifier." return self.altloc def get_level(self): return self.level def transform(self, rot, tran): """ Apply rotation and translation to the atomic coordinates. Example: >>> rotation=rotmat(pi, Vector(1,0,0)) >>> translation=array((0,0,1), 'f') >>> atom.transform(rotation, translation) @param rot: A right multiplying rotation matrix @type rot: 3x3 Numeric array @param tran: the translation vector @type tran: size 3 Numeric array """ self.coord=numpy.dot(self.coord, rot)+tran def get_vector(self): """ Return coordinates as Vector. @return: coordinates as 3D vector @rtype: Vector """ x,y,z=self.coord return Vector(x,y,z) class DisorderedAtom(DisorderedEntityWrapper): """ This class contains all Atom objects that represent the same disordered atom. One of these atoms is "selected" and all method calls not caught by DisorderedAtom are forwarded to the selected Atom object. In that way, a DisorderedAtom behaves exactly like a normal Atom. By default, the selected Atom object represents the Atom object with the highest occupancy, but a different Atom object can be selected by using the disordered_select(altloc) method. """ def __init__(self, id): """ Arguments: o id - string, atom name """ self.last_occupancy=-1 DisorderedEntityWrapper.__init__(self, id) # Special methods def __repr__(self): return "" % self.get_id() def disordered_add(self, atom): "Add a disordered atom." # Add atom to dict, use altloc as key atom.flag_disorder() # set the residue parent of the added atom residue=self.get_parent() atom.set_parent(residue) altloc=atom.get_altloc() occupancy=atom.get_occupancy() self[altloc]=atom if occupancy>self.last_occupancy: self.last_occupancy=occupancy self.disordered_select(altloc)