# Copyright 2000-2002 Brad Chapman. # Copyright 2004-2005 by M de Hoon. # Copyright 2007-2009 by Peter Cock. # All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Provides objects to represent biological sequences with alphabets. See also U{http://biopython.org/wiki/Seq} and the chapter in our tutorial: - U{http://biopython.org/DIST/docs/tutorial/Tutorial.html} - U{http://biopython.org/DIST/docs/tutorial/Tutorial.pdf} """ __docformat__ ="epytext en" #Don't just use plain text in epydoc API pages! import string #for maketrans only import array import sys from Bio import Alphabet from Bio.Alphabet import IUPAC from Bio.SeqRecord import SeqRecord from Bio.Data.IUPACData import ambiguous_dna_complement, ambiguous_rna_complement from Bio.Data import CodonTable def _maketrans(complement_mapping): """Makes a python string translation table (PRIVATE). Arguments: - complement_mapping - a dictionary such as ambiguous_dna_complement and ambiguous_rna_complement from Data.IUPACData. Returns a translation table (a string of length 256) for use with the python string's translate method to use in a (reverse) complement. Compatible with lower case and upper case sequences. For internal use only. """ before = ''.join(complement_mapping.keys()) after = ''.join(complement_mapping.values()) before = before + before.lower() after = after + after.lower() if sys.version_info[0] == 3 : return str.maketrans(before, after) else: return string.maketrans(before, after) _dna_complement_table = _maketrans(ambiguous_dna_complement) _rna_complement_table = _maketrans(ambiguous_rna_complement) class Seq(object): """A read-only sequence object (essentially a string with an alphabet). Like normal python strings, our basic sequence object is immutable. This prevents you from doing my_seq[5] = "A" for example, but does allow Seq objects to be used as dictionary keys. The Seq object provides a number of string like methods (such as count, find, split and strip), which are alphabet aware where appropriate. In addition to the string like sequence, the Seq object has an alphabet property. This is an instance of an Alphabet class from Bio.Alphabet, for example generic DNA, or IUPAC DNA. This describes the type of molecule (e.g. RNA, DNA, protein) and may also indicate the expected symbols (letters). The Seq object also provides some biological methods, such as complement, reverse_complement, transcribe, back_transcribe and translate (which are not applicable to sequences with a protein alphabet). """ def __init__(self, data, alphabet = Alphabet.generic_alphabet): """Create a Seq object. Arguments: - seq - Sequence, required (string) - alphabet - Optional argument, an Alphabet object from Bio.Alphabet You will typically use Bio.SeqIO to read in sequences from files as SeqRecord objects, whose sequence will be exposed as a Seq object via the seq property. However, will often want to create your own Seq objects directly: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC >>> my_seq = Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF", ... IUPAC.protein) >>> my_seq Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein()) >>> print my_seq MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF >>> my_seq.alphabet IUPACProtein() """ # Enforce string storage if not isinstance(data, basestring): raise TypeError("The sequence data given to a Seq object should " "be a string (not another Seq object etc)") self._data = data self.alphabet = alphabet # Seq API requirement # A data property is/was a Seq API requirement # Note this is read only since the Seq object is meant to be imutable @property def data(self) : """Sequence as a string (DEPRECATED). This is a read only property provided for backwards compatility with older versions of Biopython (as is the tostring() method). We now encourage you to use str(my_seq) instead of my_seq.data or the method my_seq.tostring(). In recent releases of Biopython it was possible to change a Seq object by updating its data property, but this triggered a deprecation warning. Now the data property is read only, since Seq objects are meant to be immutable: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna >>> my_seq = Seq("ACGT", generic_dna) >>> str(my_seq) == my_seq.tostring() == "ACGT" True >>> my_seq.data = "AAAA" Traceback (most recent call last): ... AttributeError: can't set attribute """ import warnings warnings.warn("Accessing the .data attribute is deprecated. Please " "use str(my_seq) or my_seq.tostring() instead of " "my_seq.data.", DeprecationWarning) return str(self) def __repr__(self): """Returns a (truncated) representation of the sequence for debugging.""" if len(self) > 60: #Shows the last three letters as it is often useful to see if there #is a stop codon at the end of a sequence. #Note total length is 54+3+3=60 return "%s('%s...%s', %s)" % (self.__class__.__name__, str(self)[:54], str(self)[-3:], repr(self.alphabet)) else: return "%s(%s, %s)" % (self.__class__.__name__, repr(self._data), repr(self.alphabet)) def __str__(self): """Returns the full sequence as a python string, use str(my_seq). Note that Biopython 1.44 and earlier would give a truncated version of repr(my_seq) for str(my_seq). If you are writing code which need to be backwards compatible with old Biopython, you should continue to use my_seq.tostring() rather than str(my_seq). """ return self._data def __hash__(self): """Hash for comparison. See the __cmp__ documentation - we plan to change this! """ return id(self) #Currently use object identity for equality testing def __cmp__(self, other): """Compare the sequence to another sequence or a string (README). Historically comparing Seq objects has done Python object comparison. After considerable discussion (keeping in mind constraints of the Python language, hashes and dictionary support) a future release of Biopython will change this to use simple string comparison. The plan is that comparing incompatible alphabets (e.g. DNA to RNA) will trigger a warning. This version of Biopython still does Python object comparison, but with a warning about this future change. During this transition period, please just do explicit comparisons: >>> seq1 = Seq("ACGT") >>> seq2 = Seq("ACGT") >>> id(seq1) == id(seq2) False >>> str(seq1) == str(seq2) True Note - This method indirectly supports ==, < , etc. """ if hasattr(other, "alphabet"): #other should be a Seq or a MutableSeq import warnings warnings.warn("In future comparing Seq objects will use string " "comparison (not object comparison). Incompatible " "alphabets will trigger a warning (not an exception). " "In the interim please use id(seq1)==id(seq2) or " "str(seq1)==str(seq2) to make your code explicit " "and to avoid this warning.", FutureWarning) return cmp(id(self), id(other)) def __len__(self): """Returns the length of the sequence, use len(my_seq).""" return len(self._data) # Seq API requirement def __getitem__(self, index) : # Seq API requirement """Returns a subsequence of single letter, use my_seq[index].""" #Note since Python 2.0, __getslice__ is deprecated #and __getitem__ is used instead. #See http://docs.python.org/ref/sequence-methods.html if isinstance(index, int): #Return a single letter as a string return self._data[index] else: #Return the (sub)sequence as another Seq object return Seq(self._data[index], self.alphabet) def __add__(self, other): """Add another sequence or string to this sequence. If adding a string to a Seq, the alphabet is preserved: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_protein >>> Seq("MELKI", generic_protein) + "LV" Seq('MELKILV', ProteinAlphabet()) When adding two Seq (like) objects, the alphabets are important. Consider this example: >>> from Bio.Seq import Seq >>> from Bio.Alphabet.IUPAC import unambiguous_dna, ambiguous_dna >>> unamb_dna_seq = Seq("ACGT", unambiguous_dna) >>> ambig_dna_seq = Seq("ACRGT", ambiguous_dna) >>> unamb_dna_seq Seq('ACGT', IUPACUnambiguousDNA()) >>> ambig_dna_seq Seq('ACRGT', IUPACAmbiguousDNA()) If we add the ambiguous and unambiguous IUPAC DNA alphabets, we get the more general ambiguous IUPAC DNA alphabet: >>> unamb_dna_seq + ambig_dna_seq Seq('ACGTACRGT', IUPACAmbiguousDNA()) However, if the default generic alphabet is included, the result is a generic alphabet: >>> Seq("") + ambig_dna_seq Seq('ACRGT', Alphabet()) You can't add RNA and DNA sequences: >>> from Bio.Alphabet import generic_dna, generic_rna >>> Seq("ACGT", generic_dna) + Seq("ACGU", generic_rna) Traceback (most recent call last): ... TypeError: Incompatable alphabets DNAAlphabet() and RNAAlphabet() You can't add nucleotide and protein sequences: >>> from Bio.Alphabet import generic_dna, generic_protein >>> Seq("ACGT", generic_dna) + Seq("MELKI", generic_protein) Traceback (most recent call last): ... TypeError: Incompatable alphabets DNAAlphabet() and ProteinAlphabet() """ if hasattr(other, "alphabet"): #other should be a Seq or a MutableSeq if not Alphabet._check_type_compatible([self.alphabet, other.alphabet]): raise TypeError("Incompatable alphabets %s and %s" \ % (repr(self.alphabet), repr(other.alphabet))) #They should be the same sequence type (or one of them is generic) a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet]) return self.__class__(str(self) + str(other), a) elif isinstance(other, basestring): #other is a plain string - use the current alphabet return self.__class__(str(self) + other, self.alphabet) elif isinstance(other, SeqRecord): #Get the SeqRecord's __radd__ to handle this return NotImplemented else : raise TypeError def __radd__(self, other): """Adding a sequence on the left. If adding a string to a Seq, the alphabet is preserved: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_protein >>> "LV" + Seq("MELKI", generic_protein) Seq('LVMELKI', ProteinAlphabet()) Adding two Seq (like) objects is handled via the __add__ method. """ if hasattr(other, "alphabet"): #other should be a Seq or a MutableSeq if not Alphabet._check_type_compatible([self.alphabet, other.alphabet]): raise TypeError("Incompatable alphabets %s and %s" \ % (repr(self.alphabet), repr(other.alphabet))) #They should be the same sequence type (or one of them is generic) a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet]) return self.__class__(str(other) + str(self), a) elif isinstance(other, basestring): #other is a plain string - use the current alphabet return self.__class__(other + str(self), self.alphabet) else: raise TypeError def tostring(self): # Seq API requirement """Returns the full sequence as a python string (OBSOLETE). Although not formally deprecated, you are now encouraged to use str(my_seq) instead of my_seq.tostring().""" return str(self) def tomutable(self): # Needed? Or use a function? """Returns the full sequence as a MutableSeq object. >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC >>> my_seq = Seq("MKQHKAMIVALIVICITAVVAAL", ... IUPAC.protein) >>> my_seq Seq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein()) >>> my_seq.tomutable() MutableSeq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein()) Note that the alphabet is preserved. """ return MutableSeq(str(self), self.alphabet) def _get_seq_str_and_check_alphabet(self, other_sequence): """string/Seq/MutableSeq to string, checking alphabet (PRIVATE). For a string argument, returns the string. For a Seq or MutableSeq, it checks the alphabet is compatible (raising an exception if it isn't), and then returns a string. """ try: other_alpha = other_sequence.alphabet except AttributeError: #Assume other_sequence is a string return other_sequence #Other should be a Seq or a MutableSeq if not Alphabet._check_type_compatible([self.alphabet, other_alpha]): raise TypeError("Incompatable alphabets %s and %s" \ % (repr(self.alphabet), repr(other_alpha))) #Return as a string return str(other_sequence) def count(self, sub, start=0, end=sys.maxint): """Non-overlapping count method, like that of a python string. This behaves like the python string method of the same name, which does a non-overlapping count! Returns an integer, the number of occurrences of substring argument sub in the (sub)sequence given by [start:end]. Optional arguments start and end are interpreted as in slice notation. Arguments: - sub - a string or another Seq object to look for - start - optional integer, slice start - end - optional integer, slice end e.g. >>> from Bio.Seq import Seq >>> my_seq = Seq("AAAATGA") >>> print my_seq.count("A") 5 >>> print my_seq.count("ATG") 1 >>> print my_seq.count(Seq("AT")) 1 >>> print my_seq.count("AT", 2, -1) 1 HOWEVER, please note because python strings and Seq objects (and MutableSeq objects) do a non-overlapping search, this may not give the answer you expect: >>> "AAAA".count("AA") 2 >>> print Seq("AAAA").count("AA") 2 A non-overlapping search would give the answer as three! """ #If it has one, check the alphabet: sub_str = self._get_seq_str_and_check_alphabet(sub) return str(self).count(sub_str, start, end) def __contains__(self, char): """Implements the 'in' keyword, like a python string. e.g. >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna, generic_rna, generic_protein >>> my_dna = Seq("ATATGAAATTTGAAAA", generic_dna) >>> "AAA" in my_dna True >>> Seq("AAA") in my_dna True >>> Seq("AAA", generic_dna) in my_dna True Like other Seq methods, this will raise a type error if another Seq (or Seq like) object with an incompatible alphabet is used: >>> Seq("AAA", generic_rna) in my_dna Traceback (most recent call last): ... TypeError: Incompatable alphabets DNAAlphabet() and RNAAlphabet() >>> Seq("AAA", generic_protein) in my_dna Traceback (most recent call last): ... TypeError: Incompatable alphabets DNAAlphabet() and ProteinAlphabet() """ #If it has one, check the alphabet: sub_str = self._get_seq_str_and_check_alphabet(char) return sub_str in str(self) def find(self, sub, start=0, end=sys.maxint): """Find method, like that of a python string. This behaves like the python string method of the same name. Returns an integer, the index of the first occurrence of substring argument sub in the (sub)sequence given by [start:end]. Arguments: - sub - a string or another Seq object to look for - start - optional integer, slice start - end - optional integer, slice end Returns -1 if the subsequence is NOT found. e.g. Locating the first typical start codon, AUG, in an RNA sequence: >>> from Bio.Seq import Seq >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG") >>> my_rna.find("AUG") 3 """ #If it has one, check the alphabet: sub_str = self._get_seq_str_and_check_alphabet(sub) return str(self).find(sub_str, start, end) def rfind(self, sub, start=0, end=sys.maxint): """Find from right method, like that of a python string. This behaves like the python string method of the same name. Returns an integer, the index of the last (right most) occurrence of substring argument sub in the (sub)sequence given by [start:end]. Arguments: - sub - a string or another Seq object to look for - start - optional integer, slice start - end - optional integer, slice end Returns -1 if the subsequence is NOT found. e.g. Locating the last typical start codon, AUG, in an RNA sequence: >>> from Bio.Seq import Seq >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG") >>> my_rna.rfind("AUG") 15 """ #If it has one, check the alphabet: sub_str = self._get_seq_str_and_check_alphabet(sub) return str(self).rfind(sub_str, start, end) def startswith(self, prefix, start=0, end=sys.maxint): """Does the Seq start with the given prefix? Returns True/False. This behaves like the python string method of the same name. Return True if the sequence starts with the specified prefix (a string or another Seq object), False otherwise. With optional start, test sequence beginning at that position. With optional end, stop comparing sequence at that position. prefix can also be a tuple of strings to try. e.g. >>> from Bio.Seq import Seq >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG") >>> my_rna.startswith("GUC") True >>> my_rna.startswith("AUG") False >>> my_rna.startswith("AUG", 3) True >>> my_rna.startswith(("UCC","UCA","UCG"),1) True """ #If it has one, check the alphabet: if isinstance(prefix, tuple): #TODO - Once we drop support for Python 2.4, instead of this #loop offload to the string method (requires Python 2.5+). #Check all the alphabets first... prefix_strings = [self._get_seq_str_and_check_alphabet(p) \ for p in prefix] for prefix_str in prefix_strings: if str(self).startswith(prefix_str, start, end): return True return False else: prefix_str = self._get_seq_str_and_check_alphabet(prefix) return str(self).startswith(prefix_str, start, end) def endswith(self, suffix, start=0, end=sys.maxint): """Does the Seq end with the given suffix? Returns True/False. This behaves like the python string method of the same name. Return True if the sequence ends with the specified suffix (a string or another Seq object), False otherwise. With optional start, test sequence beginning at that position. With optional end, stop comparing sequence at that position. suffix can also be a tuple of strings to try. e.g. >>> from Bio.Seq import Seq >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG") >>> my_rna.endswith("UUG") True >>> my_rna.endswith("AUG") False >>> my_rna.endswith("AUG", 0, 18) True >>> my_rna.endswith(("UCC","UCA","UUG")) True """ #If it has one, check the alphabet: if isinstance(suffix, tuple): #TODO - Once we drop support for Python 2.4, instead of this #loop offload to the string method (requires Python 2.5+). #Check all the alphabets first... suffix_strings = [self._get_seq_str_and_check_alphabet(p) \ for p in suffix] for suffix_str in suffix_strings: if str(self).endswith(suffix_str, start, end): return True return False else: suffix_str = self._get_seq_str_and_check_alphabet(suffix) return str(self).endswith(suffix_str, start, end) def split(self, sep=None, maxsplit=-1): """Split method, like that of a python string. This behaves like the python string method of the same name. Return a list of the 'words' in the string (as Seq objects), using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done. If maxsplit is ommited, all splits are made. Following the python string method, sep will by default be any white space (tabs, spaces, newlines) but this is unlikely to apply to biological sequences. e.g. >>> from Bio.Seq import Seq >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG") >>> my_aa = my_rna.translate() >>> my_aa Seq('VMAIVMGR*KGAR*L', HasStopCodon(ExtendedIUPACProtein(), '*')) >>> my_aa.split("*") [Seq('VMAIVMGR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('KGAR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('L', HasStopCodon(ExtendedIUPACProtein(), '*'))] >>> my_aa.split("*",1) [Seq('VMAIVMGR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('KGAR*L', HasStopCodon(ExtendedIUPACProtein(), '*'))] See also the rsplit method: >>> my_aa.rsplit("*",1) [Seq('VMAIVMGR*KGAR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('L', HasStopCodon(ExtendedIUPACProtein(), '*'))] """ #If it has one, check the alphabet: sep_str = self._get_seq_str_and_check_alphabet(sep) #TODO - If the sep is the defined stop symbol, or gap char, #should we adjust the alphabet? return [Seq(part, self.alphabet) \ for part in str(self).split(sep_str, maxsplit)] def rsplit(self, sep=None, maxsplit=-1): """Right split method, like that of a python string. This behaves like the python string method of the same name. Return a list of the 'words' in the string (as Seq objects), using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done COUNTING FROM THE RIGHT. If maxsplit is ommited, all splits are made. Following the python string method, sep will by default be any white space (tabs, spaces, newlines) but this is unlikely to apply to biological sequences. e.g. print my_seq.rsplit("*",1) See also the split method. """ #If it has one, check the alphabet: sep_str = self._get_seq_str_and_check_alphabet(sep) return [Seq(part, self.alphabet) \ for part in str(self).rsplit(sep_str, maxsplit)] def strip(self, chars=None): """Returns a new Seq object with leading and trailing ends stripped. This behaves like the python string method of the same name. Optional argument chars defines which characters to remove. If ommitted or None (default) then as for the python string method, this defaults to removing any white space. e.g. print my_seq.strip("-") See also the lstrip and rstrip methods. """ #If it has one, check the alphabet: strip_str = self._get_seq_str_and_check_alphabet(chars) return Seq(str(self).strip(strip_str), self.alphabet) def lstrip(self, chars=None): """Returns a new Seq object with leading (left) end stripped. This behaves like the python string method of the same name. Optional argument chars defines which characters to remove. If ommitted or None (default) then as for the python string method, this defaults to removing any white space. e.g. print my_seq.lstrip("-") See also the strip and rstrip methods. """ #If it has one, check the alphabet: strip_str = self._get_seq_str_and_check_alphabet(chars) return Seq(str(self).lstrip(strip_str), self.alphabet) def rstrip(self, chars=None): """Returns a new Seq object with trailing (right) end stripped. This behaves like the python string method of the same name. Optional argument chars defines which characters to remove. If ommitted or None (default) then as for the python string method, this defaults to removing any white space. e.g. Removing a nucleotide sequence's polyadenylation (poly-A tail): >>> from Bio.Alphabet import IUPAC >>> from Bio.Seq import Seq >>> my_seq = Seq("CGGTACGCTTATGTCACGTAGAAAAAA", IUPAC.unambiguous_dna) >>> my_seq Seq('CGGTACGCTTATGTCACGTAGAAAAAA', IUPACUnambiguousDNA()) >>> my_seq.rstrip("A") Seq('CGGTACGCTTATGTCACGTAG', IUPACUnambiguousDNA()) See also the strip and lstrip methods. """ #If it has one, check the alphabet: strip_str = self._get_seq_str_and_check_alphabet(chars) return Seq(str(self).rstrip(strip_str), self.alphabet) def upper(self): """Returns an upper case copy of the sequence. >>> from Bio.Alphabet import HasStopCodon, generic_protein >>> from Bio.Seq import Seq >>> my_seq = Seq("VHLTPeeK*", HasStopCodon(generic_protein)) >>> my_seq Seq('VHLTPeeK*', HasStopCodon(ProteinAlphabet(), '*')) >>> my_seq.lower() Seq('vhltpeek*', HasStopCodon(ProteinAlphabet(), '*')) >>> my_seq.upper() Seq('VHLTPEEK*', HasStopCodon(ProteinAlphabet(), '*')) This will adjust the alphabet if required. See also the lower method. """ return Seq(str(self).upper(), self.alphabet._upper()) def lower(self): """Returns a lower case copy of the sequence. This will adjust the alphabet if required. Note that the IUPAC alphabets are upper case only, and thus a generic alphabet must be substituted. >>> from Bio.Alphabet import Gapped, generic_dna >>> from Bio.Alphabet import IUPAC >>> from Bio.Seq import Seq >>> my_seq = Seq("CGGTACGCTTATGTCACGTAG*AAAAAA", Gapped(IUPAC.unambiguous_dna, "*")) >>> my_seq Seq('CGGTACGCTTATGTCACGTAG*AAAAAA', Gapped(IUPACUnambiguousDNA(), '*')) >>> my_seq.lower() Seq('cggtacgcttatgtcacgtag*aaaaaa', Gapped(DNAAlphabet(), '*')) See also the upper method. """ return Seq(str(self).lower(), self.alphabet._lower()) def complement(self): """Returns the complement sequence. New Seq object. >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC >>> my_dna = Seq("CCCCCGATAG", IUPAC.unambiguous_dna) >>> my_dna Seq('CCCCCGATAG', IUPACUnambiguousDNA()) >>> my_dna.complement() Seq('GGGGGCTATC', IUPACUnambiguousDNA()) You can of course used mixed case sequences, >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna >>> my_dna = Seq("CCCCCgatA-GD", generic_dna) >>> my_dna Seq('CCCCCgatA-GD', DNAAlphabet()) >>> my_dna.complement() Seq('GGGGGctaT-CH', DNAAlphabet()) Note in the above example, ambiguous character D denotes G, A or T so its complement is H (for C, T or A). Trying to complement a protein sequence raises an exception. >>> my_protein = Seq("MAIVMGR", IUPAC.protein) >>> my_protein.complement() Traceback (most recent call last): ... ValueError: Proteins do not have complements! """ base = Alphabet._get_base_alphabet(self.alphabet) if isinstance(base, Alphabet.ProteinAlphabet): raise ValueError("Proteins do not have complements!") if isinstance(base, Alphabet.DNAAlphabet): ttable = _dna_complement_table elif isinstance(base, Alphabet.RNAAlphabet): ttable = _rna_complement_table elif ('U' in self._data or 'u' in self._data) \ and ('T' in self._data or 't' in self._data): #TODO - Handle this cleanly? raise ValueError("Mixed RNA/DNA found") elif 'U' in self._data or 'u' in self._data: ttable = _rna_complement_table else: ttable = _dna_complement_table #Much faster on really long sequences than the previous loop based one. #thx to Michael Palmer, University of Waterloo return Seq(str(self).translate(ttable), self.alphabet) def reverse_complement(self): """Returns the reverse complement sequence. New Seq object. >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC >>> my_dna = Seq("CCCCCGATAGNR", IUPAC.ambiguous_dna) >>> my_dna Seq('CCCCCGATAGNR', IUPACAmbiguousDNA()) >>> my_dna.reverse_complement() Seq('YNCTATCGGGGG', IUPACAmbiguousDNA()) Note in the above example, since R = G or A, its complement is Y (which denotes C or T). You can of course used mixed case sequences, >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna >>> my_dna = Seq("CCCCCgatA-G", generic_dna) >>> my_dna Seq('CCCCCgatA-G', DNAAlphabet()) >>> my_dna.reverse_complement() Seq('C-TatcGGGGG', DNAAlphabet()) Trying to complement a protein sequence raises an exception: >>> my_protein = Seq("MAIVMGR", IUPAC.protein) >>> my_protein.reverse_complement() Traceback (most recent call last): ... ValueError: Proteins do not have complements! """ #Use -1 stride/step to reverse the complement return self.complement()[::-1] def transcribe(self): """Returns the RNA sequence from a DNA sequence. New Seq object. >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC >>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", ... IUPAC.unambiguous_dna) >>> coding_dna Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG', IUPACUnambiguousDNA()) >>> coding_dna.transcribe() Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG', IUPACUnambiguousRNA()) Trying to transcribe a protein or RNA sequence raises an exception: >>> my_protein = Seq("MAIVMGR", IUPAC.protein) >>> my_protein.transcribe() Traceback (most recent call last): ... ValueError: Proteins cannot be transcribed! """ base = Alphabet._get_base_alphabet(self.alphabet) if isinstance(base, Alphabet.ProteinAlphabet): raise ValueError("Proteins cannot be transcribed!") if isinstance(base, Alphabet.RNAAlphabet): raise ValueError("RNA cannot be transcribed!") if self.alphabet==IUPAC.unambiguous_dna: alphabet = IUPAC.unambiguous_rna elif self.alphabet==IUPAC.ambiguous_dna: alphabet = IUPAC.ambiguous_rna else: alphabet = Alphabet.generic_rna return Seq(str(self).replace('T','U').replace('t','u'), alphabet) def back_transcribe(self): """Returns the DNA sequence from an RNA sequence. New Seq object. >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC >>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG", ... IUPAC.unambiguous_rna) >>> messenger_rna Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG', IUPACUnambiguousRNA()) >>> messenger_rna.back_transcribe() Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG', IUPACUnambiguousDNA()) Trying to back-transcribe a protein or DNA sequence raises an exception: >>> my_protein = Seq("MAIVMGR", IUPAC.protein) >>> my_protein.back_transcribe() Traceback (most recent call last): ... ValueError: Proteins cannot be back transcribed! """ base = Alphabet._get_base_alphabet(self.alphabet) if isinstance(base, Alphabet.ProteinAlphabet): raise ValueError("Proteins cannot be back transcribed!") if isinstance(base, Alphabet.DNAAlphabet): raise ValueError("DNA cannot be back transcribed!") if self.alphabet==IUPAC.unambiguous_rna: alphabet = IUPAC.unambiguous_dna elif self.alphabet==IUPAC.ambiguous_rna: alphabet = IUPAC.ambiguous_dna else: alphabet = Alphabet.generic_dna return Seq(str(self).replace("U", "T").replace("u", "t"), alphabet) def translate(self, table="Standard", stop_symbol="*", to_stop=False, cds=False): """Turns a nucleotide sequence into a protein sequence. New Seq object. This method will translate DNA or RNA sequences, and those with a nucleotide or generic alphabet. Trying to translate a protein sequence raises an exception. Arguments: - table - Which codon table to use? This can be either a name (string) or an NCBI identifier (integer). This defaults to the "Standard" table. - stop_symbol - Single character string, what to use for terminators. This defaults to the asterisk, "*". - to_stop - Boolean, defaults to False meaning do a full translation continuing on past any stop codons (translated as the specified stop_symbol). If True, translation is terminated at the first in frame stop codon (and the stop_symbol is not appended to the returned protein sequence). - cds - Boolean, indicates this is a complete CDS. If True, this checks the sequence starts with a valid alternative start codon (which will be translated as methionine, M), that the sequence length is a multiple of three, and that there is a single in frame stop codon at the end (this will be excluded from the protein sequence, regardless of the to_stop option). If these tests fail, an exception is raised. e.g. Using the standard table: >>> coding_dna = Seq("GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG") >>> coding_dna.translate() Seq('VAIVMGR*KGAR*', HasStopCodon(ExtendedIUPACProtein(), '*')) >>> coding_dna.translate(stop_symbol="@") Seq('VAIVMGR@KGAR@', HasStopCodon(ExtendedIUPACProtein(), '@')) >>> coding_dna.translate(to_stop=True) Seq('VAIVMGR', ExtendedIUPACProtein()) Now using NCBI table 2, where TGA is not a stop codon: >>> coding_dna.translate(table=2) Seq('VAIVMGRWKGAR*', HasStopCodon(ExtendedIUPACProtein(), '*')) >>> coding_dna.translate(table=2, to_stop=True) Seq('VAIVMGRWKGAR', ExtendedIUPACProtein()) In fact, GTG is an alternative start codon under NCBI table 2, meaning this sequence could be a complete CDS: >>> coding_dna.translate(table=2, cds=True) Seq('MAIVMGRWKGAR', ExtendedIUPACProtein()) It isn't a valid CDS under NCBI table 1, due to both the start codon and also the in frame stop codons: >>> coding_dna.translate(table=1, cds=True) Traceback (most recent call last): ... TranslationError: First codon 'GTG' is not a start codon If the sequence has no in-frame stop codon, then the to_stop argument has no effect: >>> coding_dna2 = Seq("TTGGCCATTGTAATGGGCCGC") >>> coding_dna2.translate() Seq('LAIVMGR', ExtendedIUPACProtein()) >>> coding_dna2.translate(to_stop=True) Seq('LAIVMGR', ExtendedIUPACProtein()) NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid or a stop codon. These are translated as "X". Any invalid codon (e.g. "TA?" or "T-A") will throw a TranslationError. NOTE - Does NOT support gapped sequences. NOTE - This does NOT behave like the python string's translate method. For that use str(my_seq).translate(...) instead. """ try: table_id = int(table) except ValueError: table_id = None if isinstance(table, str) and len(table)==256: raise ValueError("The Seq object translate method DOES NOT take " \ + "a 256 character string mapping table like " \ + "the python string object's translate method. " \ + "Use str(my_seq).translate(...) instead.") if isinstance(Alphabet._get_base_alphabet(self.alphabet), Alphabet.ProteinAlphabet): raise ValueError("Proteins cannot be translated!") if self.alphabet==IUPAC.unambiguous_dna: #Will use standard IUPAC protein alphabet, no need for X if table_id is None: codon_table = CodonTable.unambiguous_dna_by_name[table] else: codon_table = CodonTable.unambiguous_dna_by_id[table_id] elif self.alphabet==IUPAC.unambiguous_rna: #Will use standard IUPAC protein alphabet, no need for X if table_id is None: codon_table = CodonTable.unambiguous_rna_by_name[table] else: codon_table = CodonTable.unambiguous_rna_by_id[table_id] else: #This will use the extend IUPAC protein alphabet with X etc. #The same table can be used for RNA or DNA (we use this for #translating strings). if table_id is None: codon_table = CodonTable.ambiguous_generic_by_name[table] else: codon_table = CodonTable.ambiguous_generic_by_id[table_id] protein = _translate_str(str(self), codon_table, \ stop_symbol, to_stop, cds) if stop_symbol in protein: alphabet = Alphabet.HasStopCodon(codon_table.protein_alphabet, stop_symbol = stop_symbol) else: alphabet = codon_table.protein_alphabet return Seq(protein, alphabet) def ungap(self, gap=None): """Return a copy of the sequence without the gap character(s). The gap character can be specified in two ways - either as an explicit argument, or via the sequence's alphabet. For example: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna >>> my_dna = Seq("-ATA--TGAAAT-TTGAAAA", generic_dna) >>> my_dna Seq('-ATA--TGAAAT-TTGAAAA', DNAAlphabet()) >>> my_dna.ungap("-") Seq('ATATGAAATTTGAAAA', DNAAlphabet()) If the gap character is not given as an argument, it will be taken from the sequence's alphabet (if defined). Notice that the returned sequence's alphabet is adjusted since it no longer requires a gapped alphabet: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC, Gapped, HasStopCodon >>> my_pro = Seq("MVVLE=AD*", HasStopCodon(Gapped(IUPAC.protein, "="))) >>> my_pro Seq('MVVLE=AD*', HasStopCodon(Gapped(IUPACProtein(), '='), '*')) >>> my_pro.ungap() Seq('MVVLEAD*', HasStopCodon(IUPACProtein(), '*')) Or, with a simpler gapped DNA example: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC, Gapped >>> my_seq = Seq("CGGGTAG=AAAAAA", Gapped(IUPAC.unambiguous_dna, "=")) >>> my_seq Seq('CGGGTAG=AAAAAA', Gapped(IUPACUnambiguousDNA(), '=')) >>> my_seq.ungap() Seq('CGGGTAGAAAAAA', IUPACUnambiguousDNA()) As long as it is consistent with the alphabet, although it is redundant, you can still supply the gap character as an argument to this method: >>> my_seq Seq('CGGGTAG=AAAAAA', Gapped(IUPACUnambiguousDNA(), '=')) >>> my_seq.ungap("=") Seq('CGGGTAGAAAAAA', IUPACUnambiguousDNA()) However, if the gap character given as the argument disagrees with that declared in the alphabet, an exception is raised: >>> my_seq Seq('CGGGTAG=AAAAAA', Gapped(IUPACUnambiguousDNA(), '=')) >>> my_seq.ungap("-") Traceback (most recent call last): ... ValueError: Gap '-' does not match '=' from alphabet Finally, if a gap character is not supplied, and the alphabet does not define one, an exception is raised: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna >>> my_dna = Seq("ATA--TGAAAT-TTGAAAA", generic_dna) >>> my_dna Seq('ATA--TGAAAT-TTGAAAA', DNAAlphabet()) >>> my_dna.ungap() Traceback (most recent call last): ... ValueError: Gap character not given and not defined in alphabet """ if hasattr(self.alphabet, "gap_char"): if not gap: gap = self.alphabet.gap_char elif gap != self.alphabet.gap_char: raise ValueError("Gap %s does not match %s from alphabet" \ % (repr(gap), repr(self.alphabet.gap_char))) alpha = Alphabet._ungap(self.alphabet) elif not gap: raise ValueError("Gap character not given and not defined in alphabet") else: alpha = self.alphabet #modify! if len(gap)!=1 or not isinstance(gap, str): raise ValueError("Unexpected gap character, %s" % repr(gap)) return Seq(str(self).replace(gap, ""), alpha) class UnknownSeq(Seq): """A read-only sequence object of known length but unknown contents. If you have an unknown sequence, you can represent this with a normal Seq object, for example: >>> my_seq = Seq("N"*5) >>> my_seq Seq('NNNNN', Alphabet()) >>> len(my_seq) 5 >>> print my_seq NNNNN However, this is rather wasteful of memory (especially for large sequences), which is where this class is most usefull: >>> unk_five = UnknownSeq(5) >>> unk_five UnknownSeq(5, alphabet = Alphabet(), character = '?') >>> len(unk_five) 5 >>> print(unk_five) ????? You can add unknown sequence together, provided their alphabets and characters are compatible, and get another memory saving UnknownSeq: >>> unk_four = UnknownSeq(4) >>> unk_four UnknownSeq(4, alphabet = Alphabet(), character = '?') >>> unk_four + unk_five UnknownSeq(9, alphabet = Alphabet(), character = '?') If the alphabet or characters don't match up, the addition gives an ordinary Seq object: >>> unk_nnnn = UnknownSeq(4, character = "N") >>> unk_nnnn UnknownSeq(4, alphabet = Alphabet(), character = 'N') >>> unk_nnnn + unk_four Seq('NNNN????', Alphabet()) Combining with a real Seq gives a new Seq object: >>> known_seq = Seq("ACGT") >>> unk_four + known_seq Seq('????ACGT', Alphabet()) >>> known_seq + unk_four Seq('ACGT????', Alphabet()) """ def __init__(self, length, alphabet = Alphabet.generic_alphabet, character = None): """Create a new UnknownSeq object. If character is ommited, it is determed from the alphabet, "N" for nucleotides, "X" for proteins, and "?" otherwise. """ self._length = int(length) if self._length < 0: #TODO - Block zero length UnknownSeq? You can just use a Seq! raise ValueError("Length must not be negative.") self.alphabet = alphabet if character: if len(character) != 1: raise ValueError("character argument should be a single letter string.") self._character = character else: base = Alphabet._get_base_alphabet(alphabet) #TODO? Check the case of the letters in the alphabet? #We may have to use "n" instead of "N" etc. if isinstance(base, Alphabet.NucleotideAlphabet): self._character = "N" elif isinstance(base, Alphabet.ProteinAlphabet): self._character = "X" else: self._character = "?" def __len__(self): """Returns the stated length of the unknown sequence.""" return self._length def __str__(self): """Returns the unknown sequence as full string of the given length.""" return self._character * self._length def __repr__(self): return "UnknownSeq(%i, alphabet = %s, character = %s)" \ % (self._length, repr(self.alphabet), repr(self._character)) def __add__(self, other): """Add another sequence or string to this sequence. Adding two UnknownSeq objects returns another UnknownSeq object provided the character is the same and the alphabets are compatible. >>> from Bio.Seq import UnknownSeq >>> from Bio.Alphabet import generic_protein >>> UnknownSeq(10, generic_protein) + UnknownSeq(5, generic_protein) UnknownSeq(15, alphabet = ProteinAlphabet(), character = 'X') If the characters differ, an UnknownSeq object cannot be used, so a Seq object is returned: >>> from Bio.Seq import UnknownSeq >>> from Bio.Alphabet import generic_protein >>> UnknownSeq(10, generic_protein) + UnknownSeq(5, generic_protein, ... character="x") Seq('XXXXXXXXXXxxxxx', ProteinAlphabet()) If adding a string to an UnknownSeq, a new Seq is returned with the same alphabet: >>> from Bio.Seq import UnknownSeq >>> from Bio.Alphabet import generic_protein >>> UnknownSeq(5, generic_protein) + "LV" Seq('XXXXXLV', ProteinAlphabet()) """ if isinstance(other, UnknownSeq) \ and other._character == self._character: #TODO - Check the alphabets match return UnknownSeq(len(self)+len(other), self.alphabet, self._character) #Offload to the base class... return Seq(str(self), self.alphabet) + other def __radd__(self, other): #If other is an UnknownSeq, then __add__ would be called. #Offload to the base class... return other + Seq(str(self), self.alphabet) def __getitem__(self, index): if isinstance(index, int): #TODO - Check the bounds without wasting memory return str(self)[index] else: #TODO - Work out the length without wasting memory return UnknownSeq(len(("#"*self._length)[index]), self.alphabet, self._character) def count(self, sub, start=0, end=sys.maxint): """Non-overlapping count method, like that of a python string. This behaves like the python string (and Seq object) method of the same name, which does a non-overlapping count! Returns an integer, the number of occurrences of substring argument sub in the (sub)sequence given by [start:end]. Optional arguments start and end are interpreted as in slice notation. Arguments: - sub - a string or another Seq object to look for - start - optional integer, slice start - end - optional integer, slice end >>> "NNNN".count("N") 4 >>> Seq("NNNN").count("N") 4 >>> UnknownSeq(4, character="N").count("N") 4 >>> UnknownSeq(4, character="N").count("A") 0 >>> UnknownSeq(4, character="N").count("AA") 0 HOWEVER, please note because that python strings and Seq objects (and MutableSeq objects) do a non-overlapping search, this may not give the answer you expect: >>> UnknownSeq(4, character="N").count("NN") 2 >>> UnknownSeq(4, character="N").count("NNN") 1 """ sub_str = self._get_seq_str_and_check_alphabet(sub) if len(sub_str) == 1: if str(sub_str) == self._character: if start==0 and end >= self._length: return self._length else: #This could be done more cleverly... return str(self).count(sub_str, start, end) else: return 0 else: if set(sub_str) == set(self._character): if start==0 and end >= self._length: return self._length // len(sub_str) else: #This could be done more cleverly... return str(self).count(sub_str, start, end) else: return 0 def complement(self): """The complement of an unknown nucleotide equals itself. >>> my_nuc = UnknownSeq(8) >>> my_nuc UnknownSeq(8, alphabet = Alphabet(), character = '?') >>> print my_nuc ???????? >>> my_nuc.complement() UnknownSeq(8, alphabet = Alphabet(), character = '?') >>> print my_nuc.complement() ???????? """ if isinstance(Alphabet._get_base_alphabet(self.alphabet), Alphabet.ProteinAlphabet): raise ValueError("Proteins do not have complements!") return self def reverse_complement(self): """The reverse complement of an unknown nucleotide equals itself. >>> my_nuc = UnknownSeq(10) >>> my_nuc UnknownSeq(10, alphabet = Alphabet(), character = '?') >>> print my_nuc ?????????? >>> my_nuc.reverse_complement() UnknownSeq(10, alphabet = Alphabet(), character = '?') >>> print my_nuc.reverse_complement() ?????????? """ if isinstance(Alphabet._get_base_alphabet(self.alphabet), Alphabet.ProteinAlphabet): raise ValueError("Proteins do not have complements!") return self def transcribe(self): """Returns unknown RNA sequence from an unknown DNA sequence. >>> my_dna = UnknownSeq(10, character="N") >>> my_dna UnknownSeq(10, alphabet = Alphabet(), character = 'N') >>> print my_dna NNNNNNNNNN >>> my_rna = my_dna.transcribe() >>> my_rna UnknownSeq(10, alphabet = RNAAlphabet(), character = 'N') >>> print my_rna NNNNNNNNNN """ #Offload the alphabet stuff s = Seq(self._character, self.alphabet).transcribe() return UnknownSeq(self._length, s.alphabet, self._character) def back_transcribe(self): """Returns unknown DNA sequence from an unknown RNA sequence. >>> my_rna = UnknownSeq(20, character="N") >>> my_rna UnknownSeq(20, alphabet = Alphabet(), character = 'N') >>> print my_rna NNNNNNNNNNNNNNNNNNNN >>> my_dna = my_rna.back_transcribe() >>> my_dna UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N') >>> print my_dna NNNNNNNNNNNNNNNNNNNN """ #Offload the alphabet stuff s = Seq(self._character, self.alphabet).back_transcribe() return UnknownSeq(self._length, s.alphabet, self._character) def upper(self): """Returns an upper case copy of the sequence. >>> from Bio.Alphabet import generic_dna >>> from Bio.Seq import UnknownSeq >>> my_seq = UnknownSeq(20, generic_dna, character="n") >>> my_seq UnknownSeq(20, alphabet = DNAAlphabet(), character = 'n') >>> print my_seq nnnnnnnnnnnnnnnnnnnn >>> my_seq.upper() UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N') >>> print my_seq.upper() NNNNNNNNNNNNNNNNNNNN This will adjust the alphabet if required. See also the lower method. """ return UnknownSeq(self._length, self.alphabet._upper(), self._character.upper()) def lower(self): """Returns a lower case copy of the sequence. This will adjust the alphabet if required: >>> from Bio.Alphabet import IUPAC >>> from Bio.Seq import UnknownSeq >>> my_seq = UnknownSeq(20, IUPAC.extended_protein) >>> my_seq UnknownSeq(20, alphabet = ExtendedIUPACProtein(), character = 'X') >>> print my_seq XXXXXXXXXXXXXXXXXXXX >>> my_seq.lower() UnknownSeq(20, alphabet = ProteinAlphabet(), character = 'x') >>> print my_seq.lower() xxxxxxxxxxxxxxxxxxxx See also the upper method. """ return UnknownSeq(self._length, self.alphabet._lower(), self._character.lower()) def translate(self, **kwargs): """Translate an unknown nucleotide sequence into an unknown protein. e.g. >>> my_seq = UnknownSeq(11, character="N") >>> print my_seq NNNNNNNNNNN >>> my_protein = my_seq.translate() >>> my_protein UnknownSeq(3, alphabet = ProteinAlphabet(), character = 'X') >>> print my_protein XXX In comparison, using a normal Seq object: >>> my_seq = Seq("NNNNNNNNNNN") >>> print my_seq NNNNNNNNNNN >>> my_protein = my_seq.translate() >>> my_protein Seq('XXX', ExtendedIUPACProtein()) >>> print my_protein XXX """ if isinstance(Alphabet._get_base_alphabet(self.alphabet), Alphabet.ProteinAlphabet): raise ValueError("Proteins cannot be translated!") return UnknownSeq(self._length//3, Alphabet.generic_protein, "X") def ungap(self, gap=None): """Return a copy of the sequence without the gap character(s). The gap character can be specified in two ways - either as an explicit argument, or via the sequence's alphabet. For example: >>> from Bio.Seq import UnknownSeq >>> from Bio.Alphabet import Gapped, generic_dna >>> my_dna = UnknownSeq(20, Gapped(generic_dna,"-")) >>> my_dna UnknownSeq(20, alphabet = Gapped(DNAAlphabet(), '-'), character = 'N') >>> my_dna.ungap() UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N') >>> my_dna.ungap("-") UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N') If the UnknownSeq is using the gap character, then an empty Seq is returned: >>> my_gap = UnknownSeq(20, Gapped(generic_dna,"-"), character="-") >>> my_gap UnknownSeq(20, alphabet = Gapped(DNAAlphabet(), '-'), character = '-') >>> my_gap.ungap() Seq('', DNAAlphabet()) >>> my_gap.ungap("-") Seq('', DNAAlphabet()) Notice that the returned sequence's alphabet is adjusted to remove any explicit gap character declaration. """ #Offload the alphabet stuff s = Seq(self._character, self.alphabet).ungap() if s : return UnknownSeq(self._length, s.alphabet, self._character) else : return Seq("", s.alphabet) class MutableSeq(object): """An editable sequence object (with an alphabet). Unlike normal python strings and our basic sequence object (the Seq class) which are immuatable, the MutableSeq lets you edit the sequence in place. However, this means you cannot use a MutableSeq object as a dictionary key. >>> from Bio.Seq import MutableSeq >>> from Bio.Alphabet import generic_dna >>> my_seq = MutableSeq("ACTCGTCGTCG", generic_dna) >>> my_seq MutableSeq('ACTCGTCGTCG', DNAAlphabet()) >>> my_seq[5] 'T' >>> my_seq[5] = "A" >>> my_seq MutableSeq('ACTCGACGTCG', DNAAlphabet()) >>> my_seq[5] 'A' >>> my_seq[5:8] = "NNN" >>> my_seq MutableSeq('ACTCGNNNTCG', DNAAlphabet()) >>> len(my_seq) 11 Note that the MutableSeq object does not support as many string-like or biological methods as the Seq object. """ def __init__(self, data, alphabet = Alphabet.generic_alphabet): if sys.version_info[0] == 3: self.array_indicator = "u" else: self.array_indicator = "c" if isinstance(data, str): #TODO - What about unicode? self.data = array.array(self.array_indicator, data) else: self.data = data # assumes the input is an array self.alphabet = alphabet def __repr__(self): """Returns a (truncated) representation of the sequence for debugging.""" if len(self) > 60: #Shows the last three letters as it is often useful to see if there #is a stop codon at the end of a sequence. #Note total length is 54+3+3=60 return "%s('%s...%s', %s)" % (self.__class__.__name__, str(self[:54]), str(self[-3:]), repr(self.alphabet)) else: return "%s('%s', %s)" % (self.__class__.__name__, str(self), repr(self.alphabet)) def __str__(self): """Returns the full sequence as a python string. Note that Biopython 1.44 and earlier would give a truncated version of repr(my_seq) for str(my_seq). If you are writing code which needs to be backwards compatible with old Biopython, you should continue to use my_seq.tostring() rather than str(my_seq). """ #See test_GAQueens.py for an historic usage of a non-string alphabet! return "".join(self.data) def __cmp__(self, other): """Compare the sequence to another sequence or a string (README). Currently if compared to another sequence the alphabets must be compatible. Comparing DNA to RNA, or Nucleotide to Protein will raise an exception. Otherwise only the sequence itself is compared, not the precise alphabet. A future release of Biopython will change this (and the Seq object etc) to use simple string comparison. The plan is that comparing sequences with incompatible alphabets (e.g. DNA to RNA) will trigger a warning but not an exception. During this transition period, please just do explicit comparisons: >>> seq1 = MutableSeq("ACGT") >>> seq2 = MutableSeq("ACGT") >>> id(seq1) == id(seq2) False >>> str(seq1) == str(seq2) True This method indirectly supports ==, < , etc. """ if hasattr(other, "alphabet"): #other should be a Seq or a MutableSeq import warnings warnings.warn("In future comparing incompatible alphabets will " "only trigger a warning (not an exception). In " "the interim please use id(seq1)==id(seq2) or " "str(seq1)==str(seq2) to make your code explicit " "and to avoid this warning.", FutureWarning) if not Alphabet._check_type_compatible([self.alphabet, other.alphabet]): raise TypeError("Incompatable alphabets %s and %s" \ % (repr(self.alphabet), repr(other.alphabet))) #They should be the same sequence type (or one of them is generic) if isinstance(other, MutableSeq): #See test_GAQueens.py for an historic usage of a non-string #alphabet! Comparing the arrays supports this. return cmp(self.data, other.data) else: return cmp(str(self), str(other)) elif isinstance(other, basestring): return cmp(str(self), other) else: raise TypeError def __len__(self): return len(self.data) def __getitem__(self, index): #Note since Python 2.0, __getslice__ is deprecated #and __getitem__ is used instead. #See http://docs.python.org/ref/sequence-methods.html if isinstance(index, int): #Return a single letter as a string return self.data[index] else: #Return the (sub)sequence as another Seq object return MutableSeq(self.data[index], self.alphabet) def __setitem__(self, index, value): #Note since Python 2.0, __setslice__ is deprecated #and __setitem__ is used instead. #See http://docs.python.org/ref/sequence-methods.html if isinstance(index, int): #Replacing a single letter with a new string self.data[index] = value else: #Replacing a sub-sequence if isinstance(value, MutableSeq): self.data[index] = value.data elif isinstance(value, type(self.data)): self.data[index] = value else: self.data[index] = array.array(self.array_indicator, str(value)) def __delitem__(self, index): #Note since Python 2.0, __delslice__ is deprecated #and __delitem__ is used instead. #See http://docs.python.org/ref/sequence-methods.html #Could be deleting a single letter, or a slice del self.data[index] def __add__(self, other): """Add another sequence or string to this sequence. Returns a new MutableSeq object.""" if hasattr(other, "alphabet"): #other should be a Seq or a MutableSeq if not Alphabet._check_type_compatible([self.alphabet, other.alphabet]): raise TypeError("Incompatable alphabets %s and %s" \ % (repr(self.alphabet), repr(other.alphabet))) #They should be the same sequence type (or one of them is generic) a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet]) if isinstance(other, MutableSeq): #See test_GAQueens.py for an historic usage of a non-string #alphabet! Adding the arrays should support this. return self.__class__(self.data + other.data, a) else: return self.__class__(str(self) + str(other), a) elif isinstance(other, basestring): #other is a plain string - use the current alphabet return self.__class__(str(self) + str(other), self.alphabet) else: raise TypeError def __radd__(self, other): if hasattr(other, "alphabet"): #other should be a Seq or a MutableSeq if not Alphabet._check_type_compatible([self.alphabet, other.alphabet]): raise TypeError("Incompatable alphabets %s and %s" \ % (repr(self.alphabet), repr(other.alphabet))) #They should be the same sequence type (or one of them is generic) a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet]) if isinstance(other, MutableSeq): #See test_GAQueens.py for an historic usage of a non-string #alphabet! Adding the arrays should support this. return self.__class__(other.data + self.data, a) else: return self.__class__(str(other) + str(self), a) elif isinstance(other, basestring): #other is a plain string - use the current alphabet return self.__class__(str(other) + str(self), self.alphabet) else: raise TypeError def append(self, c): self.data.append(c) def insert(self, i, c): self.data.insert(i, c) def pop(self, i = (-1)): c = self.data[i] del self.data[i] return c def remove(self, item): for i in range(len(self.data)): if self.data[i] == item: del self.data[i] return raise ValueError("MutableSeq.remove(x): x not in list") def count(self, sub, start=0, end=sys.maxint): """Non-overlapping count method, like that of a python string. This behaves like the python string method of the same name, which does a non-overlapping count! Returns an integer, the number of occurrences of substring argument sub in the (sub)sequence given by [start:end]. Optional arguments start and end are interpreted as in slice notation. Arguments: - sub - a string or another Seq object to look for - start - optional integer, slice start - end - optional integer, slice end e.g. >>> from Bio.Seq import MutableSeq >>> my_mseq = MutableSeq("AAAATGA") >>> print my_mseq.count("A") 5 >>> print my_mseq.count("ATG") 1 >>> print my_mseq.count(Seq("AT")) 1 >>> print my_mseq.count("AT", 2, -1) 1 HOWEVER, please note because that python strings, Seq objects and MutableSeq objects do a non-overlapping search, this may not give the answer you expect: >>> "AAAA".count("AA") 2 >>> print MutableSeq("AAAA").count("AA") 2 A non-overlapping search would give the answer as three! """ try: #TODO - Should we check the alphabet? search = sub.tostring() except AttributeError: search = sub if not isinstance(search, basestring): raise TypeError("expected a string, Seq or MutableSeq") if len(search) == 1: #Try and be efficient and work directly from the array. count = 0 for c in self.data[start:end]: if c == search: count += 1 return count else: #TODO - Can we do this more efficiently? return self.tostring().count(search, start, end) def index(self, item): for i in range(len(self.data)): if self.data[i] == item: return i raise ValueError("MutableSeq.index(x): x not in list") def reverse(self): """Modify the mutable sequence to reverse itself. No return value. """ self.data.reverse() def complement(self): """Modify the mutable sequence to take on its complement. Trying to complement a protein sequence raises an exception. No return value. """ if isinstance(Alphabet._get_base_alphabet(self.alphabet), Alphabet.ProteinAlphabet): raise ValueError("Proteins do not have complements!") if self.alphabet in (IUPAC.ambiguous_dna, IUPAC.unambiguous_dna): d = ambiguous_dna_complement elif self.alphabet in (IUPAC.ambiguous_rna, IUPAC.unambiguous_rna): d = ambiguous_rna_complement elif 'U' in self.data and 'T' in self.data: #TODO - Handle this cleanly? raise ValueError("Mixed RNA/DNA found") elif 'U' in self.data: d = ambiguous_rna_complement else: d = ambiguous_dna_complement c = dict([(x.lower(), y.lower()) for x,y in d.iteritems()]) d.update(c) self.data = map(lambda c: d[c], self.data) self.data = array.array(self.array_indicator, self.data) def reverse_complement(self): """Modify the mutable sequence to take on its reverse complement. Trying to reverse complement a protein sequence raises an exception. No return value. """ self.complement() self.data.reverse() ## Sorting a sequence makes no sense. # def sort(self, *args): self.data.sort(*args) def extend(self, other): if isinstance(other, MutableSeq): for c in other.data: self.data.append(c) else: for c in other: self.data.append(c) def tostring(self): """Returns the full sequence as a python string. Although not formally deprecated, you are now encouraged to use str(my_seq) instead of my_seq.tostring(). Because str(my_seq) will give you the full sequence as a python string, there is often no need to make an explicit conversion. For example, print "ID={%s}, sequence={%s}" % (my_name, my_seq) On Biopython 1.44 or older you would have to have done this: print "ID={%s}, sequence={%s}" % (my_name, my_seq.tostring()) """ return "".join(self.data) def toseq(self): """Returns the full sequence as a new immutable Seq object. >>> from Bio.Seq import Seq >>> from Bio.Alphabet import IUPAC >>> my_mseq = MutableSeq("MKQHKAMIVALIVICITAVVAAL", ... IUPAC.protein) >>> my_mseq MutableSeq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein()) >>> my_mseq.toseq() Seq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein()) Note that the alphabet is preserved. """ return Seq("".join(self.data), self.alphabet) # The transcribe, backward_transcribe, and translate functions are # user-friendly versions of the corresponding functions in Bio.Transcribe # and Bio.Translate. The functions work both on Seq objects, and on strings. def transcribe(dna): """Transcribes a DNA sequence into RNA. If given a string, returns a new string object. Given a Seq or MutableSeq, returns a new Seq object with an RNA alphabet. Trying to transcribe a protein or RNA sequence raises an exception. e.g. >>> transcribe("ACTGN") 'ACUGN' """ if isinstance(dna, Seq): return dna.transcribe() elif isinstance(dna, MutableSeq): return dna.toseq().transcribe() else: return dna.replace('T','U').replace('t','u') def back_transcribe(rna): """Back-transcribes an RNA sequence into DNA. If given a string, returns a new string object. Given a Seq or MutableSeq, returns a new Seq object with an RNA alphabet. Trying to transcribe a protein or DNA sequence raises an exception. e.g. >>> back_transcribe("ACUGN") 'ACTGN' """ if isinstance(rna, Seq): return rna.back_transcribe() elif isinstance(rna, MutableSeq): return rna.toseq().back_transcribe() else: return rna.replace('U','T').replace('u','t') def _translate_str(sequence, table, stop_symbol="*", to_stop=False, cds=False, pos_stop="X"): """Helper function to translate a nucleotide string (PRIVATE). Arguments: - sequence - a string - table - a CodonTable object (NOT a table name or id number) - stop_symbol - a single character string, what to use for terminators. - to_stop - boolean, should translation terminate at the first in frame stop codon? If there is no in-frame stop codon then translation continues to the end. - pos_stop - a single character string for a possible stop codon (e.g. TAN or NNN) - cds - Boolean, indicates this is a complete CDS. If True, this checks the sequence starts with a valid alternative start codon (which will be translated as methionine, M), that the sequence length is a multiple of three, and that there is a single in frame stop codon at the end (this will be excluded from the protein sequence, regardless of the to_stop option). If these tests fail, an exception is raised. Returns a string. e.g. >>> from Bio.Data import CodonTable >>> table = CodonTable.ambiguous_dna_by_id[1] >>> _translate_str("AAA", table) 'K' >>> _translate_str("TAR", table) '*' >>> _translate_str("TAN", table) 'X' >>> _translate_str("TAN", table, pos_stop="@") '@' >>> _translate_str("TA?", table) Traceback (most recent call last): ... TranslationError: Codon 'TA?' is invalid >>> _translate_str("ATGCCCTAG", table, cds=True) 'MP' >>> _translate_str("AAACCCTAG", table, cds=True) Traceback (most recent call last): ... TranslationError: First codon 'AAA' is not a start codon >>> _translate_str("ATGCCCTAGCCCTAG", table, cds=True) Traceback (most recent call last): ... TranslationError: Extra in frame stop codon found. """ sequence = sequence.upper() amino_acids = [] forward_table = table.forward_table stop_codons = table.stop_codons if table.nucleotide_alphabet.letters is not None: valid_letters = set(table.nucleotide_alphabet.letters.upper()) else: #Assume the worst case, ambiguous DNA or RNA: valid_letters = set(IUPAC.ambiguous_dna.letters.upper() + \ IUPAC.ambiguous_rna.letters.upper()) if cds: if str(sequence[:3]).upper() not in table.start_codons: raise CodonTable.TranslationError(\ "First codon '%s' is not a start codon" % sequence[:3]) if len(sequence) % 3 != 0: raise CodonTable.TranslationError(\ "Sequence length %i is not a multiple of three" % len(sequence)) if str(sequence[-3:]).upper() not in stop_codons: raise CodonTable.TranslationError(\ "Final codon '%s' is not a stop codon" % sequence[-3:]) #Don't translate the stop symbol, and manually translate the M sequence = sequence[3:-3] amino_acids = ["M"] n = len(sequence) for i in xrange(0,n-n%3,3): codon = sequence[i:i+3] try: amino_acids.append(forward_table[codon]) except (KeyError, CodonTable.TranslationError): #Todo? Treat "---" as a special case (gapped translation) if codon in table.stop_codons: if cds: raise CodonTable.TranslationError(\ "Extra in frame stop codon found.") if to_stop : break amino_acids.append(stop_symbol) elif valid_letters.issuperset(set(codon)): #Possible stop codon (e.g. NNN or TAN) amino_acids.append(pos_stop) else: raise CodonTable.TranslationError(\ "Codon '%s' is invalid" % codon) return "".join(amino_acids) def translate(sequence, table="Standard", stop_symbol="*", to_stop=False, cds=False): """Translate a nucleotide sequence into amino acids. If given a string, returns a new string object. Given a Seq or MutableSeq, returns a Seq object with a protein alphabet. Arguments: - table - Which codon table to use? This can be either a name (string) or an NCBI identifier (integer). Defaults to the "Standard" table. - stop_symbol - Single character string, what to use for any terminators, defaults to the asterisk, "*". - to_stop - Boolean, defaults to False meaning do a full translation continuing on past any stop codons (translated as the specified stop_symbol). If True, translation is terminated at the first in frame stop codon (and the stop_symbol is not appended to the returned protein sequence). - cds - Boolean, indicates this is a complete CDS. If True, this checks the sequence starts with a valid alternative start codon (which will be translated as methionine, M), that the sequence length is a multiple of three, and that there is a single in frame stop codon at the end (this will be excluded from the protein sequence, regardless of the to_stop option). If these tests fail, an exception is raised. A simple string example using the default (standard) genetic code: >>> coding_dna = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG" >>> translate(coding_dna) 'VAIVMGR*KGAR*' >>> translate(coding_dna, stop_symbol="@") 'VAIVMGR@KGAR@' >>> translate(coding_dna, to_stop=True) 'VAIVMGR' Now using NCBI table 2, where TGA is not a stop codon: >>> translate(coding_dna, table=2) 'VAIVMGRWKGAR*' >>> translate(coding_dna, table=2, to_stop=True) 'VAIVMGRWKGAR' In fact this example uses an alternative start codon valid under NCBI table 2, GTG, which means this example is a complete valid CDS which when translated should really start with methionine (not valine): >>> translate(coding_dna, table=2, cds=True) 'MAIVMGRWKGAR' Note that if the sequence has no in-frame stop codon, then the to_stop argument has no effect: >>> coding_dna2 = "GTGGCCATTGTAATGGGCCGC" >>> translate(coding_dna2) 'VAIVMGR' >>> translate(coding_dna2, to_stop=True) 'VAIVMGR' NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid or a stop codon. These are translated as "X". Any invalid codon (e.g. "TA?" or "T-A") will throw a TranslationError. NOTE - Does NOT support gapped sequences. It will however translate either DNA or RNA. """ if isinstance(sequence, Seq): return sequence.translate(table, stop_symbol, to_stop, cds) elif isinstance(sequence, MutableSeq): #Return a Seq object return sequence.toseq().translate(table, stop_symbol, to_stop, cds) else: #Assume its a string, return a string try: codon_table = CodonTable.ambiguous_generic_by_id[int(table)] except ValueError: codon_table = CodonTable.ambiguous_generic_by_name[table] return _translate_str(sequence, codon_table, stop_symbol, to_stop, cds) def reverse_complement(sequence): """Returns the reverse complement sequence of a nucleotide string. If given a string, returns a new string object. Given a Seq or a MutableSeq, returns a new Seq object with the same alphabet. Supports unambiguous and ambiguous nucleotide sequences. e.g. >>> reverse_complement("ACTG-NH") 'DN-CAGT' """ if isinstance(sequence, Seq): #Return a Seq return sequence.reverse_complement() elif isinstance(sequence, MutableSeq): #Return a Seq #Don't use the MutableSeq reverse_complement method as it is 'in place'. return sequence.toseq().reverse_complement() #Assume its a string. #In order to avoid some code duplication, the old code would turn the string #into a Seq, use the reverse_complement method, and convert back to a string. #This worked, but is over five times slower on short sequences! if ('U' in sequence or 'u' in sequence) \ and ('T' in sequence or 't' in sequence): raise ValueError("Mixed RNA/DNA found") elif 'U' in sequence or 'u' in sequence: ttable = _rna_complement_table else: ttable = _dna_complement_table return sequence.translate(ttable)[::-1] def _test(): """Run the Bio.Seq module's doctests (PRIVATE).""" if sys.version_info[0:2] == (3,1): print "Not running Bio.Seq doctest on Python 3.1" print "See http://bugs.python.org/issue7490" else: print "Runing doctests..." import doctest doctest.testmod(optionflags=doctest.IGNORE_EXCEPTION_DETAIL) print "Done" if __name__ == "__main__": _test()