# Copyright 2004 by Bob Bussell. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """NOEtools: For predicting NOE coordinates from assignment data. The input and output are modelled on nmrview peaklists. This modules is suitable for directly generating an nmrview peaklist with predicted crosspeaks directly from the input assignment peaklist. """ from . import xpktools def predictNOE(peaklist, originNuc, detectedNuc, originResNum, toResNum): """Predict the i->j NOE position based on self peak (diagonal) assignments Example: predictNOE(peaklist,"N15","H1",10,12) where peaklist is of the type xpktools.peaklist would generate a .xpk file entry for a crosspeak that originated on N15 of residue 10 and ended up as magnetization detected on the H1 nucleus of residue 12. CAVEAT: The initial peaklist is assumed to be diagonal (self peaks only) and currently there is not checking done to insure that this assumption holds true. Check your peaklist for errors and off diagonal peaks before attempting to use predictNOE. """ returnLine = "" # The modified line to be returned to the caller datamap = _data_map(peaklist.datalabels) # Construct labels for keying into dictionary originAssCol = datamap[originNuc + ".L"] + 1 originPPMCol = datamap[originNuc + ".P"] + 1 detectedPPMCol = datamap[detectedNuc + ".P"] + 1 # Make a list of the data lines involving the detected if str(toResNum) in peaklist.residue_dict(detectedNuc) \ and str(originResNum) in peaklist.residue_dict(detectedNuc): detectedList = peaklist.residue_dict(detectedNuc)[str(toResNum)] originList = peaklist.residue_dict(detectedNuc)[str(originResNum)] returnLine = detectedList[0] for line in detectedList: aveDetectedPPM = _col_ave(detectedList, detectedPPMCol) aveOriginPPM = _col_ave(originList, originPPMCol) originAss = originList[0].split()[originAssCol] returnLine = xpktools.replace_entry(returnLine, originAssCol + 1, originAss) returnLine = xpktools.replace_entry(returnLine, originPPMCol + 1, aveOriginPPM) return returnLine def _data_map(labelline): # Generate a map between datalabels and column number # based on a labelline i = 0 # A counter datamap = {} # The data map dictionary labelList = labelline.split() # Get the label line # Get the column number for each label for i in range(len(labelList)): datamap[labelList[i]] = i return datamap def _col_ave(list, col): # Compute average values from a particular column in a string list total = 0.0 n = 0 for element in list: total += float(element.split()[col]) n += 1 return total / n