dan Wiki The master copies of EMBOSS documentation are available at http://emboss.open-bio.org/wiki/Appdocs on the EMBOSS Wiki. Please help by correcting and extending the Wiki pages. Function Calculates nucleic acid melting temperature Description Dan calculates the melting temperature (Tm) and the percentage of G+C nucleotides for windows over a nucleic acid sequence, optionally plotting them. If a plot is not being produced, dan reports the sequence of each oligomer window, its melting temperature under the specified conditions and its percentage GC content. The change in enthalpy (H), entropy (S) and Gibbs free energy (S) for dissociation of the oligomers may (optionally) be reported to file (but not plotted). Algorithm The values of melting point and other thermodynamic properties of the sequence, namely change in enthalpy (H), entropy (S) and Gibbs free energy (S) on dissociation, are calculated for a sequence region (or "window") of a user-specified size (see "-windowsize" option). The window is incrementally moved along the sequence with the properties being calculated at each new position. The user must provide the salt and DNA concentration. Optionally, the percent formamide, percent of mismatches allowed and product length may be specified. For the melting temperature profile, free energy values calculated from nearest neighbor thermodynamics are used (Breslauer et al. Proc. Natl. Acad. Sci. USA 83, 3746-3750, Baldino et al. Methods in Enzymol. 168, 761-777, Allawi and SantaLucia (1997), Biochemistry 36:10581-10594). Usage Here is a sample session with dan % dan Calculates nucleic acid melting temperature Input nucleotide sequence(s): tembl:x13776 Enter window size [20]: Enter Shift Increment [1]: Enter DNA concentration (nM) [50.]: Enter salt concentration (mM) [50.]: Output report [x13776.dan]: Go to the input files for this example Go to the output files for this example Example 2 An example of producing a plot of Tm: % dan -plot -graph cps Calculates nucleic acid melting temperature Input nucleotide sequence(s): tembl:x13776 Enter window size [20]: Enter Shift Increment [1]: Enter DNA concentration (nM) [50.]: Enter salt concentration (mM) [50.]: Enter minimum temperature [55.]: Created dan.ps Go to the output files for this example Command line arguments Calculates nucleic acid melting temperature Version: EMBOSS:6.4.0.0 Standard (Mandatory) qualifiers (* if not always prompted): [-sequence] seqall Nucleotide sequence(s) filename and optional format, or reference (input USA) -windowsize integer [20] The values of melting point and other thermodynamic properties of the sequence are determined by taking a short length of sequence known as a window and determining the properties of the sequence in that window. The window is incrementally moved along the sequence with the properties being calculated at each new position. (Integer from 1 to 100) -shiftincrement integer [1] This is the amount by which the window is moved at each increment in order to find the melting point and other properties along the sequence. (Integer 1 or more) -dnaconc float [50.] Enter DNA concentration (nM) (Number from 1.000 to 100000.000) -saltconc float [50.] Enter salt concentration (mM) (Number from 1.000 to 1000.000) * -mintemp float [55.] Enter a minimum value for the temperature scale (y-axis) of the plot. (Number from 0.000 to 150.000) * -graph xygraph [$EMBOSS_GRAPHICS value, or x11] Graph type (ps, hpgl, hp7470, hp7580, meta, cps, x11, tek, tekt, none, data, xterm, png, gif, pdf, svg) * -outfile report [*.dan] If a plot is not being produced then data on the melting point etc. in each window along the sequence is output to the file. (default -rformat seqtable) Additional (Optional) qualifiers (* if not always prompted): -product toggle This prompts for percent formamide, percent of mismatches allowed and product length. * -formamide float [0.] This specifies the percent formamide to be used in calculations (it is ignored unless -product is used). (Number from 0.000 to 100.000) * -mismatch float [0.] This specifies the percent mismatch to be used in calculations (it is ignored unless -product is used). (Number from 0.000 to 100.000) * -prodlen integer [Window size (20)] This specifies the product length to be used in calculations (it is ignored unless -product is used). (Any integer value) -thermo toggle Output the DeltaG, DeltaH and DeltaS values of the sequence windows to the output data file. * -temperature float [25.] If -thermo has been specified then this specifies the temperature at which to calculate the DeltaG, DeltaH and DeltaS values. (Number from 0.000 to 100.000) Advanced (Unprompted) qualifiers: -rna boolean This specifies that the sequence is an RNA sequence and not a DNA sequence. -plot toggle If this is not specified then the file of output data is produced, else a plot of the melting point along the sequence is produced. Associated qualifiers: "-sequence" associated qualifiers -sbegin1 integer Start of each sequence to be used -send1 integer End of each sequence to be used -sreverse1 boolean Reverse (if DNA) -sask1 boolean Ask for begin/end/reverse -snucleotide1 boolean Sequence is nucleotide -sprotein1 boolean Sequence is protein -slower1 boolean Make lower case -supper1 boolean Make upper case -sformat1 string Input sequence format -sdbname1 string Database name -sid1 string Entryname -ufo1 string UFO features -fformat1 string Features format -fopenfile1 string Features file name "-graph" associated qualifiers -gprompt boolean Graph prompting -gdesc string Graph description -gtitle string Graph title -gsubtitle string Graph subtitle -gxtitle string Graph x axis title -gytitle string Graph y axis title -goutfile string Output file for non interactive displays -gdirectory string Output directory "-outfile" associated qualifiers -rformat string Report format -rname string Base file name -rextension string File name extension -rdirectory string Output directory -raccshow boolean Show accession number in the report -rdesshow boolean Show description in the report -rscoreshow boolean Show the score in the report -rstrandshow boolean Show the nucleotide strand in the report -rusashow boolean Show the full USA in the report -rmaxall integer Maximum total hits to report -rmaxseq integer Maximum hits to report for one sequence General qualifiers: -auto boolean Turn off prompts -stdout boolean Write first file to standard output -filter boolean Read first file from standard input, write first file to standard output -options boolean Prompt for standard and additional values -debug boolean Write debug output to program.dbg -verbose boolean Report some/full command line options -help boolean Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose -warning boolean Report warnings -error boolean Report errors -fatal boolean Report fatal errors -die boolean Report dying program messages -version boolean Report version number and exit Input file format dan reads one or more nucleotide sequences. The input is a standard EMBOSS sequence query (also known as a 'USA'). Major sequence database sources defined as standard in EMBOSS installations include srs:embl, srs:uniprot and ensembl Data can also be read from sequence output in any supported format written by an EMBOSS or third-party application. The input format can be specified by using the command-line qualifier -sformat xxx, where 'xxx' is replaced by the name of the required format. The available format names are: gff (gff3), gff2, embl (em), genbank (gb, refseq), ddbj, refseqp, pir (nbrf), swissprot (swiss, sw), dasgff and debug. See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further information on sequence formats. Input files for usage example 'tembl:x13776' is a sequence entry in the example nucleic acid database 'tembl' Database entry: tembl:x13776 ID X13776; SV 1; linear; genomic DNA; STD; PRO; 2167 BP. XX AC X13776; M43175; XX DT 19-APR-1989 (Rel. 19, Created) DT 14-NOV-2006 (Rel. 89, Last updated, Version 24) XX DE Pseudomonas aeruginosa amiC and amiR gene for aliphatic amidase regulation XX KW aliphatic amidase regulator; amiC gene; amiR gene. XX OS Pseudomonas aeruginosa OC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; OC Pseudomonadaceae; Pseudomonas. XX RN [1] RP 1167-2167 RA Rice P.M.; RT ; RL Submitted (16-DEC-1988) to the EMBL/GenBank/DDBJ databases. RL Rice P.M., EMBL, Postfach 10-2209, Meyerhofstrasse 1, 6900 Heidelberg, FRG. XX RN [2] RP 1167-2167 RX DOI; 10.1016/0014-5793(89)80249-2. RX PUBMED; 2495988. RA Lowe N., Rice P.M., Drew R.E.; RT "Nucleotide sequence of the aliphatic amidase regulator gene (amiR) of RT Pseudomonas aeruginosa"; RL FEBS Lett. 246(1-2):39-43(1989). XX RN [3] RP 1-1292 RX PUBMED; 1907262. RA Wilson S., Drew R.; RT "Cloning and DNA sequence of amiC, a new gene regulating expression of the RT Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC RT product"; RL J. Bacteriol. 173(16):4914-4921(1991). XX RN [4] RP 1-2167 RA Rice P.M.; RT ; RL Submitted (04-SEP-1991) to the EMBL/GenBank/DDBJ databases. RL Rice P.M., EMBL, Postfach 10-2209, Meyerhofstrasse 1, 6900 Heidelberg, FRG. XX DR GOA; Q51417. DR InterPro; IPR003211; AmiSUreI_transpt. DR UniProtKB/Swiss-Prot; Q51417; AMIS_PSEAE. [Part of this file has been deleted for brevity] FT /replace="" FT /note="ClaI fragment deleted in pSW36, constitutive FT phenotype" FT misc_feature 1 FT /note="last base of an XhoI site" FT misc_feature 648..653 FT /note="end of 658bp XhoI fragment, deletion in pSW3 causes FT constitutive expression of amiE" FT conflict 1281 FT /replace="g" FT /citation=[3] XX SQ Sequence 2167 BP; 363 A; 712 C; 730 G; 362 T; 0 other; ggtaccgctg gccgagcatc tgctcgatca ccaccagccg ggcgacggga actgcacgat 60 ctacctggcg agcctggagc acgagcgggt tcgcttcgta cggcgctgag cgacagtcac 120 aggagaggaa acggatggga tcgcaccagg agcggccgct gatcggcctg ctgttctccg 180 aaaccggcgt caccgccgat atcgagcgct cgcacgcgta tggcgcattg ctcgcggtcg 240 agcaactgaa ccgcgagggc ggcgtcggcg gtcgcccgat cgaaacgctg tcccaggacc 300 ccggcggcga cccggaccgc tatcggctgt gcgccgagga cttcattcgc aaccgggggg 360 tacggttcct cgtgggctgc tacatgtcgc acacgcgcaa ggcggtgatg ccggtggtcg 420 agcgcgccga cgcgctgctc tgctacccga ccccctacga gggcttcgag tattcgccga 480 acatcgtcta cggcggtccg gcgccgaacc agaacagtgc gccgctggcg gcgtacctga 540 ttcgccacta cggcgagcgg gtggtgttca tcggctcgga ctacatctat ccgcgggaaa 600 gcaaccatgt gatgcgccac ctgtatcgcc agcacggcgg cacggtgctc gaggaaatct 660 acattccgct gtatccctcc gacgacgact tgcagcgcgc cgtcgagcgc atctaccagg 720 cgcgcgccga cgtggtcttc tccaccgtgg tgggcaccgg caccgccgag ctgtatcgcg 780 ccatcgcccg tcgctacggc gacggcaggc ggccgccgat cgccagcctg accaccagcg 840 aggcggaggt ggcgaagatg gagagtgacg tggcagaggg gcaggtggtg gtcgcgcctt 900 acttctccag catcgatacg cccgccagcc gggccttcgt ccaggcctgc catggtttct 960 tcccggagaa cgcgaccatc accgcctggg ccgaggcggc ctactggcag accttgttgc 1020 tcggccgcgc cgcgcaggcc gcaggcaact ggcgggtgga agacgtgcag cggcacctgt 1080 acgacatcga catcgacgcg ccacaggggc cggtccgggt ggagcgccag aacaaccaca 1140 gccgcctgtc ttcgcgcatc gcggaaatcg atgcgcgcgg cgtgttccag gtccgctggc 1200 agtcgcccga accgattcgc cccgaccctt atgtcgtcgt gcataacctc gacgactggt 1260 ccgccagcat gggcggggga ccgctcccat gagcgccaac tcgctgctcg gcagcctgcg 1320 cgagttgcag gtgctggtcc tcaacccgcc gggggaggtc agcgacgccc tggtcttgca 1380 gctgatccgc atcggttgtt cggtgcgcca gtgctggccg ccgccggaag ccttcgacgt 1440 gccggtggac gtggtcttca ccagcatttt ccagaatggc caccacgacg agatcgctgc 1500 gctgctcgcc gccgggactc cgcgcactac cctggtggcg ctggtggagt acgaaagccc 1560 cgcggtgctc tcgcagatca tcgagctgga gtgccacggc gtgatcaccc agccgctcga 1620 tgcccaccgg gtgctgcctg tgctggtatc ggcgcggcgc atcagcgagg aaatggcgaa 1680 gctgaagcag aagaccgagc agctccagga ccgcatcgcc ggccaggccc ggatcaacca 1740 ggccaaggtg ttgctgatgc agcgccatgg ctgggacgag cgcgaggcgc accagcacct 1800 gtcgcgggaa gcgatgaagc ggcgcgagcc gatcctgaag atcgctcagg agttgctggg 1860 aaacgagccg tccgcctgag cgatccgggc cgaccagaac aataacaaga ggggtatcgt 1920 catcatgctg ggactggttc tgctgtacgt tggcgcggtg ctgtttctca atgccgtctg 1980 gttgctgggc aagatcagcg gtcgggaggt ggcggtgatc aacttcctgg tcggcgtgct 2040 gagcgcctgc gtcgcgttct acctgatctt ttccgcagca gccgggcagg gctcgctgaa 2100 ggccggagcg ctgaccctgc tattcgcttt tacctatctg tgggtggccg ccaaccagtt 2160 cctcgag 2167 // Output file format If a plot is not being produced, dan reports the sequence of each oligomer window, its melting temperature under the specified conditions and its GC content. The output is a standard EMBOSS report file. The results can be output in one of several styles by using the command-line qualifier -rformat xxx, where 'xxx' is replaced by the name of the required format. The available format names are: embl, genbank, gff, pir, swiss, dasgff, debug, listfile, dbmotif, diffseq, draw, restrict, excel, feattable, motif, nametable, regions, seqtable, simple, srs, table, tagseq. See: http://emboss.sf.net/docs/themes/ReportFormats.html for further information on report formats. By default dan writes a 'seqtable' report file. The output is to the specified graphics device. The results can be output in one of several formats by using the command-line qualifier -graph xxx, where 'xxx' is replaced by the name of the required device. Support depends on the availability of third-party software packages. The device names that output to a file are: ps (postscript), cps (colourps), png, gif, pdf, svg, hpgl, hp7470, hp7580, das, data. The other available device names are: meta, x11 (xwindows), tek (tek4107t), tekt (tektronix), xterm, text. Output can be turned off by specifying none (null). See: http://emboss.sf.net/docs/themes/GraphicsDevices.html for further information on supported devices. If the -plot qualifier is used, graphical output is produced instead. Output files for usage example File: x13776.dan ######################################## # Program: dan # Rundate: Fri 15 Jul 2011 12:00:00 # Commandline: dan # -sequence tembl:x13776 # Report_format: seqtable # Report_file: x13776.dan ######################################## #======================================= # # Sequence: X13776 from: 1 to: 2167 # HitCount: 2148 #======================================= Start End Strand Tm GC DeltaG DeltaH DeltaS TmProd Sequence 1 20 + 64.9 70.0 . . . . ggtaccgctggccg agcatc 2 21 + 63.7 65.0 . . . . gtaccgctggccga gcatct 3 22 + 63.7 65.0 . . . . taccgctggccgag catctg 4 23 + 66.9 70.0 . . . . accgctggccgagc atctgc 5 24 + 66.7 70.0 . . . . ccgctggccgagca tctgct 6 25 + 65.5 70.0 . . . . cgctggccgagcat ctgctc 7 26 + 65.5 70.0 . . . . gctggccgagcatc tgctcg 8 27 + 63.7 65.0 . . . . ctggccgagcatct gctcga 9 28 + 62.9 60.0 . . . . tggccgagcatctg ctcgat 10 29 + 62.6 65.0 . . . . ggccgagcatctgc tcgatc 11 30 + 61.7 60.0 . . . . gccgagcatctgct cgatca 12 31 + 60.2 60.0 . . . . ccgagcatctgctc gatcac 13 32 + 60.2 60.0 . . . . cgagcatctgctcg atcacc 14 33 + 59.0 55.0 . . . . gagcatctgctcga tcacca 15 34 + 59.2 55.0 . . . . agcatctgctcgat caccac 16 35 + 60.4 60.0 . . . . gcatctgctcgatc accacc 17 36 + 58.9 55.0 . . . . catctgctcgatca ccacca 18 37 + 58.6 55.0 . . . . atctgctcgatcac caccag 19 38 + 61.3 60.0 . . . . tctgctcgatcacc accagc 20 39 + 62.4 65.0 . . . . ctgctcgatcacca ccagcc 21 40 + 63.9 65.0 . . . . tgctcgatcaccac cagccg 22 41 + 64.9 70.0 . . . . gctcgatcaccacc agccgg 23 42 + 64.3 70.0 . . . . ctcgatcaccacca gccggg 24 43 + 66.1 70.0 . . . . tcgatcaccaccag ccgggc 25 44 + 67.5 75.0 . . . . cgatcaccaccagc cgggcg 26 45 + 66.1 70.0 . . . . gatcaccaccagcc gggcga 27 46 + 66.3 70.0 . . . . atcaccaccagccg ggcgac 28 47 + 68.6 75.0 . . . . tcaccaccagccgg gcgacg 29 48 + 69.8 80.0 . . . . caccaccagccggg cgacgg 30 49 + 70.7 80.0 . . . . accaccagccgggc gacggg 31 50 + 70.5 80.0 . . . . ccaccagccgggcg acggga 32 51 + 68.6 75.0 . . . . caccagccgggcga cgggaa 33 52 + 68.6 75.0 . . . . accagccgggcgac gggaac 34 53 + 68.4 75.0 . . . . ccagccgggcgacg ggaact [Part of this file has been deleted for brevity] 2101 2120 + 69.9 80.0 . . . . ggccggagcgctga ccctgc 2102 2121 + 68.7 75.0 . . . . gccggagcgctgac cctgct 2103 2122 + 65.5 70.0 . . . . ccggagcgctgacc ctgcta 2104 2123 + 63.5 65.0 . . . . cggagcgctgaccc tgctat 2105 2124 + 61.3 60.0 . . . . ggagcgctgaccct gctatt 2106 2125 + 60.1 60.0 . . . . gagcgctgaccctg ctattc 2107 2126 + 61.7 60.0 . . . . agcgctgaccctgc tattcg 2108 2127 + 63.4 65.0 . . . . gcgctgaccctgct attcgc 2109 2128 + 61.7 60.0 . . . . cgctgaccctgcta ttcgct 2110 2129 + 59.5 55.0 . . . . gctgaccctgctat tcgctt 2111 2130 + 57.1 50.0 . . . . ctgaccctgctatt cgcttt 2112 2131 + 56.4 45.0 . . . . tgaccctgctattc gctttt 2113 2132 + 54.7 45.0 . . . . gaccctgctattcg ctttta 2114 2133 + 55.0 45.0 . . . . accctgctattcgc ttttac 2115 2134 + 55.9 50.0 . . . . ccctgctattcgct tttacc 2116 2135 + 54.7 45.0 . . . . cctgctattcgctt ttacct 2117 2136 + 52.0 40.0 . . . . ctgctattcgcttt taccta 2118 2137 + 51.2 35.0 . . . . tgctattcgctttt acctat 2119 2138 + 50.9 40.0 . . . . gctattcgctttta cctatc 2120 2139 + 49.0 35.0 . . . . ctattcgcttttac ctatct 2121 2140 + 49.3 35.0 . . . . tattcgcttttacc tatctg 2122 2141 + 51.1 35.0 . . . . attcgcttttacct atctgt 2123 2142 + 52.2 40.0 . . . . ttcgcttttaccta tctgtg 2124 2143 + 54.0 45.0 . . . . tcgcttttacctat ctgtgg 2125 2144 + 55.2 50.0 . . . . cgcttttacctatc tgtggg 2126 2145 + 53.9 45.0 . . . . gcttttacctatct gtgggt 2127 2146 + 52.3 45.0 . . . . cttttacctatctg tgggtg 2128 2147 + 53.5 45.0 . . . . ttttacctatctgt gggtgg 2129 2148 + 56.0 50.0 . . . . tttacctatctgtg ggtggc 2130 2149 + 57.8 55.0 . . . . ttacctatctgtgg gtggcc 2131 2150 + 60.1 60.0 . . . . tacctatctgtggg tggccg 2132 2151 + 63.4 65.0 . . . . acctatctgtgggt ggccgc 2133 2152 + 64.3 70.0 . . . . cctatctgtgggtg gccgcc 2134 2153 + 63.4 65.0 . . . . ctatctgtgggtgg ccgcca 2135 2154 + 62.7 60.0 . . . . tatctgtgggtggc cgccaa 2136 2155 + 64.5 65.0 . . . . atctgtgggtggcc gccaac 2137 2156 + 66.5 70.0 . . . . tctgtgggtggccg ccaacc 2138 2157 + 66.8 70.0 . . . . ctgtgggtggccgc caacca 2139 2158 + 66.8 70.0 . . . . tgtgggtggccgcc aaccag 2140 2159 + 66.8 70.0 . . . . gtgggtggccgcca accagt 2141 2160 + 65.9 65.0 . . . . tgggtggccgccaa ccagtt 2142 2161 + 65.6 70.0 . . . . gggtggccgccaac cagttc 2143 2162 + 65.6 70.0 . . . . ggtggccgccaacc agttcc 2144 2163 + 64.4 65.0 . . . . gtggccgccaacca gttcct 2145 2164 + 64.1 65.0 . . . . tggccgccaaccag ttcctc 2146 2165 + 65.4 70.0 . . . . ggccgccaaccagt tcctcg 2147 2166 + 64.2 65.0 . . . . gccgccaaccagtt cctcga 2148 2167 + 62.4 65.0 . . . . ccgccaaccagttc ctcgag #--------------------------------------- #--------------------------------------- Output files for usage example 2 Graphics File: dan.ps [dan results] The header information contains details of the program, date and sequence Subsequent lines contain columns of data for each window into the sequence as it is moved along, giving: * The start postion of the window * The end position of the window * The melting temperature of the window * The percentage C+G of the window * The sequence of the window If the qualifier '-product' is used to make the program prompt for percent formamide percent of mismatches allowed and product length, then the output includes the melting temperature of the specified product. If the qualifier '-thermo' is gived then the DeltaG, DeltaH and DeltaS of the sequence in the window is also output. Data files The EMBOSS data files "Edna.melt" and "Erna.melt" are used to read in the entropy/enthalpy/energy data for DNA and RNA respectively. EMBOSS data files are distributed with the application and stored in the standard EMBOSS data directory, which is defined by the EMBOSS environment variable EMBOSS_DATA. To see the available EMBOSS data files, run: % embossdata -showall To fetch one of the data files (for example 'Exxx.dat') into your current directory for you to inspect or modify, run: % embossdata -fetch -file Exxx.dat Users can provide their own data files in their own directories. Project specific files can be put in the current directory, or for tidier directory listings in a subdirectory called ".embossdata". Files for all EMBOSS runs can be put in the user's home directory, or again in a subdirectory called ".embossdata". The directories are searched in the following order: * . (your current directory) * .embossdata (under your current directory) * ~/ (your home directory) * ~/.embossdata Notes The enthalpy of a reaction equates to the "heat" of the reaction so long as temperate and pressure are constant. Enthalpy depends upon the strength of the chemical bonds and non-bonding interactions involved. The entropy of a reaction reflects the level of disorder or randomness of the molecules involved. The higher the entropy, the greater the disorder. The free energy of a reaction reflects it's ability to do work. It helps one determine whether a reaction is feasible given a set of conditions and it's quilibrium. References 1. Breslauer, K.J., Frank, R., Blocker, H., and Marky, L.A. (1986). "Predicting DNA Duplex Stability from the Base Sequence." Proceedings of the National Academy of Sciences USA 83, 3746-3750. 2. Baldino, M., Jr. (1989). "High Resolution In Situ Hybridization Histochemistry." In Methods in Enzymology, (P.M. Conn, ed.), 168, 761-777, Academic Press, San Diego, California, USA. 3. Allawi H.T. and SantaLucia J. Jr. (1997), "Thermodynamics and NMR of Internal G*T Mismatches in DNA" Biochemistry 36, 10581-10594. Warnings RNA sequences must be submited to this application with the '-rna' qualifier on the command line, otherwise the sequence will be assumed to be DNA. Diagnostic Error Messages None. Exit status 0 if successful. Known bugs None. See also Program name Description banana Plot bending and curvature data for B-DNA btwisted Calculate the twisting in a B-DNA sequence chaos Draw a chaos game representation plot for a nucleotide sequence compseq Calculate the composition of unique words in sequences density Draw a nucleic acid density plot freak Generate residue/base frequency table or plot isochore Plots isochores in DNA sequences wordcount Count and extract unique words in molecular sequence(s) Author(s) This program was originally included in EGCG under the names "MELT" and "MELTPLOT", written by Rodrigo Lopez European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK Please report all bugs to the EMBOSS bug team (emboss-bug (c) emboss.open-bio.org) not to the original author. This application was written by Alan Bleasby European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK Please report all bugs to the EMBOSS bug team (emboss-bug (c) emboss.open-bio.org) not to the original author. History Written (1999) - Alan Bleasby Target users This program is intended to be used by everyone and everything, from naive users to embedded scripts. Comments None