seqret Wiki The master copies of EMBOSS documentation are available at http://emboss.open-bio.org/wiki/Appdocs on the EMBOSS Wiki. Please help by correcting and extending the Wiki pages. Function Reads and writes (returns) sequences Description seqret reads in one or more sequences and writes them out again. The sequence input may be a literal sequence or read from a database, file, file of sequence names, or even the command-line or the output of another programs. The sequence output can be written to screen, to file, or passed to another program. A wide range of standard sequence formats may be specified for input and output. If you don't specify the input format, seqret will try a set of possible formats until it reads it in successfully. The sequence input and output, as for all EMBOSS programs, is described by a Uniform Sequence Address. This is is a very flexible way of specifying one or more sequences from a variety of sources and includes sequence files, database queries and external applications. There are many options built-in into EMBOSS for detailed specification of the input and output sequences, for example the sequence type, file format. specification of sequence regions by begin and end positions, or generation of the reverse complement of a nucleic acid sequence. On output seqret can change the case of the sequence to upper or to lower case. seqret is useful for a variety of tasks, including extracting sequences from databases, displaying sequences, reformatting sequences, producing the reverse complement of a sequence, extracting fragments of a sequence, sequence case conversion or any combination of the above functions. Usage Here is a sample session with seqret Extract an entry from a database and write it to a file: % seqret Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.fasta]: Go to the input files for this example Go to the output files for this example Example 2 Read all entries in the database 'tembl' that start with 'ab' and write them to a file. In this example the specification is all done in the command line and to stop Unix getting confused by the '*' character, it has to have a backslash ('\') before it: % seqret "tembl:ab*" aball.seq Reads and writes (returns) sequences Go to the output files for this example Example 3 seqret does not read in features by default because this results in slightly faster performance. If however you wish to read in features with your sequence and write them out on output, using '-feature' will change the default behaviour to use any features present in the sequence. N.B. use embl format for the output file as the default format 'fasta' reports the features in gff (file ".gff") % seqret -feature Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.fasta]: embl::x65923.embl Go to the output files for this example Example 4 Display the contents of the sequence on the screen: % seqret Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.fasta]: stdout >X65923 X65923.1 H.sapiens fau mRNA ttcctctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgc agctctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcg cccagatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgc tcctggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccc tgactaccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggccc gtgctggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaaga agacaggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgccca cctttggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttc tctaataaaaaagccacttagttcagtcaaaaaaaaaa Example 5 Write the result in GCG format by using the qualifier '-osformat'. % seqret -osf gcg Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.gcg]: Go to the output files for this example Example 6 Write the result in GCG format by specifying the format in the output USA on the command line. % seqret -outseq gcg::x65923.gcg Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 Example 7 Write the result in GCG format by specifying the format in the output USA at the prompt. % seqret Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.fasta]: gcg::x65923.gcg Example 8 Write the reverse-complement of a sequence: % seqret -srev Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.fasta]: Go to the output files for this example Example 9 Extract the bases between the positions starting at 5 and ending at 25: % seqret -sbegin 5 -send 25 Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.fasta]: Go to the output files for this example Example 10 Extract the bases between the positions starting at 5 and ending at 5 bases before the end of the sequence: % seqret -sbegin 5 -send -5 Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:x65923 output sequence(s) [x65923.fasta]: Go to the output files for this example Example 11 Read all entries in the database 'tembl' that start with 'h' and write them to a file: % seqret Reads and writes (returns) sequences Input (gapped) sequence(s): tembl:h* output sequence(s) [h45989.fasta]: hall.seq Go to the output files for this example Command line arguments Reads and writes (returns) sequences Version: EMBOSS:6.4.0.0 Standard (Mandatory) qualifiers: [-sequence] seqall (Gapped) sequence(s) filename and optional format, or reference (input USA) [-outseq] seqoutall [.] Sequence set(s) filename and optional format (output USA) Additional (Optional) qualifiers: (none) Advanced (Unprompted) qualifiers: -feature boolean Use feature information -firstonly boolean [N] Read one sequence and stop Associated qualifiers: "-sequence" associated qualifiers -sbegin1 integer Start of each sequence to be used -send1 integer End of each sequence to be used -sreverse1 boolean Reverse (if DNA) -sask1 boolean Ask for begin/end/reverse -snucleotide1 boolean Sequence is nucleotide -sprotein1 boolean Sequence is protein -slower1 boolean Make lower case -supper1 boolean Make upper case -sformat1 string Input sequence format -sdbname1 string Database name -sid1 string Entryname -ufo1 string UFO features -fformat1 string Features format -fopenfile1 string Features file name "-outseq" associated qualifiers -osformat2 string Output seq format -osextension2 string File name extension -osname2 string Base file name -osdirectory2 string Output directory -osdbname2 string Database name to add -ossingle2 boolean Separate file for each entry -oufo2 string UFO features -offormat2 string Features format -ofname2 string Features file name -ofdirectory2 string Output directory General qualifiers: -auto boolean Turn off prompts -stdout boolean Write first file to standard output -filter boolean Read first file from standard input, write first file to standard output -options boolean Prompt for standard and additional values -debug boolean Write debug output to program.dbg -verbose boolean Report some/full command line options -help boolean Report command line options and exit. More information on associated and general qualifiers can be found with -help -verbose -warning boolean Report warnings -error boolean Report errors -fatal boolean Report fatal errors -die boolean Report dying program messages -version boolean Report version number and exit Input file format seqret reads one or more nucleotide or protein sequences. The input is a standard EMBOSS sequence query (also known as a 'USA'). Major sequence database sources defined as standard in EMBOSS installations include srs:embl, srs:uniprot and ensembl Data can also be read from sequence output in any supported format written by an EMBOSS or third-party application. The input format can be specified by using the command-line qualifier -sformat xxx, where 'xxx' is replaced by the name of the required format. The available format names are: gff (gff3), gff2, embl (em), genbank (gb, refseq), ddbj, refseqp, pir (nbrf), swissprot (swiss, sw), dasgff and debug. See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further information on sequence formats. Input files for usage example 'tembl:x65923' is a sequence entry in the example nucleic acid database 'tembl' Database entry: tembl:x65923 ID X65923; SV 1; linear; mRNA; STD; HUM; 518 BP. XX AC X65923; XX DT 13-MAY-1992 (Rel. 31, Created) DT 18-APR-2005 (Rel. 83, Last updated, Version 11) XX DE H.sapiens fau mRNA XX KW fau gene. XX OS Homo sapiens (human) OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; OC Homo. XX RN [1] RP 1-518 RA Michiels L.M.R.; RT ; RL Submitted (29-APR-1992) to the EMBL/GenBank/DDBJ databases. RL L.M.R. Michiels, University of Antwerp, Dept of Biochemistry, RL Universiteisplein 1, 2610 Wilrijk, BELGIUM XX RN [2] RP 1-518 RX PUBMED; 8395683. RA Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.; RT "fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as RT an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus"; RL Oncogene 8(9):2537-2546(1993). XX DR H-InvDB; HIT000322806. XX FH Key Location/Qualifiers FH FT source 1..518 FT /organism="Homo sapiens" FT /chromosome="11q" FT /map="13" FT /mol_type="mRNA" FT /clone_lib="cDNA" FT /clone="pUIA 631" FT /tissue_type="placenta" FT /db_xref="taxon:9606" FT misc_feature 57..278 FT /note="ubiquitin like part" FT CDS 57..458 FT /gene="fau" FT /db_xref="GDB:135476" FT /db_xref="GOA:P35544" FT /db_xref="GOA:P62861" FT /db_xref="HGNC:3597" FT /db_xref="InterPro:IPR000626" FT /db_xref="InterPro:IPR006846" FT /db_xref="InterPro:IPR019954" FT /db_xref="InterPro:IPR019955" FT /db_xref="InterPro:IPR019956" FT /db_xref="UniProtKB/Swiss-Prot:P35544" FT /db_xref="UniProtKB/Swiss-Prot:P62861" FT /protein_id="CAA46716.1" FT /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLAG FT APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKTG FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS" FT misc_feature 98..102 FT /note="nucleolar localization signal" FT misc_feature 279..458 FT /note="S30 part" FT polyA_signal 484..489 FT polyA_site 509 XX SQ Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other; ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc 60 agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg 120 cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc 180 tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc 240 tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 300 gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga 360 agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca 420 cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc 480 tctaataaaa aagccactta gttcagtcaa aaaaaaaa 518 // Output file format The output is a standard EMBOSS sequence file. The results can be output in one of several styles by using the command-line qualifier -osformat xxx, where 'xxx' is replaced by the name of the required format. The available format names are: embl, genbank, gff, pir, swiss, dasgff, debug, listfile, dbmotif, diffseq, excel, feattable, motif, nametable, regions, seqtable, simple, srs, table, tagseq. See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further information on sequence formats. The output from seqret is one or more sequences, and by default will be written in FASTA format. If the '-firstonly' qualifier is used then only the first sequence of the input USA specification will be written out. In some cases the output filename will be the same as the input filename, but as seqret reads only the first sequence before opening the output file it may try to overwrite the input. Note that this is not true of seqretset which reads all sequences into memory at startup, but which can need a large amount of memory for many sequences. Output files for usage example File: x65923.fasta >X65923 X65923.1 H.sapiens fau mRNA ttcctctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgc agctctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcg cccagatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgc tcctggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccc tgactaccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggccc gtgctggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaaga agacaggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgccca cctttggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttc tctaataaaaaagccacttagttcagtcaaaaaaaaaa Output files for usage example 2 File: aball.seq >AB009602 AB009602.1 Schizosaccharomyces pombe mRNA for MET1 homolog, partial cd s. gttcgatgcctaaaataccttcttttgtccctacacagaccacagttttcctaatggctt tacaccgactagaaattcttgtgcaagcactaattgaaagcggttggcctagagtgttac cggtttgtatagctgagcgcgtctcttgccctgatcaaaggttcattttctctactttgg aagacgttgtggaagaatacaacaagtacgagtctctcccccctggtttgctgattactg gatacagttgtaatacccttcgcaacaccgcgtaactatctatatgaattattttccctt tattatatgtagtaggttcgtctttaatcttcctttagcaagtcttttactgttttcgac ctcaatgttcatgttcttaggttgttttggataatatgcggtcagtttaatcttcgttgt ttcttcttaaaatatttattcatggtttaatttttggtttgtacttgttcaggggccagt tcattatttactctgtttgtatacagcagttcttttatttttagtatgattttaatttaa aacaattctaatggtcaaaaa >AB000095 AB000095.1 Homo sapiens mRNA for hepatocyte growth factor activator in hibitor, complete cds. cggccgagcccagctctccgagcaccgggtcggaagccgcgacccgagccgcgcaggaag ctgggaccggaacctcggcggacccggccccacccaactcacctgcgcaggtcaccagca ccctcggaacccagaggcccgcgctctgaaggtgacccccctggggaggaaggcgatggc ccctgcgaggacgatggcccgcgcccgcctcgccccggccggcatccctgccgtcgcctt gtggcttctgtgcacgctcggcctccagggcacccaggccgggccaccgcccgcgccccc tgggctgcccgcgggagccgactgcctgaacagctttaccgccggggtgcctggcttcgt gctggacaccaacgcctcggtcagcaacggagctaccttcctggagtcccccaccgtgcg ccggggctgggactgcgtgcgcgcctgctgcaccacccagaactgcaacttggcgctagt ggagctgcagcccgaccgcggggaggacgccatcgccgcctgcttcctcatcaactgcct ctacgagcagaacttcgtgtgcaagttcgcgcccagggagggcttcatcaactacctcac gagggaagtgtaccgctcctaccgccagctgcggacccagggctttggagggtctgggat ccccaaggcctgggcaggcatagacttgaaggtacaaccccaggaacccctggtgctgaa ggatgtggaaaacacagattggcgcctactgcggggtgacacggatgtcagggtagagag gaaagacccaaaccaggtggaactgtggggactcaaggaaggcacctacctgttccagct gacagtgactagctcagaccacccagaggacacggccaacgtcacagtcactgtgctgtc caccaagcagacagaagactactgcctcgcatccaacaaggtgggtcgctgccggggctc tttcccacgctggtactatgaccccacggagcagatctgcaagagtttcgtttatggagg ctgcttgggcaacaagaacaactaccttcgggaagaagagtgcattctagcctgtcgggg tgtgcaaggcccctccatggaaaggcgccatccagtgtgctctggcacctgtcagcccac ccagttccgctgcagcaatggctgctgcatcgacagtttcctggagtgtgacgacacccc caactgccccgacgcctccgacgaggctgcctgtgaaaaatacacgagtggctttgacga gctccagcgcatccatttccccagtgacaaagggcactgcgtggacctgccagacacagg actctgcaaggagagcatcccgcgctggtactacaaccccttcagcgaacactgcgcccg ctttacctatggtggttgttatggcaacaagaacaactttgaggaagagcagcagtgcct cgagtcttgtcgcggcatctccaagaaggatgtgtttggcctgaggcgggaaatccccat tcccagcacaggctctgtggagatggctgtcgcagtgttcctggtcatctgcattgtggt ggtggtagccatcttgggttactgcttcttcaagaaccagagaaaggacttccacggaca ccaccaccacccaccacccacccctgccagctccactgtctccactaccgaggacacgga gcacctggtctataaccacaccacccggcccctctgagcctgggtctcaccggctctcac ctggccctgcttcctgcttgccaaggcagaggcctgggctgggaaaaactttggaaccag actcttgcctgtttcccaggcccactgtgcctcagagaccagggctccagcccctcttgg agaagtctcagctaagctcacgtcctgagaaagctcaaaggtttggaaggagcagaaaac ccttgggccagaagtaccagactagatggacctgcctgcataggagtttggaggaagttg gagttttgtttcctctgttcaaagctgcctgtccctaccccatggtgctaggaagaggag tggggtggtgtcagaccctggaggccccaaccctgtcctcccgagctcctcttccatgct gtgcgcccagggctgggaggaaggacttccctgtgtagtttgtgctgtaaagagttgctt tttgtttatttaatgctgtggcatgggtgaagaggaggggaagaggcctgtttggcctct ctgtcctctcttcctcttcccccaagattgagctctctgcccttgatcagccccaccctg [Part of this file has been deleted for brevity] nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnntcctgtcctcccgtccatcctctgttcccgggttctcctgcccctttccct ccccttcctcctcctccatggcctcttcgcctgcccatgctctgtgtgtattgcaggttt cccagttcatggcgtgtgaggagctgcccccgggggccccagagcttccccaagaaggcc ccacacgacgcctctccctaccgggccagctgggggccctcacctcccagcccctgcaca gacacggctcggacccgggcagttagtggggctgcccagtgtggacacgt >AB000360 AB000360.1 Homo sapiens PIGC gene, complete cds. ggatccctgctgcagagggggtaacggtgtctggcttgccaagcaatatttgttgtggtc tatcatggaagaaataaagtcgggcaatatgaattttttttttctcaaatttgccggatg gctgtggtgtttctgactcttagttttctcattgtgaaaaaggaatgattatcttcttcg atcctctcaagagtttccttgttttgagtagattgatagctctttaaaggatgctaagct cagctaatggaagaagagtctagtttctttgaggctttgattttggttaaactatagagc tcatacctttctgtatggtgcagcttactattgtctttggattggtaacttaaaaaatac aaataacatgcctttgagaaccaataaaaactatggatattatccctataaatttacaca aatccagatataagcatgcaatgtgatatacctaagggatatgtgaaccactgagttaag aactgctttagagggagatacaatgtgagacacaggctttgggataagactttggtttga atcctggctctgctctgttaccttagggcaaagttacttaagcatcttgaatctcagctt ttttaccaaagcaggactaatactaacttacaaggtggtgaggattaagtgaaagaagat acataaggcacttagcacatagtaggtactcaataagcgatagctaacagatgtctatta ttattcaaggaattataattttcaaatctgaaatgcagttttaatgtcccataaggtgac taccacatacatttttctcagacttttagtaaactgagttgatttgactttatctcagta ctactcttgacctttcacaactttcgtaggttcacagtctctctttttctaggaacttgg ctgtgttgtcctgcctcagagacaaattcatctattgtaggcctagcccctgcctttgaa aacaaggaaaggttggtagaacatcaacacagcatggaatttccagggaggtctcatttc aaaacttcataaagaacaagaaccacctggacttctgtgagggcgatgattaaactggcc tgagtttgaatgaaaggataatgtatgctcaacctgtgactaacaccaaggaggtcaagt ggcagaaggtcttgtatgagcgacagccctttcctgataactatgtggaccggcgattcc tggaagagctccggaaaaacatccatgctcggaaataccaatattgggctgtggtatttg agtccagtgtggtgatccagcagctgtgcagtgtttgtgtttttgtggttatctggtggt atatggatgagggtcttctggccccccattggcttttagggactggcctggcttcttcac tgattgggtatgttttgtttgatctcattgatggaggtgaagggcggaagaagagtgggc agacccggtgggctgacctgaagagtgccctagtcttcattactttcacttatgggtttt caccagtgctgaagacccttacagagtctgtcagcactgacaccatctatgccatgtcag tcttcatgctgttaggccatctcatcttttttgactatggtgccaatgctgccattgtat ccagcacactatccttgaacatggccatctttgcttctgtatgcttggcatcacgtcttc cccggtccctgcatgccttcatcatggtgacatttgccattcagatttttgccctgtggc ccatgttgcagaagaaactaaaggcatgtactccccggagctatgtgggggtcacactgc tttttgcattttcagccgtgggaggcctactgtccattagtgctgtgggagccgtactct ttgcccttctgctgatgtctatctcatgtctgtgttcattctacctcattcgcttgcagc tttttaaagaaaacattcatgggccttgggatgaagctgaaatcaaggaagacttgtcca ggttcctcagttaaattaggacatccattacattattaaagcaagctgatagattagcct cctaactagtatagaacttaaagacagagttccattctggaagcagcatgtcattgtggt aagagaatagagatcaaaaccaaaaaaaatgaaccaaaggcttgggtggtgagggtgctt atcctttctgttattttgtagatgaaaaaactttctggggacctcttgaattacatgctg taacatatgaagtgatgtggtttctattaaaaaaataacacatccatcaagttgtctcat gatttttccataaacaggaggcagacagaggggcatgaagagtgaagtaagtgtgtgtgt gtgtgtgtgtgtgtgtaaagtcacttctttctacccttttcaatgtgctaatgctctttt atttatctagggctcaaatcttagaacacagggtgctatgctcagttttgttgcccaaga tcacagaattggttacttaaccttgactcagagtttctaccttgttcttagggaagcata tcacaactaattgcaaagcagagtgtgatgtgtcacaataagcagaatgctagggggaat tc Output files for usage example 3 File: x65923.embl ID X65923; SV 1; linear; mRNA; STD; HUM; 518 BP. XX AC X65923; XX DT 13-MAY-1992 (Rel. 31, Created) DT 18-APR-2005 (Rel. 83, Last updated, Version 11) XX DE H.sapiens fau mRNA XX KW fau gene. XX OS Homo sapiens (human) OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; OC Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; OC Homo. XX RN [1] RP 1-518 RA Michiels L.M.R.; RT ; RL Submitted (29-APR-1992) to the EMBL/GenBank/DDBJ databases. RL L.M.R. Michiels, University of Antwerp, Dept of Biochemistry, RL Universiteisplein 1, 2610 Wilrijk, BELGIUM. XX RN [2] RP 1-518 RX PUBMED; 8395683. RA Michiels L., Van der Rauwelaert E., Van Hasselt F., Kas K., Merregaert J.; RT "fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as RT an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus"; RL Oncogene 8(9):2537-2546(1993). XX DR H-InvDB; HIT000322806. XX FH Key Location/Qualifiers FH FT source 1..518 FT /organism="Homo sapiens" FT /chromosome="11q" FT /map="13" FT /mol_type="mRNA" FT /clone_lib="cDNA" FT /clone="pUIA 631" FT /tissue_type="placenta" FT /db_xref="taxon:9606" FT misc_feature 57..278 FT /note="ubiquitin like part" FT CDS 57..458 FT /gene="fau" FT /db_xref="GDB:135476" FT /db_xref="GOA:P35544" FT /db_xref="GOA:P62861" FT /db_xref="HGNC:3597" FT /db_xref="InterPro:IPR000626" FT /db_xref="InterPro:IPR006846" FT /db_xref="InterPro:IPR019954" FT /db_xref="InterPro:IPR019955" FT /db_xref="InterPro:IPR019956" FT /db_xref="UniProtKB/Swiss-Prot:P35544" FT /db_xref="UniProtKB/Swiss-Prot:P62861" FT /protein_id="CAA46716.1" FT /translation="MQLFVRAQELHTFEVTGQETVAQIKAHVASLEGIAPEDQVVLLAG FT APLEDEATLGQCGVEALTTLEVAGRMLGGKVHGSLARAGKVRGQTPKVAKQEKKKKKTG FT RAKRRMQYNRRFVNVVPTFGKKKGPNANS" FT misc_feature 98..102 FT /note="nucleolar localization signal" FT misc_feature 279..458 FT /note="S30 part" FT polyA_signal 484..489 FT polyA_site 509 XX SQ Sequence 518 BP; 125 A; 139 C; 148 G; 106 T; 0 other; ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc gccaatatgc 60 agctctttgt ccgcgcccag gagctacaca ccttcgaggt gaccggccag gaaacggtcg 120 cccagatcaa ggctcatgta gcctcactgg agggcattgc cccggaagat caagtcgtgc 180 tcctggcagg cgcgcccctg gaggatgagg ccactctggg ccagtgcggg gtggaggccc 240 tgactaccct ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 300 gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag aagaagaaga 360 agacaggtcg ggctaagcgg cggatgcagt acaaccggcg ctttgtcaac gttgtgccca 420 cctttggcaa gaagaagggc cccaatgcca actcttaagt cttttgtaat tctggctttc 480 tctaataaaa aagccactta gttcagtcaa aaaaaaaa 518 // Output files for usage example 5 File: x65923.gcg !!NA_SEQUENCE 1.0 H.sapiens fau mRNA X65923 Length: 518 Type: N Check: 2981 .. 1 ttcctctttc tcgactccat cttcgcggta gctgggaccg ccgttcagtc 51 gccaatatgc agctctttgt ccgcgcccag gagctacaca ccttcgaggt 101 gaccggccag gaaacggtcg cccagatcaa ggctcatgta gcctcactgg 151 agggcattgc cccggaagat caagtcgtgc tcctggcagg cgcgcccctg 201 gaggatgagg ccactctggg ccagtgcggg gtggaggccc tgactaccct 251 ggaagtagca ggccgcatgc ttggaggtaa agttcatggt tccctggccc 301 gtgctggaaa agtgagaggt cagactccta aggtggccaa acaggagaag 351 aagaagaaga agacaggtcg ggctaagcgg cggatgcagt acaaccggcg 401 ctttgtcaac gttgtgccca cctttggcaa gaagaagggc cccaatgcca 451 actcttaagt cttttgtaat tctggctttc tctaataaaa aagccactta 501 gttcagtcaa aaaaaaaa Output files for usage example 8 File: x65923.fasta >X65923 X65923.1 H.sapiens fau mRNA ttttttttttgactgaactaagtggcttttttattagagaaagccagaattacaaaagac ttaagagttggcattggggcccttcttcttgccaaaggtgggcacaacgttgacaaagcg ccggttgtactgcatccgccgcttagcccgacctgtcttcttcttcttcttctcctgttt ggccaccttaggagtctgacctctcacttttccagcacgggccagggaaccatgaacttt acctccaagcatgcggcctgctacttccagggtagtcagggcctccaccccgcactggcc cagagtggcctcatcctccaggggcgcgcctgccaggagcacgacttgatcttccggggc aatgccctccagtgaggctacatgagccttgatctgggcgaccgtttcctggccggtcac ctcgaaggtgtgtagctcctgggcgcggacaaagagctgcatattggcgactgaacggcg gtcccagctaccgcgaagatggagtcgagaaagaggaa Output files for usage example 9 File: x65923.fasta >X65923 X65923.1 H.sapiens fau mRNA tctttctcgactccatcttcg Output files for usage example 10 File: x65923.fasta >X65923 X65923.1 H.sapiens fau mRNA tctttctcgactccatcttcgcggtagctgggaccgccgttcagtcgccaatatgcagct ctttgtccgcgcccaggagctacacaccttcgaggtgaccggccaggaaacggtcgccca gatcaaggctcatgtagcctcactggagggcattgccccggaagatcaagtcgtgctcct ggcaggcgcgcccctggaggatgaggccactctgggccagtgcggggtggaggccctgac taccctggaagtagcaggccgcatgcttggaggtaaagttcatggttccctggcccgtgc tggaaaagtgagaggtcagactcctaaggtggccaaacaggagaagaagaagaagaagac aggtcgggctaagcggcggatgcagtacaaccggcgctttgtcaacgttgtgcccacctt tggcaagaagaagggccccaatgccaactcttaagtcttttgtaattctggctttctcta ataaaaaagccacttagttcagtcaaaaaa Output files for usage example 11 File: hall.seq >H45989 H45989.1 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNA sequence. ccggnaagctcancttggaccaccgactctcgantgnntcgccgcgggagccggntggan aacctgagcgggactggnagaaggagcagagggaggcagcacccggcgtgacggnagtgt gtggggcactcaggccttccgcagtgtcatctgccacacggaaggcacggccacgggcag gggggtctatgatcttctgcatgcccagctggcatggccccacgtagagtggnntggcgt ctcggtgctggtcagcgacacgttgtcctggctgggcaggtccagctcccggaggacctg gggcttcagcttcccgtagcgctggctgcagtgacggatgctcttgcgctgccatttctg ggtgctgtcactgtccttgctcactccaaaccagttcggcggtccccctgcggatggtct gtgttgatggacgtttgggctttgcagcaccggccgccgagttcatggtngggtnaagag atttgggttttttcn Data files None. Notes This description of what you can do when reading or writing files is not specific to the program seqret. All EMBOSS programs that read or write sequences can do the same. seqret is often one of the first programs taught in EMBOSS training courses. This is because it is versatile, it is extremely powerful for its size (17 lines of code) it illustrates many aspects of EMBOSS programs and it was one of the first EMBOSS programs to be written, so it has a special place in the hearts of EMBOSS developers. The name 'seqret' derives both from its function ("sequence return") and from the fact that immense amounts of functionality can come from so few lines of source code - most of the work is done by the EMBOSS libraries which the program calls and whose complexity is hidden, or "secret". The simplicity of the above description of this program greatly understates the rich functionality of this program. Because EMBOSS programs can take a wide range of qualifiers that slightly change the behaviour of the program when reading or writing a sequence, this program can do many more things than simply "read and write a sequence". seqret can read a sequence or many sequences from databases, files, files of sequence names, the command-line or the output of other programs and then can write them to files, the screen or pass them to other programs. Because it can read in a sequence from a database and write it to a file, seqret is a program for extracting sequences from databases. Because it can write the sequence to the screen, seqret is a program for displaying sequences. seqret can read sequences in any of a wide range of standard sequence formats. You can specify the input and output formats being used. If you don't specify the input format, seqret will try a set of possible formats until it reads it in successfully. Because you can specify the output sequence format, seqret is a program to reformat a sequence. seqret can read in the reverse complement of a nucleic acid sequence. It therefore is a program for producing the reverse complement of a sequence. seqret can read in a sequence whose begin and end positions you have specified and write out that fragment. It is therefore a utility for doing simple extraction of a region of a sequence. seqret can change the case of the sequence being read in to upper or to lower case. It is therefore a simple sequence beautification utility. seqret can do any combination of the above functions. The sequence input and output specification of this (and many other EMBOSS programs) is described as being a Uniform Sequence Address. The Uniform Sequence Address, or USA, is a somewhat tongue-in-cheek reference to a URL-style sequence naming used by all EMBOSS applications. The USA is a very flexible way of specifying one or more sequences from a variety of sources and includes sequence files, database queries and external applications. See the full specification of USA syntax at: http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html The basic USA syntax is one of: * "file" * "file:entry" * "format::file" * "format::file:entry" * "database:entry" * "database" * "@file" Note that ':' separates the name of a file containing many possible entries from the specific name of a sequence entry in that file. It also separates the name of a database from an entry in that database Note also that '::' separates the specified format of a file from the name of the file. Normally the format can be omitted, in which case the program will attempt to identify the correct format when reading the sequence in and will default to using FASTA format when writing the sequence out. Valid names of the databases set up in your local implementation of EMBOSS can be seen by using the program 'showdb'. Database queries, and individual entries in files that have more than one sequence entry, use wildcards of "?" for any character and "*" for any string of characters. There are some problems with the Unix shell catching these characters so they do need to be hidden in quotes or preceded by a backslash on the Unix command line, (for example "embl:hs\*") The output USA name 'stdout' is special. It makes the output go to the device 'standard output'. This is the screen, by default. Example USAs The following are valid USAs for sequences: USA Description xxx.seq A sequence file "xxx.seq" in any format fasta::xxx.seq A sequence file "xxx.seq" in fasta format gcg::egmsmg.gcg A sequence file "egmsmg.gcg" in GCG 9 format egmsmg.gcg -sformat=gcg A sequence file "egmsmg.gcg" in GCG 9 format embl::x13776.em A sequence file "x13776.em" in EMBL format embl:x13776 EMBL entry X13776, using whatever access method is defined locally for the EMBL database embl:K01793 EMBL entry K01793, using whatever access method is defined locally for the EMBL database and searching by accession number and entry name (K01793 is a secondary accession number in this case for entry J01636) embl-acc:K01793 EMBL entry X13776, using whatever access method is defined locally for the EMBL database and searching by accession number only embl-id:x13776 EMBL entry x13776, using whatever access method is defined locally for the EMBL database, and searching by ID only embl:v0029* EMBL entries V00290, V00291, and so on, usually in alphabetical order, using whatever access method is defined locally for the EMBL database embl or EMBL:* All sequences in the EMBL database @mylist Reads file mylist and uses each line as a separate USA. This is standard VMS list file syntax, also used in SRS 4.0 but missing in SRS 5.0 onwards. The list file is a list of USAs (one per line). List files can contain references to other lists files or any other standard USA. list::mylist Same as "@mylist" above 'getz -e [embl-id:x13776] |' The pipe character "|" causes EMBOSS to fire up getz (SRS) to extract entry x13776 from EMBL in EMBL format. Any application or script which writes one or more sequences to stdout can be used in this way. asis::atacgcagttatctgaccat So far the shortest USA we could invent. In 'asis' format the name is the sequence so no file needs to be opened. This is a special case. It was intended as a joke, but has proved quite useful for generating command lines when testing. Input sequence formats The input is a standard EMBOSS sequence query (also known as a 'USA'). Major sequence database sources defined as standard in EMBOSS installations include srs:embl, srs:uniprot and ensembl Data can also be read from sequence output in any supported format written by an EMBOSS or third-party application. The input format can be specified by using the command-line qualifier -sformat xxx, where 'xxx' is replaced by the name of the required format. The available format names are: gff (gff3), gff2, embl (em), genbank (gb, refseq), ddbj, refseqp, pir (nbrf), swissprot (swiss, sw), dasgff and debug. See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further information on sequence formats. Output sequence formats The output is a standard EMBOSS sequence file. The results can be output in one of several styles by using the command-line qualifier -osformat xxx, where 'xxx' is replaced by the name of the required format. The available format names are: embl, genbank, gff, pir, swiss, dasgff, debug, listfile, dbmotif, diffseq, excel, feattable, motif, nametable, regions, seqtable, simple, srs, table, tagseq. See: http://emboss.sf.net/docs/themes/SequenceFormats.html for further information on sequence formats. Future directions More formats, both for input and for output, can be easily added, so suggestions are always welcome. Associated qualifiers As noted previously there are many 'associated' qualifiers that alter the behaviour of seqret when it reads in or writes out a sequence. As these are used in all EMBOSS programs that read in or write out sequences, they are not reported by the '-help' qualifier. They are however reported by the pair of qualifiers: '-help -verbose': Some of the more useful associated qualifiers are: Qualifier Description -sbegin The first position to be used in the sequence -send The last position to be used in the sequence -sreverse Use the reverse complement of a nucleic acid sequence -sask Ask the user for begin/end/reverse information -slower Convert the sequence to lower case -supper Convert the sequence to upper case -sformat Specify the input sequence format -osformat Specify the output sequence format -ossingle Write each entry into a separate file The set of associated qualifiers for sequences behave in different ways depending on where they appear. If these qualifiers immediately follow a parameter they apply only to that parameter and not to all cases. If they occur before any parameters, they apply to all following sequence parameters. If there are no two parameters of equal type, the order of parameters and their qualifiers is irrelevant. Where a qualifier is defined more than once, for example "-sformat" for 2 input sequences to be aligned, the qualifier name can have a number to indicate which sequence is meant. "-sbegin2=25" will apply only to the second sequence, no matter where it appears on the command line. The -sbegin and -send qualifiers take an integer number specifying the position to begin or end reading a sequence. If the number is positive, the number is the position counting from the first base or residue of the sequence. If the number is negative the position is counted from the end of the sequence, so position -1 is the last base or residue of the sequence. (If -sbegin 0 is used, it is assumed to be the same as -sbegin 1 and -send 0 is the same as -send -1.) The filter qualifier makes the program behave like a filter, reading its (first) input 'file' from the standard input, and writing its (first) output 'file' to the standard output. The -filter qualifier will also invoke the -auto qualifier, so the user is never prompted for any missing values. Example: % cat sequence.seq | seqret -filter | lpr The example shows the application seqret being run with the -filter qualifier. The input file is 'piped' into the program using the unix command cat and the output is 'piped' directly to the unix program lpr, which will print it on the printer. When the -options qualifier is used and not all the parameters are given on the command line, it will query the user for those parameters. It will not only query the user for the required parameters as it would do without the -options qualifier, but it will also query the user for the optional parameters. When the -stdout qualifier is used, the user will still be prompted for all the info that is required, but will write to standard output by default. The user will also still be prompted for an output filename, in case the user wants to save the output to a file. References None. Warnings None. Diagnostic Error Messages None. Exit status It always exits with a status of 0. Known bugs None. See also Program name Description aligncopy Reads and writes alignments aligncopypair Reads and writes pairs from alignments biosed Replace or delete sequence sections codcopy Copy and reformat a codon usage table cutseq Removes a section from a sequence degapseq Removes non-alphabetic (e.g. gap) characters from sequences descseq Alter the name or description of a sequence entret Retrieves sequence entries from flatfile databases and files extractalign Extract regions from a sequence alignment extractfeat Extract features from sequence(s) extractseq Extract regions from a sequence featcopy Reads and writes a feature table featreport Reads and writes a feature table feattext Return a feature table original text listor Write a list file of the logical OR of two sets of sequences makenucseq Create random nucleotide sequences makeprotseq Create random protein sequences maskambignuc Masks all ambiguity characters in nucleotide sequences with N maskambigprot Masks all ambiguity characters in protein sequences with X maskfeat Write a sequence with masked features maskseq Write a sequence with masked regions newseq Create a sequence file from a typed-in sequence nohtml Remove mark-up (e.g. HTML tags) from an ASCII text file noreturn Remove carriage return from ASCII files nospace Remove whitespace from an ASCII text file notab Replace tabs with spaces in an ASCII text file notseq Write to file a subset of an input stream of sequences nthseq Write to file a single sequence from an input stream of sequences nthseqset Reads and writes (returns) one set of sequences from many pasteseq Insert one sequence into another revseq Reverse and complement a nucleotide sequence seqcount Reads and counts sequences seqretsetall Reads and writes (returns) many sets of sequences seqretsplit Reads sequences and writes them to individual files sizeseq Sort sequences by size skipredundant Remove redundant sequences from an input set skipseq Reads and writes (returns) sequences, skipping first few splitsource Split sequence(s) into original source sequences splitter Split sequence(s) into smaller sequences trimest Remove poly-A tails from nucleotide sequences trimseq Remove unwanted characters from start and end of sequence(s) trimspace Remove extra whitespace from an ASCII text file union Concatenate multiple sequences into a single sequence vectorstrip Removes vectors from the ends of nucleotide sequence(s) yank Add a sequence reference (a full USA) to a list file Valid names of the databases set up in your local implementation of EMBOSS can be seen by using the program 'showdb'. Author(s) Peter Rice European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK Please report all bugs to the EMBOSS bug team (emboss-bug (c) emboss.open-bio.org) not to the original author. History 1999 - Written by Peter Rice Feb 2002 - '-feature' qualifier added by Peter Rice Target users This program is intended to be used by everyone and everything, from naive users to embedded scripts. Comments Fasta output format Question When i tried to convert the EMBL format file into fasta format using the program "seqret", I found that the Access.no appears twice... >AF102796 AF102796 Homo sapiens alphaE-catenin (CTNNA1) gene, exon 11. Answer "It is not a bug ... it is a feature" There are many "FASTA formats". EMBOSS uses the format that ACEDB and the EBI genome projects use. The first field after the ID is the accession number, so that accession numbers can be kept when sequences are converted to FASTA format, without using the NCBI format (with '|' characters in the IDs). Your EMBL format file has IDs that look like accession numbers, so EMBOSS fills in the accession number for each sequence, and reports it in the FASTA format.