dtCMatrix-class package:Matrix R Documentation _T_r_i_a_n_g_u_l_a_r, (_c_o_m_p_r_e_s_s_e_d) _s_p_a_r_s_e _c_o_l_u_m_n _m_a_t_r_i_c_e_s _D_e_s_c_r_i_p_t_i_o_n: The '"dtCMatrix"' class is a class of triangular, sparse matrices in the compressed, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order. The '"dtTMatrix"' class is a class of triangular, sparse matrices in triplet format. _O_b_j_e_c_t_s _f_r_o_m _t_h_e _C_l_a_s_s: Objects can be created by calls of the form 'new("dtCMatrix", ...)' or calls of the form 'new("dtTMatrix", ...)', but more typically automatically via 'Matrix()' or coercion such as 'as(x, "dtCMatrix")'. _S_l_o_t_s: '_u_p_l_o': Object of class '"character"'. Must be either "U", for upper triangular, and "L", for lower triangular. '_d_i_a_g': Object of class '"character"'. Must be either '"U"', for unit triangular (diagonal is all ones), or '"N"'; see 'triangularMatrix'. '_p': Object of class '"integer"' of pointers, one for each column, to the initial (zero-based) index of elements in the column. (Only present in the 'dtCMatrix' class.) '_i': Object of class '"integer"' of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix. '_j': Object of class '"integer"' of length nnzero (number of non-zero elements). These are the column numbers for each non-zero element in the matrix. (Only present in the 'dtTMatrix' class.) '_x': Object of class '"numeric"' - the non-zero elements of the matrix. '_D_i_m','_D_i_m_n_a_m_e_s': The dimension (a length-2 '"integer"') and corresponding names (or 'NULL'), inherited from the 'Matrix', see there. _E_x_t_e_n_d_s: Class '"dgCMatrix"', directly. Class '"triangularMatrix"', directly. Class '"dMatrix"', '"sparseMatrix"', and more by class '"dgCMatrix"' etc, see the examples. _M_e_t_h_o_d_s: _c_o_e_r_c_e 'signature(from = "dtCMatrix", to = "dgTMatrix")' _c_o_e_r_c_e 'signature(from = "dtCMatrix", to = "dgeMatrix")' _c_o_e_r_c_e 'signature(from = "dtTMatrix", to = "dgeMatrix")' _c_o_e_r_c_e 'signature(from = "dtTMatrix", to = "dtrMatrix")' _c_o_e_r_c_e 'signature(from = "dtTMatrix", to = "matrix")' _s_o_l_v_e 'signature(a = "dtCMatrix", b = "matrix")' _s_o_l_v_e 'signature(a = "dtCMatrix", b = "dgeMatrix")' _s_o_l_v_e 'signature(a = "dtCMatrix", b = "missing")' _s_o_l_v_e 'signature(a = "dtCMatrix", b = "numeric")' _s_o_l_v_e 'signature(a = "dtCMatrix", b = "CsparseMatrix")': fully sparse triangular solve, in traditional S/R aka 'backsolve'. _t 'signature(x = "dtCMatrix")': returns the transpose of 'x' _t 'signature(x = "dtTMatrix")': returns the transpose of 'x' _S_e_e _A_l_s_o: Classes 'dgCMatrix', 'dgTMatrix', 'dgeMatrix', and 'dtrMatrix'. _E_x_a_m_p_l_e_s: showClass("dtCMatrix") showClass("dtTMatrix") t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4))) t1 ## from 0-diagonal to unit-diagonal {low-level step}: tu <- t1 ; tu@diag <- "U" tu (cu <- as(tu, "dtCMatrix")) str(cu)# only two entries in @i and @x stopifnot(cu@i == 1:0, all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu))) t1[1,2:3] <- -1:-2 diag(t1) <- 10*c(1:2,3:2) t1 # still triangular (it1 <- solve(t1)) t1. <- solve(it1) all(abs(t1 - t1.) < 10 * .Machine$double.eps)