### Name: predict.gam ### Title: Prediction from fitted GAM model ### Aliases: predict.gam ### Keywords: models smooth regression ### ** Examples library(mgcv) n<-200 sig <- 2 dat <- gamSim(1,n=n,scale=sig) b<-gam(y~s(x0)+s(I(x1^2))+s(x2)+offset(x3),data=dat) newd <- data.frame(x0=(0:30)/30,x1=(0:30)/30,x2=(0:30)/30,x3=(0:30)/30) pred <- predict.gam(b,newd) ## difference between "terms" and "iterms" nd2 <- data.frame(x0=c(.25,.5),x1=c(.25,.5),x2=c(.25,.5),x3=c(.25,.5)) predict(b,nd2,type="terms",se=TRUE) predict(b,nd2,type="iterms",se=TRUE) ## now get variance of sum of predictions using lpmatrix Xp <- predict(b,newd,type="lpmatrix") ## Xp %*% coef(b) yields vector of predictions a <- rep(1,31) Xs <- t(a) %*% Xp ## Xs %*% coef(b) gives sum of predictions var.sum <- Xs %*% b$Vp %*% t(Xs) ## Now get the variance of non-linear function of predictions ## by simulation from posterior distribution of the params library(MASS) br<-mvrnorm(1000,coef(b),b$Vp) ## 1000 replicate param. vectors res <- rep(0,1000) for (i in 1:1000) { pr <- Xp %*% br[i,] ## replicate predictions res[i] <- sum(log(abs(pr))) ## example non-linear function } mean(res);var(res) ## loop is replace-able by following .... res <- colSums(log(abs(Xp %*% t(br)))) ## The following shows how to use use an "lpmatrix" as a lookup ## table for approximate prediction. The idea is to create ## approximate prediction matrix rows by appropriate linear ## interpolation of an existing prediction matrix. The additivity ## of a GAM makes this possible. ## There is no reason to ever do this in R, but the following ## code provides a useful template for predicting from a fitted ## gam *outside* R: all that is needed is the coefficient vector ## and the prediction matrix. Use larger `Xp'/ smaller `dx' and/or ## higher order interpolation for higher accuracy. xn <- c(.341,.122,.476,.981) ## want prediction at these values x0 <- 1 ## intercept column dx <- 1/30 ## covariate spacing in `newd' for (j in 0:2) { ## loop through smooth terms cols <- 1+j*9 +1:9 ## relevant cols of Xp i <- floor(xn[j+1]*30) ## find relevant rows of Xp w1 <- (xn[j+1]-i*dx)/dx ## interpolation weights ## find approx. predict matrix row portion, by interpolation x0 <- c(x0,Xp[i+2,cols]*w1 + Xp[i+1,cols]*(1-w1)) } dim(x0)<-c(1,28) fv <- x0%*%coef(b) + xn[4];fv ## evaluate and add offset se <- sqrt(x0%*%b$Vp%*%t(x0));se ## get standard error ## compare to normal prediction predict(b,newdata=data.frame(x0=xn[1],x1=xn[2], x2=xn[3],x3=xn[4]),se=TRUE)