smooth.terms {mgcv}R Documentation

Smooth terms in GAM

Description

Smooth terms are specified in a gam formula using s and te terms. Various smooth classes are available, for different modelling tasks, and users can add smooth classes (see user.defined.smooth). What defines a smooth class is the basis used to represent the smooth function and quadratic penalty (or multiple penalties) used to penalize the basis coefficients in order to control the degree of smoothness. Smooth classes are invoked directly by s terms, or as building blocks for tensor product smoothing via te terms (only smooth classes with single penalties can be used in tensor products). The smooths built into the mgcv package are all based one way or another on low rank versions of splines. For the full rank versions see Wahba (1990).

Note that smooths can be used rather flexibly in gam models. In particular the linear predictor of the GAM can depend on (a discrete approximation to) any linear functional of a smooth term, using by variables and the `summation convention' explained in linear.functional.terms.

The single penalty built in smooth classes are summarized as follows

Broadly speaking the default penalized thin plate regression splines tend to give the best MSE performance, but they are a little slower to set up than the other bases. The knot based penalized cubic regression splines (with derivative based penalties) usually come next in MSE performance, with the P-splines doing just a little worse. However the P-splines are useful in non-standard situations.

All the preceding classes (and any user defined smooths with single penalties) may be used as marginal bases for tensor product smooths specified via te terms. Tensor product smooths are smooth functions of several variables where the basis is built up from tensor products of bases for smooths of fewer (usually one) variable(s) (marginal bases). The multiple penalties for these smooths are produced automatically from the penalties of the marginal smooths. Wood (2006b) give the general recipe for this construction.

Tensor product smooths often perform better than isotropic smooths when the covariates of a smooth are not naturally on the same scale, so that their relative scaling is arbitrary. For example, if smoothing with repect to time and distance, an isotropic smoother will give very different results if the units are cm and minutes compared to if the units are metres and seconds: a tensor product smooth will give the same answer in both cases (see te for an example of this). Note that tensor product terms are knot based, and the thin plate splines seem to offer no advantage over cubic or P-splines as marginal bases.

Finally univariate and bivariate adaptive (bs="ad") smooths are available (see adaptive.smooth). These are appropriate when the degree of smoothing should itself vary with the covariates to be smoothed, and the data contain sufficient information to be able to estimate the appropriate variation. Because this flexibility is achieved by splitting the penalty into several `basis penalties' these terms are not suitable as components of tensor product smooths, and are not supported by gamm.

Author(s)

Simon Wood <simon.wood@r-project.org>

References

Eilers, P.H.C. and B.D. Marx (1996) Flexible Smoothing with B-splines and Penalties. Statistical Science, 11(2):89-121

Wahba (1990) Spline Models of Observational Data. SIAM

Wood, S.N. (2003) Thin plate regression splines. J.R.Statist.Soc.B 65(1):95-114

Wood, S.N. (2006a) Generalized Additive Models: an introduction with R, CRC

Wood, S.N. (2006b) Low rank scale invariant tensor product smooths for generalized additive mixed models. Biometrics 62(4):1025-1036

See Also

s, te, tprs, cubic.regression.spline, p.spline, adaptive.smooth, user.defined.smooth

Examples

## see examples for gam and gamm

[Package mgcv version 1.5-5 Index]