Normal package:stats R Documentation _T_h_e _N_o_r_m_a_l _D_i_s_t_r_i_b_u_t_i_o_n _D_e_s_c_r_i_p_t_i_o_n: Density, distribution function, quantile function and random generation for the normal distribution with mean equal to 'mean' and standard deviation equal to 'sd'. _U_s_a_g_e: dnorm(x, mean = 0, sd = 1, log = FALSE) pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) rnorm(n, mean = 0, sd = 1) _A_r_g_u_m_e_n_t_s: x,q: vector of quantiles. p: vector of probabilities. n: number of observations. If 'length(n) > 1', the length is taken to be the number required. mean: vector of means. sd: vector of standard deviations. log, log.p: logical; if TRUE, probabilities p are given as log(p). lower.tail: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. _D_e_t_a_i_l_s: If 'mean' or 'sd' are not specified they assume the default values of '0' and '1', respectively. The normal distribution has density f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2)) where mu is the mean of the distribution and sigma the standard deviation. 'qnorm' is based on Wichura's algorithm AS 241 which provides precise results up to about 16 digits. _V_a_l_u_e: 'dnorm' gives the density, 'pnorm' gives the distribution function, 'qnorm' gives the quantile function, and 'rnorm' generates random deviates. _S_o_u_r_c_e: For 'pnorm', based on Cody, W. D. (1993) Algorithm 715: SPECFUN - A portable FORTRAN package of special function routines and test drivers. _ACM Transactions on Mathematical Software_ *19*, 22-32. For 'qnorm', the code is a C translation of Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal Distribution. _Applied Statistics_, *37*, 477-484. For 'rnorm', see RNG for how to select the algorithm and for references to the supplied methods. _R_e_f_e_r_e_n_c_e_s: Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S Language_. Wadsworth & Brooks/Cole. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) _Continuous Univariate Distributions_, volume 1, chapter 13. Wiley, New York. _S_e_e _A_l_s_o: 'runif' and '.Random.seed' about random number generation, and 'dlnorm' for the _Log_normal distribution. _E_x_a_m_p_l_e_s: require(graphics) dnorm(0) == 1/ sqrt(2*pi) dnorm(1) == exp(-1/2)/ sqrt(2*pi) dnorm(1) == 1/ sqrt(2*pi*exp(1)) ## Using "log = TRUE" for an extended range : par(mfrow=c(2,1)) plot(function(x) dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }") curve(log(dnorm(x)), add=TRUE, col="red",lwd=2) mtext("dnorm(x, log=TRUE)", adj=0) mtext("log(dnorm(x))", col="red", adj=1) plot(function(x) pnorm(x, log.p=TRUE), -50, 10, main = "log { Normal Cumulative }") curve(log(pnorm(x)), add=TRUE, col="red",lwd=2) mtext("pnorm(x, log=TRUE)", adj=0) mtext("log(pnorm(x))", col="red", adj=1) ## if you want the so-called 'error function' erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1 ## (see Abramowitz and Stegun 29.2.29) ## and the so-called 'complementary error function' erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE) ## and the inverses erfinv <- function (x) qnorm((1 + x)/2)/sqrt(2) erfcinv <- function (x) qnorm(x/2, lower = FALSE)/sqrt(2)