/* * Copyright (c) 1997-1999 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: rfftwnd.c,v 1.33 1999/11/02 23:52:02 stevenj Exp $ */ #include #include /********************** prototypes for rexec2 routines **********************/ extern void rfftw_real2c_aux(fftw_plan plan, int howmany, fftw_real *in, int istride, int idist, fftw_complex *out, int ostride, int odist, fftw_real *work); extern void rfftw_c2real_aux(fftw_plan plan, int howmany, fftw_complex *in, int istride, int idist, fftw_real *out, int ostride, int odist, fftw_real *work); extern void rfftw_real2c_overlap_aux(fftw_plan plan, int howmany, fftw_real *in, int istride, int idist, fftw_complex *out, int ostride, int odist, fftw_real *work); extern void rfftw_c2real_overlap_aux(fftw_plan plan, int howmany, fftw_complex *in, int istride, int idist, fftw_real *out, int ostride, int odist, fftw_real *work); /********************** Initializing the RFFTWND Plan ***********************/ /* * Create an fftwnd_plan specialized for specific arrays. (These * arrays are ignored, however, if they are NULL or if the flags * do not include FFTW_MEASURE.) The main advantage of being * provided arrays like this is that we can do runtime timing * measurements of our options, without worrying about allocating * excessive scratch space. */ fftwnd_plan rfftwnd_create_plan_specific(int rank, const int *n, fftw_direction dir, int flags, fftw_real *in, int istride, fftw_real *out, int ostride) { fftwnd_plan p; int i; int rflags = flags & ~FFTW_IN_PLACE; /* note that we always do rfftw transforms out-of-place in rexec2.c */ if (flags & FFTW_IN_PLACE) { out = NULL; ostride = istride; } istride = ostride = 1; /* * strides don't work yet, since it is not * clear whether they apply to real * or complex data */ if (!(p = fftwnd_create_plan_aux(rank, n, dir, flags))) return 0; for (i = 0; i < rank - 1; ++i) p->n_after[i] = (n[rank - 1]/2 + 1) * (p->n_after[i] / n[rank - 1]); if (rank > 0) p->n[rank - 1] = n[rank - 1] / 2 + 1; p->plans = fftwnd_new_plan_array(rank); if (rank > 0 && !p->plans) { rfftwnd_destroy_plan(p); return 0; } if (rank > 0) { p->plans[rank - 1] = rfftw_create_plan(n[rank - 1], dir, rflags); if (!p->plans[rank - 1]) { rfftwnd_destroy_plan(p); return 0; } } if (rank > 1) { if (!(flags & FFTW_MEASURE) || in == 0 || (!p->is_in_place && out == 0)) { if (!fftwnd_create_plans_generic(p->plans, rank - 1, n, dir, flags | FFTW_IN_PLACE)) { rfftwnd_destroy_plan(p); return 0; } } else if (dir == FFTW_COMPLEX_TO_REAL || (flags & FFTW_IN_PLACE)) { if (!fftwnd_create_plans_specific(p->plans, rank - 1, n, p->n_after, dir, flags | FFTW_IN_PLACE, (fftw_complex *) in, istride, 0, 0)) { rfftwnd_destroy_plan(p); return 0; } } else { if (!fftwnd_create_plans_specific(p->plans, rank - 1, n, p->n_after, dir, flags | FFTW_IN_PLACE, (fftw_complex *) out, ostride, 0, 0)) { rfftwnd_destroy_plan(p); return 0; } } } p->nbuffers = 0; p->nwork = fftwnd_work_size(rank, p->n, flags | FFTW_IN_PLACE, p->nbuffers + 1); if (p->nwork && !(flags & FFTW_THREADSAFE)) { p->work = (fftw_complex *) fftw_malloc(p->nwork * sizeof(fftw_complex)); if (!p->work) { rfftwnd_destroy_plan(p); return 0; } } return p; } fftwnd_plan rfftw2d_create_plan_specific(int nx, int ny, fftw_direction dir, int flags, fftw_real *in, int istride, fftw_real *out, int ostride) { int n[2]; n[0] = nx; n[1] = ny; return rfftwnd_create_plan_specific(2, n, dir, flags, in, istride, out, ostride); } fftwnd_plan rfftw3d_create_plan_specific(int nx, int ny, int nz, fftw_direction dir, int flags, fftw_real *in, int istride, fftw_real *out, int ostride) { int n[3]; n[0] = nx; n[1] = ny; n[2] = nz; return rfftwnd_create_plan_specific(3, n, dir, flags, in, istride, out, ostride); } /* Create a generic fftwnd plan: */ fftwnd_plan rfftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags) { return rfftwnd_create_plan_specific(rank, n, dir, flags, 0, 1, 0, 1); } fftwnd_plan rfftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags) { return rfftw2d_create_plan_specific(nx, ny, dir, flags, 0, 1, 0, 1); } fftwnd_plan rfftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags) { return rfftw3d_create_plan_specific(nx, ny, nz, dir, flags, 0, 1, 0, 1); } /************************ Freeing the RFFTWND Plan ************************/ void rfftwnd_destroy_plan(fftwnd_plan plan) { fftwnd_destroy_plan(plan); } /************************ Printing the RFFTWND Plan ************************/ void rfftwnd_fprint_plan(FILE *f, fftwnd_plan plan) { fftwnd_fprint_plan(f, plan); } void rfftwnd_print_plan(fftwnd_plan plan) { rfftwnd_fprint_plan(stdout, plan); } /*********** Computing the N-Dimensional FFT: Auxiliary Routines ************/ void rfftwnd_real2c_aux(fftwnd_plan p, int cur_dim, fftw_real *in, int istride, fftw_complex *out, int ostride, fftw_real *work) { int n_after = p->n_after[cur_dim], n = p->n[cur_dim]; if (cur_dim == p->rank - 2) { /* just do the last dimension directly: */ if (p->is_in_place) rfftw_real2c_aux(p->plans[p->rank - 1], n, in, istride, (n_after * istride) * 2, out, istride, n_after * istride, work); else rfftw_real2c_aux(p->plans[p->rank - 1], n, in, istride, p->plans[p->rank - 1]->n * istride, out, ostride, n_after * ostride, work); } else { /* we have at least two dimensions to go */ int nr = p->plans[p->rank - 1]->n; int n_after_r = p->is_in_place ? n_after * 2 : nr * (n_after / (nr/2 + 1)); int i; /* * process the subsequent dimensions recursively, in hyperslabs, * to get maximum locality: */ for (i = 0; i < n; ++i) rfftwnd_real2c_aux(p, cur_dim + 1, in + i * n_after_r * istride, istride, out + i * n_after * ostride, ostride, work); } /* do the current dimension (in-place): */ fftw(p->plans[cur_dim], n_after, out, n_after * ostride, ostride, (fftw_complex *) work, 1, 0); /* I hate this cast */ } void rfftwnd_c2real_aux(fftwnd_plan p, int cur_dim, fftw_complex *in, int istride, fftw_real *out, int ostride, fftw_real *work) { int n_after = p->n_after[cur_dim], n = p->n[cur_dim]; /* do the current dimension (in-place): */ fftw(p->plans[cur_dim], n_after, in, n_after * istride, istride, (fftw_complex *) work, 1, 0); if (cur_dim == p->rank - 2) { /* just do the last dimension directly: */ if (p->is_in_place) rfftw_c2real_aux(p->plans[p->rank - 1], n, in, istride, n_after * istride, out, istride, (n_after * istride) * 2, work); else rfftw_c2real_aux(p->plans[p->rank - 1], n, in, istride, n_after * istride, out, ostride, p->plans[p->rank - 1]->n * ostride, work); } else { /* we have at least two dimensions to go */ int nr = p->plans[p->rank - 1]->n; int n_after_r = p->is_in_place ? n_after * 2 : nr * (n_after / (nr/2 + 1)); int i; /* * process the subsequent dimensions recursively, in hyperslabs, * to get maximum locality: */ for (i = 0; i < n; ++i) rfftwnd_c2real_aux(p, cur_dim + 1, in + i * n_after * istride, istride, out + i * n_after_r * ostride, ostride, work); } } /* * alternate version of rfftwnd_aux -- this version pushes the howmany * loop down to the leaves of the computation, for greater locality * in cases where dist < stride. It is also required for correctness * if in==out, and we must call a special version of the executor. * Note that work must point to 'howmany' copies of its data * if in == out. */ void rfftwnd_real2c_aux_howmany(fftwnd_plan p, int cur_dim, int howmany, fftw_real *in, int istride, int idist, fftw_complex *out, int ostride, int odist, fftw_complex *work) { int n_after = p->n_after[cur_dim], n = p->n[cur_dim]; int k; if (cur_dim == p->rank - 2) { /* just do the last dimension directly: */ if (p->is_in_place) for (k = 0; k < n; ++k) rfftw_real2c_overlap_aux(p->plans[p->rank - 1], howmany, in + (k * n_after * istride) * 2, istride, idist, out + (k * n_after * ostride), ostride, odist, (fftw_real *) work); else { int nlast = p->plans[p->rank - 1]->n; for (k = 0; k < n; ++k) rfftw_real2c_aux(p->plans[p->rank - 1], howmany, in + k * nlast * istride, istride, idist, out + k * n_after * ostride, ostride, odist, (fftw_real *) work); } } else { /* we have at least two dimensions to go */ int nr = p->plans[p->rank - 1]->n; int n_after_r = p->is_in_place ? n_after * 2 : nr * (n_after / (nr/2 + 1)); int i; /* * process the subsequent dimensions recursively, in hyperslabs, * to get maximum locality: */ for (i = 0; i < n; ++i) rfftwnd_real2c_aux_howmany(p, cur_dim + 1, howmany, in + i * n_after_r * istride, istride, idist, out + i * n_after * ostride, ostride, odist, work); } /* do the current dimension (in-place): */ for (k = 0; k < n_after; ++k) fftw(p->plans[cur_dim], howmany, out + k * ostride, n_after * ostride, odist, work, 1, 0); } void rfftwnd_c2real_aux_howmany(fftwnd_plan p, int cur_dim, int howmany, fftw_complex *in, int istride, int idist, fftw_real *out, int ostride, int odist, fftw_complex *work) { int n_after = p->n_after[cur_dim], n = p->n[cur_dim]; int k; /* do the current dimension (in-place): */ for (k = 0; k < n_after; ++k) fftw(p->plans[cur_dim], howmany, in + k * istride, n_after * istride, idist, work, 1, 0); if (cur_dim == p->rank - 2) { /* just do the last dimension directly: */ if (p->is_in_place) for (k = 0; k < n; ++k) rfftw_c2real_overlap_aux(p->plans[p->rank - 1], howmany, in + (k * n_after * istride), istride, idist, out + (k * n_after * ostride) * 2, ostride, odist, (fftw_real *) work); else { int nlast = p->plans[p->rank - 1]->n; for (k = 0; k < n; ++k) rfftw_c2real_aux(p->plans[p->rank - 1], howmany, in + k * n_after * istride, istride, idist, out + k * nlast * ostride, ostride, odist, (fftw_real *) work); } } else { /* we have at least two dimensions to go */ int nr = p->plans[p->rank - 1]->n; int n_after_r = p->is_in_place ? n_after * 2 : nr * (n_after / (nr/2 + 1)); int i; /* * process the subsequent dimensions recursively, in hyperslabs, * to get maximum locality: */ for (i = 0; i < n; ++i) rfftwnd_c2real_aux_howmany(p, cur_dim + 1, howmany, in + i * n_after * istride, istride, idist, out + i * n_after_r * ostride, ostride, odist, work); } } /********** Computing the N-Dimensional FFT: User-Visible Routines **********/ void rfftwnd_real_to_complex(fftwnd_plan p, int howmany, fftw_real *in, int istride, int idist, fftw_complex *out, int ostride, int odist) { fftw_complex *work = p->work; int rank = p->rank; int free_work = 0; if (p->dir != FFTW_REAL_TO_COMPLEX) fftw_die("rfftwnd_real_to_complex with complex-to-real plan"); #ifdef FFTW_DEBUG if (p->rank > 0 && (p->plans[0]->flags & FFTW_THREADSAFE) && p->nwork && p->work) fftw_die("bug with FFTW_THREADSAFE flag"); #endif if (p->is_in_place) { ostride = istride; odist = (idist == 1 && idist < istride) ? 1 : (idist / 2); /* ugh */ out = (fftw_complex *) in; if (howmany > 1 && istride > idist && rank > 0) { int new_nwork; new_nwork = p->n[rank - 1] * howmany; if (new_nwork > p->nwork) { work = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * new_nwork); if (!work) fftw_die("error allocating work array"); free_work = 1; } } } if (p->nwork && !work) { work = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * p->nwork); free_work = 1; } switch (rank) { case 0: break; case 1: if (p->is_in_place && howmany > 1 && istride > idist) rfftw_real2c_overlap_aux(p->plans[0], howmany, in, istride, idist, out, ostride, odist, (fftw_real *) work); else rfftw_real2c_aux(p->plans[0], howmany, in, istride, idist, out, ostride, odist, (fftw_real *) work); break; default: /* rank >= 2 */ { if (howmany > 1 && ostride > odist) rfftwnd_real2c_aux_howmany(p, 0, howmany, in, istride, idist, out, ostride, odist, work); else { int i; for (i = 0; i < howmany; ++i) rfftwnd_real2c_aux(p, 0, in + i * idist, istride, out + i * odist, ostride, (fftw_real *) work); } } } if (free_work) fftw_free(work); } void rfftwnd_complex_to_real(fftwnd_plan p, int howmany, fftw_complex *in, int istride, int idist, fftw_real *out, int ostride, int odist) { fftw_complex *work = p->work; int rank = p->rank; int free_work = 0; if (p->dir != FFTW_COMPLEX_TO_REAL) fftw_die("rfftwnd_complex_to_real with real-to-complex plan"); #ifdef FFTW_DEBUG if (p->rank > 0 && (p->plans[0]->flags & FFTW_THREADSAFE) && p->nwork && p->work) fftw_die("bug with FFTW_THREADSAFE flag"); #endif if (p->is_in_place) { ostride = istride; odist = idist; odist = (idist == 1 && idist < istride) ? 1 : (idist * 2); /* ugh */ out = (fftw_real *) in; if (howmany > 1 && istride > idist && rank > 0) { int new_nwork = p->n[rank - 1] * howmany; if (new_nwork > p->nwork) { work = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * new_nwork); if (!work) fftw_die("error allocating work array"); free_work = 1; } } } if (p->nwork && !work) { work = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * p->nwork); free_work = 1; } switch (rank) { case 0: break; case 1: if (p->is_in_place && howmany > 1 && istride > idist) rfftw_c2real_overlap_aux(p->plans[0], howmany, in, istride, idist, out, ostride, odist, (fftw_real *) work); else rfftw_c2real_aux(p->plans[0], howmany, in, istride, idist, out, ostride, odist, (fftw_real *) work); break; default: /* rank >= 2 */ { if (howmany > 1 && ostride > odist) rfftwnd_c2real_aux_howmany(p, 0, howmany, in, istride, idist, out, ostride, odist, work); else { int i; for (i = 0; i < howmany; ++i) rfftwnd_c2real_aux(p, 0, in + i * idist, istride, out + i * odist, ostride, (fftw_real *) work); } } } if (free_work) fftw_free(work); } void rfftwnd_one_real_to_complex(fftwnd_plan p, fftw_real *in, fftw_complex *out) { rfftwnd_real_to_complex(p, 1, in, 1, 1, out, 1, 1); } void rfftwnd_one_complex_to_real(fftwnd_plan p, fftw_complex *in, fftw_real *out) { rfftwnd_complex_to_real(p, 1, in, 1, 1, out, 1, 1); }