// test file for HSO3.hpp and HSO4.hpp // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include #include #include "HSO3.hpp" #include "HSO4.hpp" const int number_of_intervals = 5; const float pi = ::std::atan(1.0f)*4; void test_SO3(); void test_SO4(); int main() { test_SO3(); test_SO4(); ::std::cout << "That's all folks!" << ::std::endl; } // // Test of quaternion and R^3 rotation relationship // void test_SO3_spherical() { ::std::cout << "Testing spherical:" << ::std::endl; ::std::cout << ::std::endl; const float rho = 1.0f; float theta; float phi1; float phi2; for (int idxphi2 = 0; idxphi2 <= number_of_intervals; idxphi2++) { phi2 = (-pi/2)+(idxphi2*pi)/number_of_intervals; for (int idxphi1 = 0; idxphi1 <= number_of_intervals; idxphi1++) { phi1 = (-pi/2)+(idxphi1*pi)/number_of_intervals; for (int idxtheta = 0; idxtheta <= number_of_intervals; idxtheta++) { theta = -pi+(idxtheta*(2*pi))/number_of_intervals; //::std::cout << "theta = " << theta << " ; "; //::std::cout << "phi1 = " << phi1 << " ; "; //::std::cout << "phi2 = " << phi2; //::std::cout << ::std::endl; ::boost::math::quaternion q = ::boost::math::spherical(rho, theta, phi1, phi2); //::std::cout << "q = " << q << ::std::endl; R3_matrix rot = quaternion_to_R3_rotation(q); //::std::cout << "rot = "; //::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl; ::boost::math::quaternion p = R3_rotation_to_quaternion(rot, &q); //::std::cout << "p = " << p << ::std::endl; //::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl; //::std::cout << ::std::endl; } } } ::std::cout << ::std::endl; } void test_SO3_semipolar() { ::std::cout << "Testing semipolar:" << ::std::endl; ::std::cout << ::std::endl; const float rho = 1.0f; float alpha; float theta1; float theta2; for (int idxalpha = 0; idxalpha <= number_of_intervals; idxalpha++) { alpha = (idxalpha*(pi/2))/number_of_intervals; for (int idxtheta1 = 0; idxtheta1 <= number_of_intervals; idxtheta1++) { theta1 = -pi+(idxtheta1*(2*pi))/number_of_intervals; for (int idxtheta2 = 0; idxtheta2 <= number_of_intervals; idxtheta2++) { theta2 = -pi+(idxtheta2*(2*pi))/number_of_intervals; //::std::cout << "alpha = " << alpha << " ; "; //::std::cout << "theta1 = " << theta1 << " ; "; //::std::cout << "theta2 = " << theta2; //::std::cout << ::std::endl; ::boost::math::quaternion q = ::boost::math::semipolar(rho, alpha, theta1, theta2); //::std::cout << "q = " << q << ::std::endl; R3_matrix rot = quaternion_to_R3_rotation(q); //::std::cout << "rot = "; //::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl; ::boost::math::quaternion p = R3_rotation_to_quaternion(rot, &q); //::std::cout << "p = " << p << ::std::endl; //::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl; //::std::cout << ::std::endl; } } } ::std::cout << ::std::endl; } void test_SO3_multipolar() { ::std::cout << "Testing multipolar:" << ::std::endl; ::std::cout << ::std::endl; float rho1; float rho2; float theta1; float theta2; for (int idxrho = 0; idxrho <= number_of_intervals; idxrho++) { rho1 = (idxrho*1.0f)/number_of_intervals; rho2 = ::std::sqrt(1.0f-rho1*rho1); for (int idxtheta1 = 0; idxtheta1 <= number_of_intervals; idxtheta1++) { theta1 = -pi+(idxtheta1*(2*pi))/number_of_intervals; for (int idxtheta2 = 0; idxtheta2 <= number_of_intervals; idxtheta2++) { theta2 = -pi+(idxtheta2*(2*pi))/number_of_intervals; //::std::cout << "rho1 = " << rho1 << " ; "; //::std::cout << "theta1 = " << theta1 << " ; "; //::std::cout << "theta2 = " << theta2; //::std::cout << ::std::endl; ::boost::math::quaternion q = ::boost::math::multipolar(rho1, theta1, rho2, theta2); //::std::cout << "q = " << q << ::std::endl; R3_matrix rot = quaternion_to_R3_rotation(q); //::std::cout << "rot = "; //::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl; ::boost::math::quaternion p = R3_rotation_to_quaternion(rot, &q); //::std::cout << "p = " << p << ::std::endl; //::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl; //::std::cout << ::std::endl; } } } ::std::cout << ::std::endl; } void test_SO3_cylindrospherical() { ::std::cout << "Testing cylindrospherical:" << ::std::endl; ::std::cout << ::std::endl; float t; float radius; float longitude; float latitude; for (int idxt = 0; idxt <= number_of_intervals; idxt++) { t = -1.0f+(idxt*2.0f)/number_of_intervals; radius = ::std::sqrt(1.0f-t*t); for (int idxlatitude = 0; idxlatitude <= number_of_intervals; idxlatitude++) { latitude = (-pi/2)+(idxlatitude*pi)/number_of_intervals; for (int idxlongitude = 0; idxlongitude <= number_of_intervals; idxlongitude++) { longitude = -pi+(idxlongitude*(2*pi))/number_of_intervals; //::std::cout << "t = " << t << " ; "; //::std::cout << "longitude = " << longitude; //::std::cout << "latitude = " << latitude; //::std::cout << ::std::endl; ::boost::math::quaternion q = ::boost::math::cylindrospherical(t, radius, longitude, latitude); //::std::cout << "q = " << q << ::std::endl; R3_matrix rot = quaternion_to_R3_rotation(q); //::std::cout << "rot = "; //::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl; ::boost::math::quaternion p = R3_rotation_to_quaternion(rot, &q); //::std::cout << "p = " << p << ::std::endl; //::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl; //::std::cout << ::std::endl; } } } ::std::cout << ::std::endl; } void test_SO3_cylindrical() { ::std::cout << "Testing cylindrical:" << ::std::endl; ::std::cout << ::std::endl; float r; float angle; float h1; float h2; for (int idxh2 = 0; idxh2 <= number_of_intervals; idxh2++) { h2 = -1.0f+(idxh2*2.0f)/number_of_intervals; for (int idxh1 = 0; idxh1 <= number_of_intervals; idxh1++) { h1 = ::std::sqrt(1.0f-h2*h2)*(-1.0f+(idxh2*2.0f)/number_of_intervals); r = ::std::sqrt(1.0f-h1*h1-h2*h2); for (int idxangle = 0; idxangle <= number_of_intervals; idxangle++) { angle = -pi+(idxangle*(2*pi))/number_of_intervals; //::std::cout << "angle = " << angle << " ; "; //::std::cout << "h1 = " << h1; //::std::cout << "h2 = " << h2; //::std::cout << ::std::endl; ::boost::math::quaternion q = ::boost::math::cylindrical(r, angle, h1, h2); //::std::cout << "q = " << q << ::std::endl; R3_matrix rot = quaternion_to_R3_rotation(q); //::std::cout << "rot = "; //::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl; ::boost::math::quaternion p = R3_rotation_to_quaternion(rot, &q); //::std::cout << "p = " << p << ::std::endl; //::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl; //::std::cout << ::std::endl; } } } ::std::cout << ::std::endl; } void test_SO3() { ::std::cout << "Testing SO3:" << ::std::endl; ::std::cout << ::std::endl; test_SO3_spherical(); test_SO3_semipolar(); test_SO3_multipolar(); test_SO3_cylindrospherical(); test_SO3_cylindrical(); } // // Test of quaternion and R^4 rotation relationship // void test_SO4_spherical() { ::std::cout << "Testing spherical:" << ::std::endl; ::std::cout << ::std::endl; const float rho1 = 1.0f; const float rho2 = 1.0f; float theta1; float phi11; float phi21; float theta2; float phi12; float phi22; for (int idxphi21 = 0; idxphi21 <= number_of_intervals; idxphi21++) { phi21 = (-pi/2)+(idxphi21*pi)/number_of_intervals; for (int idxphi22 = 0; idxphi22 <= number_of_intervals; idxphi22++) { phi22 = (-pi/2)+(idxphi22*pi)/number_of_intervals; for (int idxphi11 = 0; idxphi11 <= number_of_intervals; idxphi11++) { phi11 = (-pi/2)+(idxphi11*pi)/number_of_intervals; for (int idxphi12 = 0; idxphi12 <= number_of_intervals; idxphi12++) { phi12 = (-pi/2)+(idxphi12*pi)/number_of_intervals; for (int idxtheta1 = 0; idxtheta1 <= number_of_intervals; idxtheta1++) { theta1 = -pi+(idxtheta1*(2*pi))/number_of_intervals; for (int idxtheta2 = 0; idxtheta2 <= number_of_intervals; idxtheta2++) { theta2 = -pi+(idxtheta2*(2*pi))/number_of_intervals; //::std::cout << "theta1 = " << theta1 << " ; "; //::std::cout << "phi11 = " << phi11 << " ; "; //::std::cout << "phi21 = " << phi21; //::std::cout << "theta2 = " << theta2 << " ; "; //::std::cout << "phi12 = " << phi12 << " ; "; //::std::cout << "phi22 = " << phi22; //::std::cout << ::std::endl; ::boost::math::quaternion p1 = ::boost::math::spherical(rho1, theta1, phi11, phi21); //::std::cout << "p1 = " << p1 << ::std::endl; ::boost::math::quaternion q1 = ::boost::math::spherical(rho2, theta2, phi12, phi22); //::std::cout << "q1 = " << q1 << ::std::endl; ::std::pair< ::boost::math::quaternion , ::boost::math::quaternion > pq1 = ::std::make_pair(p1,q1); R4_matrix rot = quaternions_to_R4_rotation(pq1); //::std::cout << "rot = "; //::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << "\t" << rot.a14 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << "\t" << rot.a24 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << "\t" << rot.a34 << ::std::endl; //::std::cout << "\t"; //::std::cout << "\t" << rot.a41 << "\t" << rot.a42 << "\t" << rot.a43 << "\t" << rot.a44 << ::std::endl; ::std::pair< ::boost::math::quaternion , ::boost::math::quaternion > pq2 = R4_rotation_to_quaternions(rot, &pq1); //::std::cout << "p1 = " << pq.first << ::std::endl; //::std::cout << "p2 = " << pq.second << ::std::endl; //::std::cout << "round trip discrepancy: " << ::std::sqrt(::boost::math::norm(pq1.first-pq2.first)+::boost::math::norm(pq1.second-pq2.second)) << ::std::endl; //::std::cout << ::std::endl; } } } } } } ::std::cout << ::std::endl; } void test_SO4() { ::std::cout << "Testing SO4:" << ::std::endl; ::std::cout << ::std::endl; test_SO4_spherical(); }