// Copyright 2002 The Trustees of Indiana University. // Use, modification and distribution is subject to the Boost Software // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Boost.MultiArray Library // Authors: Ronald Garcia // Jeremy Siek // Andrew Lumsdaine // See http://www.boost.org/libs/multi_array for documentation. // // constructors.cpp - Testing out the various constructor options // #include "boost/test/minimal.hpp" #include "boost/multi_array.hpp" #include #include void check_shape(const double&, std::size_t*, int*, unsigned int) {} template void check_shape(const Array& A, std::size_t* sizes, int* strides, unsigned int num_elements) { BOOST_CHECK(A.num_elements() == num_elements); BOOST_CHECK(A.size() == *sizes); BOOST_CHECK(std::equal(sizes, sizes + A.num_dimensions(), A.shape())); BOOST_CHECK(std::equal(strides, strides + A.num_dimensions(), A.strides())); check_shape(A[0], ++sizes, ++strides, num_elements / A.size()); } bool equal(const double& a, const double& b) { return a == b; } template bool equal(const ArrayA& A, const ArrayB& B) { typename ArrayA::const_iterator ia; typename ArrayB::const_iterator ib = B.begin(); for (ia = A.begin(); ia != A.end(); ++ia, ++ib) if (!::equal(*ia, *ib)) return false; return true; } int test_main(int, char*[]) { typedef boost::multi_array::size_type size_type; boost::array sizes = { { 3, 3, 3 } }; int strides[] = { 9, 3, 1 }; size_type num_elements = 27; // Default multi_array constructor { boost::multi_array A; } // Constructor 1, default storage order and allocator { boost::multi_array A(sizes); check_shape(A, &sizes[0], strides, num_elements); double* ptr = 0; boost::multi_array_ref B(ptr,sizes); check_shape(B, &sizes[0], strides, num_elements); const double* cptr = ptr; boost::const_multi_array_ref C(cptr,sizes); check_shape(C, &sizes[0], strides, num_elements); } // Constructor 1, fortran storage order and user-supplied allocator { typedef boost::multi_array >::size_type size_type; size_type num_elements = 27; int col_strides[] = { 1, 3, 9 }; boost::multi_array > A(sizes,boost::fortran_storage_order()); check_shape(A, &sizes[0], col_strides, num_elements); double *ptr=0; boost::multi_array_ref B(ptr,sizes,boost::fortran_storage_order()); check_shape(B, &sizes[0], col_strides, num_elements); const double *cptr=ptr; boost::const_multi_array_ref C(cptr,sizes,boost::fortran_storage_order()); check_shape(C, &sizes[0], col_strides, num_elements); } // Constructor 2, default storage order and allocator { typedef boost::multi_array::size_type size_type; size_type num_elements = 27; boost::multi_array::extent_gen extents; boost::multi_array A(extents[3][3][3]); check_shape(A, &sizes[0], strides, num_elements); double *ptr=0; boost::multi_array_ref B(ptr,extents[3][3][3]); check_shape(B, &sizes[0], strides, num_elements); const double *cptr=ptr; boost::const_multi_array_ref C(cptr,extents[3][3][3]); check_shape(C, &sizes[0], strides, num_elements); } // Copy Constructors { typedef boost::multi_array::size_type size_type; size_type num_elements = 27; std::vector vals(27, 4.5); boost::multi_array A(sizes); A.assign(vals.begin(),vals.end()); boost::multi_array B(A); check_shape(B, &sizes[0], strides, num_elements); BOOST_CHECK(::equal(A, B)); double ptr[27]; boost::multi_array_ref C(ptr,sizes); A.assign(vals.begin(),vals.end()); boost::multi_array_ref D(C); check_shape(D, &sizes[0], strides, num_elements); BOOST_CHECK(C.data() == D.data()); const double* cptr = ptr; boost::const_multi_array_ref E(cptr,sizes); boost::const_multi_array_ref F(E); check_shape(F, &sizes[0], strides, num_elements); BOOST_CHECK(E.data() == F.data()); } // Conversion construction { typedef boost::multi_array::size_type size_type; size_type num_elements = 27; std::vector vals(27, 4.5); boost::multi_array A(sizes); A.assign(vals.begin(),vals.end()); boost::multi_array_ref B(A); boost::const_multi_array_ref C(A); check_shape(B, &sizes[0], strides, num_elements); check_shape(C, &sizes[0], strides, num_elements); BOOST_CHECK(B.data() == A.data()); BOOST_CHECK(C.data() == A.data()); double ptr[27]; boost::multi_array_ref D(ptr,sizes); D.assign(vals.begin(),vals.end()); boost::const_multi_array_ref E(D); check_shape(E, &sizes[0], strides, num_elements); BOOST_CHECK(E.data() == D.data()); } // Assignment Operator { typedef boost::multi_array::size_type size_type; size_type num_elements = 27; std::vector vals(27, 4.5); boost::multi_array A(sizes), B(sizes); A.assign(vals.begin(),vals.end()); B = A; check_shape(B, &sizes[0], strides, num_elements); BOOST_CHECK(::equal(A, B)); double ptr1[27]; double ptr2[27]; boost::multi_array_ref C(ptr1,sizes), D(ptr2,sizes); C.assign(vals.begin(),vals.end()); D = C; check_shape(D, &sizes[0], strides, num_elements); BOOST_CHECK(::equal(C,D)); } // subarray value_type is multi_array { typedef boost::multi_array array; typedef array::size_type size_type; size_type num_elements = 27; std::vector vals(num_elements, 4.5); boost::multi_array A(sizes); A.assign(vals.begin(),vals.end()); typedef array::subarray<2>::type subarray; subarray B = A[1]; subarray::value_type C = B[0]; // should comparisons between the types work? BOOST_CHECK(::equal(A[1][0],C)); BOOST_CHECK(::equal(B[0],C)); } return boost::exit_success; }