/*============================================================================= Copyright (c) 2001-2010 Joel de Guzman http://spirit.sourceforge.net/ Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) =============================================================================*/ //[reference_includes #include #include #include #include #include #include #include //] //[reference_test template void test_parser( char const* input, P const& p, bool full_match = true) { using boost::spirit::qi::parse; char const* f(input); char const* l(f + strlen(f)); if (parse(f, l, p) && (!full_match || (f == l))) std::cout << "ok" << std::endl; else std::cout << "fail" << std::endl; } template void test_phrase_parser( char const* input, P const& p, bool full_match = true) { using boost::spirit::qi::phrase_parse; using boost::spirit::qi::ascii::space; char const* f(input); char const* l(f + strlen(f)); if (phrase_parse(f, l, p, space) && (!full_match || (f == l))) std::cout << "ok" << std::endl; else std::cout << "fail" << std::endl; } //] //[reference_test_attr template void test_parser_attr( char const* input, P const& p, T& attr, bool full_match = true) { using boost::spirit::qi::parse; char const* f(input); char const* l(f + strlen(f)); if (parse(f, l, p, attr) && (!full_match || (f == l))) std::cout << "ok" << std::endl; else std::cout << "fail" << std::endl; } template void test_phrase_parser_attr( char const* input, P const& p, T& attr, bool full_match = true) { using boost::spirit::qi::phrase_parse; using boost::spirit::qi::ascii::space; char const* f(input); char const* l(f + strlen(f)); if (phrase_parse(f, l, p, space, attr) && (!full_match || (f == l))) std::cout << "ok" << std::endl; else std::cout << "fail" << std::endl; } //] //[reference_print_info struct printer { typedef boost::spirit::utf8_string string; void element(string const& tag, string const& value, int depth) const { for (int i = 0; i < (depth*4); ++i) // indent to depth std::cout << ' '; std::cout << "tag: " << tag; if (value != "") std::cout << ", value: " << value; std::cout << std::endl; } }; void print_info(boost::spirit::info const& what) { using boost::spirit::basic_info_walker; printer pr; basic_info_walker walker(pr, what.tag, 0); boost::apply_visitor(walker, what.value); } //] //[reference_test_real_policy /////////////////////////////////////////////////////////////////////////////// // These policies can be used to parse thousand separated // numbers with at most 2 decimal digits after the decimal // point. e.g. 123,456,789.01 /////////////////////////////////////////////////////////////////////////////// template struct ts_real_policies : boost::spirit::qi::ureal_policies { // 2 decimal places Max template static bool parse_frac_n(Iterator& first, Iterator const& last, Attribute& attr) { return boost::spirit::qi:: extract_uint::call(first, last, attr); } // No exponent template static bool parse_exp(Iterator&, Iterator const&) { return false; } // No exponent template static bool parse_exp_n(Iterator&, Iterator const&, Attribute&) { return false; } // Thousands separated numbers template static bool parse_n(Iterator& first, Iterator const& last, Attribute& attr) { using boost::spirit::qi::uint_parser; namespace qi = boost::spirit::qi; uint_parser uint3; uint_parser uint3_3; T result = 0; if (parse(first, last, uint3, result)) { bool hit = false; T n; Iterator save = first; while (qi::parse(first, last, ',') && qi::parse(first, last, uint3_3, n)) { result = result * 1000 + n; save = first; hit = true; } first = save; if (hit) attr = result; return hit; } return false; } }; //] //[reference_test_bool_policy /////////////////////////////////////////////////////////////////////////////// // These policies can be used to parse "eurt" (i.e. "true" spelled backwards) // as `false` /////////////////////////////////////////////////////////////////////////////// struct backwards_bool_policies : boost::spirit::qi::bool_policies<> { // we want to interpret a 'true' spelled backwards as 'false' template static bool parse_false(Iterator& first, Iterator const& last, Attribute& attr) { namespace qi = boost::spirit::qi; if (qi::detail::string_parse("eurt", first, last, qi::unused)) { namespace traits = boost::spirit::traits; traits::assign_to(false, attr); // result is false return true; } return false; } }; //] //[reference_qi_complex // a simple complex number representation z = a + bi struct complex { complex (double a = 0.0, double b = 0.0) : a(a), b(b) {} double a; double b; }; //] //[reference_qi_stream_complex // define streaming operator for the type complex std::istream& operator>> (std::istream& is, complex& z) { char lbrace = '\0', comma = '\0', rbrace = '\0'; is >> lbrace >> z.a >> comma >> z.b >> rbrace; if (lbrace != '{' || comma != ',' || rbrace != '}') is.setstate(std::ios_base::failbit); return is; } //] //[reference_qi_auto_complex /*`The following construct is required to allow the `complex` data structure to be utilized as a __fusion__ sequence. This is required as we will emit output for this data structure with a __qi__ sequence: `'{' >> qi::double_ >> ',' >> qi::double_ >> '}'`. */ BOOST_FUSION_ADAPT_STRUCT( complex, (double, a) (double, b) ) /*`We add a specialization for the create_parser customization point defining a custom output format for the complex type. Generally, any specialization for create_parser is expected to return the proto expression to be used to match input for the type the customization point has been specialized for. */ /*`We need to utilize `proto::deep_copy` as the expression contains literals (the `'{'`, `','`, and `'}'`) which normally get embedded in the proto expression by reference only. The deep copy converts the proto tree to hold this by value. The deep copy operation can be left out for simpler proto expressions (not containing references to temporaries). Alternatively you could use the `proto::make_expr` facility to build the required proto expression. */ namespace boost { namespace spirit { namespace traits { template <> struct create_parser { typedef proto::result_of::deep_copy< BOOST_TYPEOF('{' >> qi::double_ >> ',' >> qi::double_ >> '}') >::type type; static type call() { return proto::deep_copy( '{' >> qi::double_ >> ',' >> qi::double_ >> '}'); } }; }}} //] //[reference_qi_auxiliary_attr_cast_data1 // this is just a test structure we want to use in place of an int struct int_data { int i; }; // we provide a custom attribute transformation to allow its use as an int namespace boost { namespace spirit { namespace traits { // in this case we just expose the embedded 'int' as the attribute instance // to use, allowing to leave the function 'post()' empty template <> struct transform_attribute { typedef int& type; static int& pre(int_data& d) { return d.i; } static void post(int_data& val, int const& attr) {} static void fail(int_data&) {} }; }}} //] namespace client { using boost::spirit::qi::grammar; using boost::spirit::qi::rule; using boost::spirit::ascii::space_type; //[reference_grammar_definition /*`Basic grammar usage: */ struct num_list : grammar { num_list() : base_type(start) { using boost::spirit::int_; num = int_; start = num >> *(',' >> num); } rule start, num; }; //] } int main() { { //[reference_using_declarations_lit_char using boost::spirit::qi::lit; using boost::spirit::ascii::char_; //] //[reference_char_literals test_parser("x", 'x'); // plain literal test_parser("x", lit('x')); // explicit literal test_parser("x", char_('x')); // ascii::char_ //] //[reference_char_range char ch; test_parser_attr("5", char_('0','9'), ch); // ascii::char_ range std::cout << ch << std::endl; // prints '5' //] //[reference_char_set test_parser_attr("5", char_("0-9"), ch); // ascii::char_ set std::cout << ch << std::endl; // prints '5' //] //[reference_char_phoenix namespace phx = boost::phoenix; test_parser("x", phx::val('x')); // direct test_parser("5", char_(phx::val('0'),phx::val('9'))); // ascii::char_ range //] } { //[reference_using_declarations_lit_string using boost::spirit::qi::lit; using boost::spirit::ascii::string; //] //[reference_string_literals test_parser("boost", "boost"); // plain literal test_parser("boost", lit("boost")); // explicit literal test_parser("boost", string("boost")); // ascii::string //] } { using boost::spirit::qi::lit; using boost::spirit::ascii::string; //[reference_string_std_string std::string s("boost"); test_parser("boost", s); // direct test_parser("boost", lit(s)); // explicit test_parser("boost", string(s)); // ascii::string //] } { using boost::spirit::qi::lit; using boost::spirit::ascii::string; //[reference_string_phoenix namespace phx = boost::phoenix; test_parser("boost", phx::val("boost")); // direct test_parser("boost", lit(phx::val("boost"))); // explicit test_parser("boost", string(phx::val("boost"))); // ascii::string //] } { //[reference_using_declarations_symbols using boost::spirit::qi::symbols; //] //[reference_symbols_with_data symbols sym; sym.add ("Apple", 1) ("Banana", 2) ("Orange", 3) ; int i; test_parser_attr("Banana", sym, i); std::cout << i << std::endl; //] } { //[reference_using_declarations_lexeme using boost::spirit::qi::lexeme; using boost::spirit::qi::lit; using boost::spirit::ascii::digit; //] //[reference_lexeme /*`The use of lexeme here will prevent skipping in between the digits and the sign making inputs such as `"1 2 345"` erroneous.*/ test_phrase_parser("12345", lexeme[ -(lit('+') | '-') >> +digit ]); //] } { //[reference_using_declarations_no_skip using boost::spirit::qi::no_skip; using boost::spirit::qi::char_; //] //[reference_no_skip /*`The use of no_skip here will prevent skipping of whitespace in front and in between the characters of the string `' abc '`.*/ std::string str; test_phrase_parser_attr("' abc '", '\'' >> no_skip[+~char_('\'')] >> '\'', str); std::cout << str << std::endl; // will output: > abc < //] } { //[reference_using_declarations_no_case using boost::spirit::ascii::no_case; using boost::spirit::ascii::char_; using boost::spirit::ascii::alnum; using boost::spirit::qi::symbols; //] //[reference_no_case test_parser("X", no_case[char_('x')]); test_parser("6", no_case[alnum]); //] //[reference_symbols_with_no_case symbols sym; sym.add ("apple", 1) // symbol strings are added in lowercase... ("banana", 2) ("orange", 3) ; int i; // ...because sym is used for case-insensitive parsing test_parser_attr("Apple", no_case[ sym ], i); std::cout << i << std::endl; test_parser_attr("ORANGE", no_case[ sym ], i); std::cout << i << std::endl; //] } { //[reference_using_declarations_omit using boost::spirit::qi::omit; using boost::spirit::qi::int_; using boost::spirit::ascii::char_; //] //[reference_omit /*`This parser ignores the first two characters and extracts the succeeding `int`:*/ int i; test_parser_attr("xx345", omit[char_ >> char_] >> int_, i); std::cout << i << std::endl; // should print 345 //] } { //[reference_using_declarations_matches using boost::spirit::qi::matches; using boost::spirit::qi::int_; //] //[reference_matches /*`This parser tries to match an `int` and returns `true` a its attribute as it succeeded matching: */ bool result = false; test_parser_attr("345", matches[int_], result); std::cout << std::boolalpha << result << std::endl; // should print: true /*`This parser tries to match an `int` as well and returns `false` as its attribute as it fails matching: */ result = true; test_parser_attr("abc", matches[int_], result); std::cout << std::boolalpha << result << std::endl; // should print: false //] } { //[reference_using_declarations_raw using boost::spirit::qi::raw; using boost::spirit::ascii::alpha; using boost::spirit::ascii::alnum; //] //[reference_raw //`This parser matches and extracts C++ identifiers: std::string id; test_parser_attr("James007", raw[(alpha | '_') >> *(alnum | '_')], id); std::cout << id << std::endl; // should print James007 //] } { //[reference_using_declarations_repeat using boost::spirit::qi::repeat; using boost::spirit::qi::lit; using boost::spirit::qi::uint_parser; using boost::spirit::qi::_1; using boost::spirit::ascii::char_; namespace phx = boost::phoenix; //] //[reference_repeat //`A parser for a file name with a maximum of 255 characters: test_parser("batman.jpeg", repeat(1, 255)[char_("a-zA-Z_./")]); /*`A parser for a specific bitmap file format which has exactly 4096 RGB color information. (for the purpose of this example, we will be testing only 3 RGB color information.) */ uint_parser rgb; std::vector colors; test_parser_attr("ffffff0000003f3f3f", repeat(3)[rgb], colors); std::cout << std::hex << colors[0] << ',' << colors[1] << ',' << colors[2] << std::endl; /*`A 256 bit binary string (1..256 1s or 0s). (For the purpose of this example, we will be testing only 16 bits.) */ test_parser("1011101011110010", repeat(16)[lit('1') | '0']); //] std::cout << std::dec; // reset to decimal //[reference_repeat_pascal /*`This trivial example cannot be practically defined in traditional EBNF. Although some EBNF variants allow more powerful repetition constructs other than the Kleene Star, we are still limited to parsing fixed strings. The nature of EBNF forces the repetition factor to be a constant. On the other hand, Spirit allows the repetition factor to be variable at run time. We could write a grammar that accepts the input string above. Example using phoenix: */ std::string str; int n; test_parser_attr("\x0bHello World", char_[phx::ref(n) = _1] >> repeat(phx::ref(n))[char_], str); std::cout << n << ',' << str << std::endl; // will print "11,Hello World" //] } { //[reference_using_declarations_skip using boost::spirit::qi::skip; using boost::spirit::qi::int_; using boost::spirit::ascii::space; //] //[reference_skip /*`Explicitly specify a skip parser. This parser parses comma delimited numbers, ignoring spaces.*/ test_parser("1, 2, 3, 4, 5", skip(space)[int_ >> *(',' >> int_)]); //] } // attr() { //[reference_using_declarations_attr namespace phx = boost::phoenix; using boost::spirit::qi::attr; //] //[reference_attr std::string str; test_parser_attr("", attr("boost"), str); std::cout << str << std::endl; // will print 'boost' double d; test_parser_attr("", attr(1.0), d); std::cout << d << std::endl; // will print '1.0' //] //[reference_attr_phoenix d = 0.0; double d1 = 1.2; test_parser_attr("", attr(phx::ref(d1)), d); std::cout << d << std::endl; // will print '1.2' //] } // attr_cast { //[reference_qi_using_declarations_attr_cast using boost::spirit::qi::int_; //] //[reference_qi_attr_cast1 int_data d = { 0 }; test_parser_attr("1", boost::spirit::qi::attr_cast(int_), d); std::cout << d.i << std::endl; //] } // eol { //[reference_using_declarations_eol using boost::spirit::qi::eol; //] //[reference_eol test_parser("\n", eol); //] } // eoi { //[reference_using_declarations_eoi using boost::spirit::qi::eoi; //] //[reference_eoi test_parser("", eoi); //] } // eps { //[reference_using_declarations_eps using boost::spirit::qi::eps; using boost::spirit::qi::int_; using boost::spirit::qi::_1; namespace phx = boost::phoenix; //] //[reference_eps //`Basic `eps`: test_parser("", eps); // always matches //] //[reference_eps_if /*`This example simulates the "classic" `if_p` parser. Here, `int_` will be tried only if the condition, `c`, is true. */ bool c = true; // a flag test_parser("1234", eps(phx::ref(c) == true) >> int_); //] //[reference_eps_while /*`This example simulates the "classic" `while_p` parser. Here, the kleene loop will exit once the condition, `c`, becomes true. Notice that the condition, `c`, is turned to `false` when we get to parse `4`. */ test_phrase_parser("1 2 3 4", *(eps(phx::ref(c) == true) >> int_[phx::ref(c) = (_1 == 4)])); //] } // lazy { //[reference_using_declarations_lazy using boost::spirit::qi::lazy; using boost::spirit::ascii::string; using boost::phoenix::val; //] //[reference_lazy /*` Here, the phoenix::val expression creates a function that returns its argument when invoked. The lazy expression defers the invocation of this function at parse time. Then, this parser (string parser) is called into action. All this takes place at parse time. */ test_parser("Hello", lazy(val(string("Hello")))); //` The above is equivalent to: test_parser("Hello", val(string("Hello"))); //] } // char class { //[reference_using_declarations_char_class using boost::spirit::ascii::alnum; using boost::spirit::ascii::blank; using boost::spirit::ascii::digit; using boost::spirit::ascii::lower; //] //[reference_char_class test_parser("1", alnum); test_parser(" ", blank); test_parser("1", digit); test_parser("a", lower); //] } // uint { //[reference_using_declarations_uint using boost::spirit::qi::uint_; using boost::spirit::qi::uint_parser; //] //[reference_uint test_parser("12345", uint_); //] //[reference_thousand_separated //`Thousand separated number parser: uint_parser uint3_p; // 1..3 digits uint_parser uint3_3_p; // exactly 3 digits test_parser("12,345,678", uint3_p >> *(',' >> uint3_3_p)); //] } // int { //[reference_using_declarations_int using boost::spirit::qi::int_; //] //[reference_int test_parser("+12345", int_); test_parser("-12345", int_); //] } // real { //[reference_using_declarations_real using boost::spirit::qi::double_; using boost::spirit::qi::real_parser; //] //[reference_real test_parser("+12345e6", double_); //] //[reference_custom_real real_parser > ts_real; test_parser("123,456,789.01", ts_real); //] } // bool_ { //[reference_using_declarations_bool using boost::spirit::qi::bool_; using boost::spirit::qi::bool_parser; //] //[reference_bool test_parser("true", bool_); test_parser("false", bool_); //] //[reference_custom_bool bool_parser backwards_bool; test_parser("true", backwards_bool); test_parser("eurt", backwards_bool); //] } // sequence { //[reference_using_declarations_sequence using boost::spirit::ascii::char_; using boost::spirit::qi::_1; using boost::spirit::qi::_2; namespace bf = boost::fusion; //] //[reference_sequence //`Simple usage: test_parser("xy", char_ >> char_); //`Extracting the attribute tuple (using __fusion__): bf::vector attr; test_parser_attr("xy", char_ >> char_, attr); std::cout << bf::at_c<0>(attr) << ',' << bf::at_c<1>(attr) << std::endl; //`Extracting the attribute vector (using __stl__): std::vector vec; test_parser_attr("xy", char_ >> char_, vec); std::cout << vec[0] << ',' << vec[1] << std::endl; //`Extracting the attributes using __qi_semantic_actions__ (using __phoenix__): test_parser("xy", (char_ >> char_)[std::cout << _1 << ',' << _2 << std::endl]); //] } // sequential_or { //[reference_using_declarations_sequential_or using boost::spirit::qi::int_; //] //[reference_sequential_or //`Correctly parsing a number with optional fractional digits: test_parser("123.456", int_ || ('.' >> int_)); // full test_parser("123", int_ || ('.' >> int_)); // just the whole number test_parser(".456", int_ || ('.' >> int_)); // just the fraction /*`A naive but incorrect solution would try to do this using optionals (e.g.): int_ >> -('.' >> int_) // will not match ".456" -int_ >> ('.' >> int_) // will not match "123" -int_ >> -('.' >> int_) // will match empty strings! Ooops. */ //] } // alternative { //[reference_using_declarations_alternative using boost::spirit::ascii::string; using boost::spirit::qi::int_; using boost::spirit::qi::_1; using boost::variant; //] //[reference_alternative //`Simple usage: test_parser("Hello", string("Hello") | int_); test_parser("123", string("Hello") | int_); //`Extracting the attribute variant (using __boost_variant__): variant attr; test_parser_attr("Hello", string("Hello") | int_, attr); /*`This should print `"Hello"`. Note: There are better ways to extract the value from the variant. See __boost_variant__ visitation. This code is solely for demonstration. */ if (boost::get(&attr)) std::cout << boost::get(attr) << std::endl; else std::cout << boost::get(attr) << std::endl; /*`Extracting the attributes using __qi_semantic_actions__ with __phoenix__ (this should print `123`): */ test_parser("123", (string("Hello") | int_)[std::cout << _1 << std::endl]); //] } // permutation { //[reference_using_declarations_permutation using boost::spirit::ascii::char_; //] //[reference_permutation //`Parse a string containing DNA codes (ACTG) test_parser("ACTGGCTAGACT", *(char_('A') ^ 'C' ^ 'T' ^ 'G')); //] } // expect { //[reference_using_declarations_expect using boost::spirit::ascii::char_; using boost::spirit::qi::expectation_failure; //] //[reference_expect /*`The code below uses an expectation operator to throw an __qi_expectation_failure__ with a deliberate parsing error when `"o"` is expected and `"i"` is what is found in the input. The `catch` block prints the information related to the error. Note: This is low level code that demonstrates the /bare-metal/. Typically, you use an __qi_error_handler__ to deal with the error. */ try { test_parser("xi", char_('x') > char_('o')); // should throw an exception } catch (expectation_failure const& x) { std::cout << "expected: "; print_info(x.what_); std::cout << "got: \"" << std::string(x.first, x.last) << '"' << std::endl; } /*`The code above will print:[teletype] expected: tag: literal-char, value: o got: "i"``[c++]`` */ //] } // and-predicate { //[reference_and_predicate //`Some using declarations: using boost::spirit::lit; /*`Basic look-ahead example: make sure that the last character is a semicolon, but don't consume it, just peek at the next character: */ test_phrase_parser("Hello ;", lit("Hello") >> &lit(';'), false); //] } // not-predicate { //[reference_not_predicate //`Some using declarations: using boost::spirit::ascii::char_; using boost::spirit::ascii::alpha; using boost::spirit::qi::lit; using boost::spirit::qi::symbols; /*`Here's an alternative to the `*(r - x) >> x` idiom using the not-predicate instead. This parses a list of characters terminated by a ';': */ test_parser("abcdef;", *(!lit(';') >> char_) >> ';'); /*`The following parser ensures that we match distinct keywords (stored in a symbol table). To do this, we make sure that the keyword does not follow an alpha or an underscore: */ symbols keywords; keywords = "begin", "end", "for"; // This should fail: test_parser("beginner", keywords >> !(alpha | '_')); // This is ok: test_parser("end ", keywords >> !(alpha | '_'), false); // This is ok: test_parser("for()", keywords >> !(alpha | '_'), false); //] } // difference { //[reference_difference //`Some using declarations: using boost::spirit::ascii::char_; /*`Parse a C/C++ style comment: */ test_parser("/*A Comment*/", "/*" >> *(char_ - "*/") >> "*/"); //] } // kleene { //[reference_kleene //`Some using declarations: using boost::spirit::qi::int_; /*`Parse a comma separated list of numbers and put them in a vector: */ std::vector attr; test_phrase_parser_attr( "111, 222, 333, 444, 555", int_ >> *(',' >> int_), attr); std::cout << attr[0] << ',' << attr[1] << ',' << attr[2] << ',' << attr[3] << ',' << attr[4] << std::endl; //] } // plus { //[reference_plus //`Some using declarations: using boost::spirit::ascii::alpha; using boost::spirit::qi::lexeme; /*`Parse one or more strings containing one or more alphabetic characters and put them in a vector: */ std::vector attr; test_phrase_parser_attr("yaba daba doo", +lexeme[+alpha], attr); std::cout << attr[0] << ',' << attr[1] << ',' << attr[2] << std::endl; //] } // optional { //[reference_optional //`Some using declarations: using boost::spirit::ascii::char_; using boost::spirit::qi::lexeme; using boost::spirit::qi::int_; using boost::fusion::vector; using boost::fusion::at_c; using boost::optional; /*`Parse a person info with name (in quotes) optional age [footnote James Bond is shy about his age :-)] and optional sex, all separated by comma. */ vector, optional > attr; test_phrase_parser_attr( "\"James Bond\", M" , lexeme['"' >> +(char_ - '"') >> '"'] // name >> -(',' >> int_) // optional age >> -(',' >> char_) // optional sex , attr); // Should print: James Bond,M std::cout << at_c<0>(attr); // print name if (at_c<1>(attr)) // print optional age std::cout << ',' << *at_c<1>(attr); if (at_c<2>(attr)) // print optional sex std::cout << ',' << *at_c<2>(attr); std::cout << std::endl; //] } // list { //[reference_list //`Some using declarations: using boost::spirit::qi::int_; /*`Parse a comma separated list of numbers and put them in a vector: */ std::vector attr; test_phrase_parser_attr( "111, 222, 333, 444, 555", int_ % ',', attr); std::cout << attr[0] << ',' << attr[1] << ',' << attr[2] << ',' << attr[3] << ',' << attr[4] << std::endl; //] } // stream { //[reference_qi_stream //`Using declarations and variables: using boost::spirit::qi::stream; using boost::spirit::qi::stream_parser; /*`Parse a simple string using the operator>>(istream&, std::string&); */ std::string str; test_parser_attr("abc", stream, str); std::cout << str << std::endl; // prints: abc /*`Parse our complex type using the operator>>(istream&, complex&); */ complex c; test_parser_attr("{1.0,2.5}", stream_parser(), c); std::cout << c.a << "," << c.b << std::endl; // prints: 1.0,2.5 //] } /////////////////////////////////////////////////////////////////////////// // auto module { //[reference_qi_using_declarations_auto using boost::spirit::qi::auto_; //] //[reference_qi_auto /*`Parse a simple integer using the generated parser component `int_`: */ int i = 0; test_parser_attr("123", auto_, i); std::cout << i << std::endl; // prints: 123 /*`Parse an instance of the `complex` data type as defined above using the parser as generated by the defined customization point: */ complex c; test_parser_attr("{1.2,2.4}", auto_, c); std::cout << c.a << "," << c.b << std::endl; // prints: 1.2,2.4 //] } // native binary { //[reference_qi_native_binary //`Using declarations and variables: using boost::spirit::qi::byte_; using boost::spirit::qi::word; using boost::spirit::qi::dword; using boost::spirit::qi::qword; boost::uint8_t uc; boost::uint16_t us; boost::uint32_t ui; //<- #ifdef BOOST_HAS_LONG_LONG //-> boost::uint64_t ul; //<- #endif #ifdef BOOST_LITTLE_ENDIAN //-> //`Basic usage of the native binary parsers for little endian platforms: test_parser_attr("\x01", byte_, uc); assert(uc == 0x01); test_parser_attr("\x01\x02", word, us); assert(us == 0x0201); test_parser_attr("\x01\x02\x03\x04", dword, ui); assert(ui == 0x04030201); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", qword, ul); assert(ul == 0x0807060504030201LL); //<- #endif //-> test_parser("\x01", byte_(0x01)); test_parser("\x01\x02", word(0x0201)); test_parser("\x01\x02\x03\x04", dword(0x04030201)); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser("\x01\x02\x03\x04\x05\x06\x07\x08", qword(0x0807060504030201LL)); //<- #endif #else //-> //`Basic usage of the native binary parsers for big endian platforms: test_parser_attr("\x01", byte_, uc); assert(uc == 0x01); test_parser_attr("\x01\x02", word, us); assert(us == 0x0102); test_parser_attr("\x01\x02\x03\x04", dword, ui); assert(ui == 0x01020304); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", qword, ul); assert(0x0102030405060708LL); //<- #endif //-> test_parser("\x01", byte_(0x01)); test_parser("\x01\x02", word(0x0102)); test_parser("\x01\x02\x03\x04", dword(0x01020304)); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser("\x01\x02\x03\x04\x05\x06\x07\x08", qword(0x0102030405060708LL)); //<- #endif #endif //-> //] } // little binary { //[reference_qi_little_binary //`Using declarations and variables: using boost::spirit::qi::little_word; using boost::spirit::qi::little_dword; using boost::spirit::qi::little_qword; boost::uint16_t us; boost::uint32_t ui; //<- #ifdef BOOST_HAS_LONG_LONG //-> boost::uint64_t ul; //<- #endif //-> //`Basic usage of the little endian binary parsers: test_parser_attr("\x01\x02", little_word, us); assert(us == 0x0201); test_parser_attr("\x01\x02\x03\x04", little_dword, ui); assert(ui == 0x04030201); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", little_qword, ul); assert(ul == 0x0807060504030201LL); //<- #endif //-> test_parser("\x01\x02", little_word(0x0201)); test_parser("\x01\x02\x03\x04", little_dword(0x04030201)); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser("\x01\x02\x03\x04\x05\x06\x07\x08", little_qword(0x0807060504030201LL)); //<- #endif //-> //] } // big binary { //[reference_qi_big_binary //`Using declarations and variables: using boost::spirit::qi::big_word; using boost::spirit::qi::big_dword; using boost::spirit::qi::big_qword; boost::uint16_t us; boost::uint32_t ui; //<- #ifdef BOOST_HAS_LONG_LONG //-> boost::uint64_t ul; //<- #endif //-> //`Basic usage of the big endian binary parsers: test_parser_attr("\x01\x02", big_word, us); assert(us == 0x0102); test_parser_attr("\x01\x02\x03\x04", big_dword, ui); assert(ui == 0x01020304); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", big_qword, ul); assert(0x0102030405060708LL); //<- #endif //-> test_parser("\x01\x02", big_word(0x0102)); test_parser("\x01\x02\x03\x04", big_dword(0x01020304)); //<- #ifdef BOOST_HAS_LONG_LONG //-> test_parser("\x01\x02\x03\x04\x05\x06\x07\x08", big_qword(0x0102030405060708LL)); //<- #endif //-> //] } // rule { //[reference_rule //`Some using declarations: using boost::spirit::qi::rule; using boost::spirit::qi::int_; using boost::spirit::qi::locals; using boost::spirit::qi::_1; using boost::spirit::qi::_a; using boost::spirit::ascii::alpha; using boost::spirit::ascii::char_; using boost::spirit::ascii::space_type; /*`Basic rule: */ rule r; r = int_; test_parser("123", r); /*`Rule with synthesized attribute: */ rule ra; ra = int_; int i; test_parser_attr("123", ra, i); assert(i == 123); /*`Rule with skipper and synthesized attribute: */ rule(), space_type> rs; rs = *int_; std::vector v; test_phrase_parser_attr("123 456 789", rs, v); assert(v[0] == 123); assert(v[1] == 456); assert(v[2] == 789); /*`Rule with one local variable: */ rule > rl; rl = alpha[_a = _1] >> char_(_a); // get two identical characters test_parser("aa", rl); // pass test_parser("ax", rl); // fail //] } // grammar { using client::num_list; //[reference_grammar_using //`Some using declarations: using boost::spirit::ascii::space_type; using boost::spirit::int_; using boost::spirit::qi::grammar; using boost::spirit::qi::rule; //] //[reference_grammar //`How to use the example grammar: num_list nlist; test_phrase_parser("123, 456, 789", nlist); //] } return 0; }