////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2009. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_set/stl_multiset files. Modified by Ion Gaztanaga 2004. // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef BOOST_CONTAINERS_SET_HPP #define BOOST_CONTAINERS_SET_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #ifndef BOOST_CONTAINERS_PERFECT_FORWARDING #include #endif #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { namespace container { #else namespace boost { namespace container { #endif /// @cond // Forward declarations of operators < and ==, needed for friend declaration. template inline bool operator==(const set& x, const set& y); template inline bool operator<(const set& x, const set& y); /// @endcond //! A set is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of the keys themselves. //! Class set supports bidirectional iterators. //! //! A set satisfies all of the requirements of a container and of a reversible container //! , and of an associative container. A set also provides most operations described in //! for unique keys. template class set { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(set) typedef containers_detail::rbtree, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing set typedef typename containers_detail:: move_const_ref_type::type insert_const_ref_type; /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef Pred key_compare; typedef Pred value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! Effects: Constructs an empty set using the specified comparison object //! and allocator. //! //! Complexity: Constant. explicit set(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //! Effects: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template set(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, true) {} //! Effects: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the ordered unique range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! Complexity: Linear in N. template set( ordered_unique_range_t, InputIterator first, InputIterator last , const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a set. //! //! Complexity: Linear in x.size(). set(const set& x) : m_tree(x.m_tree) {} //! Effects: Move constructs a set. Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. set(BOOST_INTERPROCESS_RV_REF(set) x) : m_tree(boost::interprocess::move(x.m_tree)) {} //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). set& operator=(BOOST_INTERPROCESS_COPY_ASSIGN_REF(set) x) { m_tree = x.m_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. set& operator=(BOOST_INTERPROCESS_RV_REF(set) x) { m_tree = boost::interprocess::move(x.m_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return m_tree.key_comp(); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant iterator begin() { return m_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_tree.begin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_tree.end(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return m_tree.cbegin(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return m_tree.cend(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return m_tree.crbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return m_tree.crend(); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_tree.max_size(); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(set& x) { m_tree.swap(x.m_tree); } //! Effects: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(insert_const_ref_type x) { return priv_insert(x); } #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) std::pair insert(T &x) { return this->insert(const_cast(x)); } template std::pair insert(const U &u, typename containers_detail::enable_if_c::value && !::boost::interprocess::is_movable::value >::type* =0) { return priv_insert(u); } #endif //! Effects: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(BOOST_INTERPROCESS_RV_REF(value_type) x) { return m_tree.insert_unique(boost::interprocess::move(x)); } //! Effects: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, insert_const_ref_type x) { return priv_insert(p, x); } #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) iterator insert(const_iterator position, T &x) { return this->insert(position, const_cast(x)); } template iterator insert(const_iterator position, const U &u, typename containers_detail::enable_if_c::value && !::boost::interprocess::is_movable::value >::type* =0) { return priv_insert(position, u); } #endif //! Effects: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. iterator insert(const_iterator p, BOOST_INTERPROCESS_RV_REF(value_type) x) { return m_tree.insert_unique(p, boost::interprocess::move(x)); } //! Requires: i, j are not iterators into *this. //! //! Effects: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //! Complexity: N log(size()+N) (N is the distance from i to j) template void insert(InputIterator first, InputIterator last) { m_tree.insert_unique(first, last); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... if and only if there is //! no element in the container with equivalent value. //! and returns the iterator pointing to the //! newly inserted element. //! //! Throws: If memory allocation throws or //! T's in-place constructor throws. //! //! Complexity: Logarithmic. template iterator emplace(Args&&... args) { return m_tree.emplace_unique(boost::interprocess::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... if and only if there is //! no element in the container with equivalent value. //! p is a hint pointing to where the insert //! should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_unique(hint, boost::interprocess::forward(args)...); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator emplace() { return m_tree.emplace_unique(); } iterator emplace_hint(const_iterator hint) { return m_tree.emplace_hint_unique(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ \ template \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _));}\ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! Effects: Erases the element pointed to by p. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_tree.clear(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! Returns: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.find(x) == m_tree.end() ? 0 : 1; } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_tree.equal_range(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template friend bool operator== (const set&, const set&); template friend bool operator< (const set&, const set&); private: std::pair priv_insert(const T &x) { return m_tree.insert_unique(x); } iterator priv_insert(const_iterator p, const T &x) { return m_tree.insert_unique(p, x); } /// @endcond }; template inline bool operator==(const set& x, const set& y) { return x.m_tree == y.m_tree; } template inline bool operator<(const set& x, const set& y) { return x.m_tree < y.m_tree; } template inline bool operator!=(const set& x, const set& y) { return !(x == y); } template inline bool operator>(const set& x, const set& y) { return y < x; } template inline bool operator<=(const set& x, const set& y) { return !(y < x); } template inline bool operator>=(const set& x, const set& y) { return !(x < y); } template inline void swap(set& x, set& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ namespace container { // Forward declaration of operators < and ==, needed for friend declaration. template inline bool operator==(const multiset& x, const multiset& y); template inline bool operator<(const multiset& x, const multiset& y); /// @endcond //! A multiset is a kind of associative container that supports equivalent keys //! (possibly contains multiple copies of the same key value) and provides for //! fast retrieval of the keys themselves. Class multiset supports bidirectional iterators. //! //! A multiset satisfies all of the requirements of a container and of a reversible //! container, and of an associative container). multiset also provides most operations //! described for duplicate keys. template class multiset { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(multiset) typedef containers_detail::rbtree, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing multiset typedef typename containers_detail:: move_const_ref_type::type insert_const_ref_type; /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef Pred key_compare; typedef Pred value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! Effects: Constructs an empty multiset using the specified comparison //! object and allocator. //! //! Complexity: Constant. explicit multiset(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //! Effects: Constructs an empty multiset using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template multiset(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, false) {} //! Effects: Constructs an empty multiset using the specified comparison object and //! allocator, and inserts elements from the ordered range [first ,last ). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate. //! //! Complexity: Linear in N. template multiset( ordered_range_t ordered_range, InputIterator first, InputIterator last , const Pred& comp = Pred() , const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a multiset. //! //! Complexity: Linear in x.size(). multiset(const multiset& x) : m_tree(x.m_tree) {} //! Effects: Move constructs a multiset. Constructs *this using x's resources. //! //! Complexity: Construct. //! //! Postcondition: x is emptied. multiset(BOOST_INTERPROCESS_RV_REF(multiset) x) : m_tree(boost::interprocess::move(x.m_tree)) {} //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). multiset& operator=(BOOST_INTERPROCESS_COPY_ASSIGN_REF(multiset) x) { m_tree = x.m_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. multiset& operator=(BOOST_INTERPROCESS_RV_REF(multiset) x) { m_tree = boost::interprocess::move(x.m_tree); return *this; } //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return m_tree.key_comp(); } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return m_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_tree.begin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_tree.end(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return m_tree.cbegin(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return m_tree.cend(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return m_tree.crbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return m_tree.crend(); } //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_tree.max_size(); } //! Effects: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(multiset& x) { m_tree.swap(x.m_tree); } //! Effects: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic. iterator insert(insert_const_ref_type x) { return priv_insert(x); } #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) iterator insert(T &x) { return this->insert(const_cast(x)); } template iterator insert(const U &u, typename containers_detail::enable_if_c::value && !::boost::interprocess::is_movable::value >::type* =0) { return priv_insert(u); } #endif //! Effects: Inserts a copy of x in the container. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(BOOST_INTERPROCESS_RV_REF(value_type) x) { return m_tree.insert_equal(boost::interprocess::move(x)); } //! Effects: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, insert_const_ref_type x) { return priv_insert(p, x); } #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_MOVE_DOXYGEN_INVOKED) iterator insert(const_iterator position, T &x) { return this->insert(position, const_cast(x)); } template iterator insert(const_iterator position, const U &u, typename containers_detail::enable_if_c::value && !::boost::interprocess::is_movable::value >::type* =0) { return priv_insert(position, u); } #endif //! Effects: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, BOOST_INTERPROCESS_RV_REF(value_type) x) { return m_tree.insert_equal(p, boost::interprocess::move(x)); } //! Requires: i, j are not iterators into *this. //! //! Effects: inserts each element from the range [i,j) . //! //! Complexity: N log(size()+N) (N is the distance from i to j) template void insert(InputIterator first, InputIterator last) { m_tree.insert_equal(first, last); } #if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic. template iterator emplace(Args&&... args) { return m_tree.emplace_equal(boost::interprocess::forward(args)...); } //! Effects: Inserts an object of type T constructed with //! std::forward(args)... //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_equal(hint, boost::interprocess::forward(args)...); } #else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING iterator emplace() { return m_tree.emplace_equal(); } iterator emplace_hint(const_iterator hint) { return m_tree.emplace_hint_equal(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ \ template \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); }\ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING //! Effects: Erases the element pointed to by p. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_tree.clear(); } //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! Returns: A const iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.count(x); } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! Returns: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_tree.equal_range(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template friend bool operator== (const multiset&, const multiset&); template friend bool operator< (const multiset&, const multiset&); private: iterator priv_insert(const T &x) { return m_tree.insert_equal(x); } iterator priv_insert(const_iterator p, const T &x) { return m_tree.insert_equal(p, x); } /// @endcond }; template inline bool operator==(const multiset& x, const multiset& y) { return x.m_tree == y.m_tree; } template inline bool operator<(const multiset& x, const multiset& y) { return x.m_tree < y.m_tree; } template inline bool operator!=(const multiset& x, const multiset& y) { return !(x == y); } template inline bool operator>(const multiset& x, const multiset& y) { return y < x; } template inline bool operator<=(const multiset& x, const multiset& y) { return !(y < x); } template inline bool operator>=(const multiset& x, const multiset& y) { return !(x < y); } template inline void swap(multiset& x, multiset& y) { x.swap(y); } /// @cond } //namespace container { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value && has_trivial_destructor::value; }; */ namespace container { /// @endcond }} #include #endif /* BOOST_CONTAINERS_SET_HPP */