// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SF_ERF_INV_HPP #define BOOST_MATH_SF_ERF_INV_HPP #ifdef _MSC_VER #pragma once #endif namespace boost{ namespace math{ namespace detail{ // // The inverse erf and erfc functions share a common implementation, // this version is for 80-bit long double's and smaller: // template T erf_inv_imp(const T& p, const T& q, const Policy&, const boost::mpl::int_<64>*) { BOOST_MATH_STD_USING // for ADL of std names. T result = 0; if(p <= 0.5) { // // Evaluate inverse erf using the rational approximation: // // x = p(p+10)(Y+R(p)) // // Where Y is a constant, and R(p) is optimised for a low // absolute error compared to |Y|. // // double: Max error found: 2.001849e-18 // long double: Max error found: 1.017064e-20 // Maximum Deviation Found (actual error term at infinite precision) 8.030e-21 // static const float Y = 0.0891314744949340820313f; static const T P[] = { -0.000508781949658280665617L, -0.00836874819741736770379L, 0.0334806625409744615033L, -0.0126926147662974029034L, -0.0365637971411762664006L, 0.0219878681111168899165L, 0.00822687874676915743155L, -0.00538772965071242932965L }; static const T Q[] = { 1, -0.970005043303290640362L, -1.56574558234175846809L, 1.56221558398423026363L, 0.662328840472002992063L, -0.71228902341542847553L, -0.0527396382340099713954L, 0.0795283687341571680018L, -0.00233393759374190016776L, 0.000886216390456424707504L }; T g = p * (p + 10); T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p); result = g * Y + g * r; } else if(q >= 0.25) { // // Rational approximation for 0.5 > q >= 0.25 // // x = sqrt(-2*log(q)) / (Y + R(q)) // // Where Y is a constant, and R(q) is optimised for a low // absolute error compared to Y. // // double : Max error found: 7.403372e-17 // long double : Max error found: 6.084616e-20 // Maximum Deviation Found (error term) 4.811e-20 // static const float Y = 2.249481201171875f; static const T P[] = { -0.202433508355938759655L, 0.105264680699391713268L, 8.37050328343119927838L, 17.6447298408374015486L, -18.8510648058714251895L, -44.6382324441786960818L, 17.445385985570866523L, 21.1294655448340526258L, -3.67192254707729348546L }; static const T Q[] = { 1L, 6.24264124854247537712L, 3.9713437953343869095L, -28.6608180499800029974L, -20.1432634680485188801L, 48.5609213108739935468L, 10.8268667355460159008L, -22.6436933413139721736L, 1.72114765761200282724L }; T g = sqrt(-2 * log(q)); T xs = q - 0.25; T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = g / (Y + r); } else { // // For q < 0.25 we have a series of rational approximations all // of the general form: // // let: x = sqrt(-log(q)) // // Then the result is given by: // // x(Y+R(x-B)) // // where Y is a constant, B is the lowest value of x for which // the approximation is valid, and R(x-B) is optimised for a low // absolute error compared to Y. // // Note that almost all code will really go through the first // or maybe second approximation. After than we're dealing with very // small input values indeed: 80 and 128 bit long double's go all the // way down to ~ 1e-5000 so the "tail" is rather long... // T x = sqrt(-log(q)); if(x < 3) { // Max error found: 1.089051e-20 static const float Y = 0.807220458984375f; static const T P[] = { -0.131102781679951906451L, -0.163794047193317060787L, 0.117030156341995252019L, 0.387079738972604337464L, 0.337785538912035898924L, 0.142869534408157156766L, 0.0290157910005329060432L, 0.00214558995388805277169L, -0.679465575181126350155e-6L, 0.285225331782217055858e-7L, -0.681149956853776992068e-9L }; static const T Q[] = { 1, 3.46625407242567245975L, 5.38168345707006855425L, 4.77846592945843778382L, 2.59301921623620271374L, 0.848854343457902036425L, 0.152264338295331783612L, 0.01105924229346489121L }; T xs = x - 1.125; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else if(x < 6) { // Max error found: 8.389174e-21 static const float Y = 0.93995571136474609375f; static const T P[] = { -0.0350353787183177984712L, -0.00222426529213447927281L, 0.0185573306514231072324L, 0.00950804701325919603619L, 0.00187123492819559223345L, 0.000157544617424960554631L, 0.460469890584317994083e-5L, -0.230404776911882601748e-9L, 0.266339227425782031962e-11L }; static const T Q[] = { 1L, 1.3653349817554063097L, 0.762059164553623404043L, 0.220091105764131249824L, 0.0341589143670947727934L, 0.00263861676657015992959L, 0.764675292302794483503e-4L }; T xs = x - 3; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else if(x < 18) { // Max error found: 1.481312e-19 static const float Y = 0.98362827301025390625f; static const T P[] = { -0.0167431005076633737133L, -0.00112951438745580278863L, 0.00105628862152492910091L, 0.000209386317487588078668L, 0.149624783758342370182e-4L, 0.449696789927706453732e-6L, 0.462596163522878599135e-8L, -0.281128735628831791805e-13L, 0.99055709973310326855e-16L }; static const T Q[] = { 1L, 0.591429344886417493481L, 0.138151865749083321638L, 0.0160746087093676504695L, 0.000964011807005165528527L, 0.275335474764726041141e-4L, 0.282243172016108031869e-6L }; T xs = x - 6; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else if(x < 44) { // Max error found: 5.697761e-20 static const float Y = 0.99714565277099609375f; static const T P[] = { -0.0024978212791898131227L, -0.779190719229053954292e-5L, 0.254723037413027451751e-4L, 0.162397777342510920873e-5L, 0.396341011304801168516e-7L, 0.411632831190944208473e-9L, 0.145596286718675035587e-11L, -0.116765012397184275695e-17L }; static const T Q[] = { 1L, 0.207123112214422517181L, 0.0169410838120975906478L, 0.000690538265622684595676L, 0.145007359818232637924e-4L, 0.144437756628144157666e-6L, 0.509761276599778486139e-9L }; T xs = x - 18; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } else { // Max error found: 1.279746e-20 static const float Y = 0.99941349029541015625f; static const T P[] = { -0.000539042911019078575891L, -0.28398759004727721098e-6L, 0.899465114892291446442e-6L, 0.229345859265920864296e-7L, 0.225561444863500149219e-9L, 0.947846627503022684216e-12L, 0.135880130108924861008e-14L, -0.348890393399948882918e-21L }; static const T Q[] = { 1L, 0.0845746234001899436914L, 0.00282092984726264681981L, 0.468292921940894236786e-4L, 0.399968812193862100054e-6L, 0.161809290887904476097e-8L, 0.231558608310259605225e-11L }; T xs = x - 44; T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); result = Y * x + R * x; } } return result; } template struct erf_roots { std::tr1::tuple operator()(const T& guess) { BOOST_MATH_STD_USING T derivative = sign * (2 / sqrt(constants::pi())) * exp(-(guess * guess)); T derivative2 = -2 * guess * derivative; return std::tr1::make_tuple(((sign > 0) ? boost::math::erf(guess, Policy()) : boost::math::erfc(guess, Policy())) - target, derivative, derivative2); } erf_roots(T z, int s) : target(z), sign(s) {} private: T target; int sign; }; template T erf_inv_imp(const T& p, const T& q, const Policy& pol, const boost::mpl::int_<0>*) { // // Generic version, get a guess that's accurate to 64-bits (10^-19) // T guess = erf_inv_imp(p, q, pol, static_cast const*>(0)); T result; // // If T has more bit's than 64 in it's mantissa then we need to iterate, // otherwise we can just return the result: // if(policies::digits() > 64) { boost::uintmax_t max_iter = policies::get_max_root_iterations(); if(p <= 0.5) { result = tools::halley_iterate(detail::erf_roots::type, Policy>(p, 1), guess, static_cast(0), tools::max_value(), (policies::digits() * 2) / 3, max_iter); } else { result = tools::halley_iterate(detail::erf_roots::type, Policy>(q, -1), guess, static_cast(0), tools::max_value(), (policies::digits() * 2) / 3, max_iter); } policies::check_root_iterations("boost::math::erf_inv<%1%>", max_iter, pol); } else { result = guess; } return result; } } // namespace detail template typename tools::promote_args::type erfc_inv(T z, const Policy& pol) { typedef typename tools::promote_args::type result_type; // // Begin by testing for domain errors, and other special cases: // static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)"; if((z < 0) || (z > 2)) policies::raise_domain_error(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%).", z, pol); if(z == 0) return policies::raise_overflow_error(function, 0, pol); if(z == 2) return -policies::raise_overflow_error(function, 0, pol); // // Normalise the input, so it's in the range [0,1], we will // negate the result if z is outside that range. This is a simple // application of the erfc reflection formula: erfc(-z) = 2 - erfc(z) // result_type p, q, s; if(z > 1) { q = 2 - z; p = 1 - q; s = -1; } else { p = 1 - z; q = z; s = 1; } // // A bit of meta-programming to figure out which implementation // to use, based on the number of bits in the mantissa of T: // typedef typename policies::precision::type precision_type; typedef typename mpl::if_< mpl::or_ >, mpl::greater > >, mpl::int_<0>, mpl::int_<64> >::type tag_type; // // Likewise use internal promotion, so we evaluate at a higher // precision internally if it's appropriate: // typedef typename policies::evaluation::type eval_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; // // And get the result, negating where required: // return s * policies::checked_narrowing_cast( detail::erf_inv_imp(static_cast(p), static_cast(q), forwarding_policy(), static_cast(0)), function); } template typename tools::promote_args::type erf_inv(T z, const Policy& pol) { typedef typename tools::promote_args::type result_type; // // Begin by testing for domain errors, and other special cases: // static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)"; if((z < -1) || (z > 1)) policies::raise_domain_error(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%).", z, pol); if(z == 1) return policies::raise_overflow_error(function, 0, pol); if(z == -1) return -policies::raise_overflow_error(function, 0, pol); if(z == 0) return 0; // // Normalise the input, so it's in the range [0,1], we will // negate the result if z is outside that range. This is a simple // application of the erf reflection formula: erf(-z) = -erf(z) // result_type p, q, s; if(z < 0) { p = -z; q = 1 - p; s = -1; } else { p = z; q = 1 - z; s = 1; } // // A bit of meta-programming to figure out which implementation // to use, based on the number of bits in the mantissa of T: // typedef typename policies::precision::type precision_type; typedef typename mpl::if_< mpl::or_ >, mpl::greater > >, mpl::int_<0>, mpl::int_<64> >::type tag_type; // // Likewise use internal promotion, so we evaluate at a higher // precision internally if it's appropriate: // typedef typename policies::evaluation::type eval_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; // // Likewise use internal promotion, so we evaluate at a higher // precision internally if it's appropriate: // typedef typename policies::evaluation::type eval_type; // // And get the result, negating where required: // return s * policies::checked_narrowing_cast( detail::erf_inv_imp(static_cast(p), static_cast(q), forwarding_policy(), static_cast(0)), function); } template inline typename tools::promote_args::type erfc_inv(T z) { return erfc_inv(z, policies::policy<>()); } template inline typename tools::promote_args::type erf_inv(T z) { return erf_inv(z, policies::policy<>()); } } // namespace math } // namespace boost #endif // BOOST_MATH_SF_ERF_INV_HPP