/* $Id: plshade.c,v 1.3 2007/05/08 09:09:37 rice Exp $ Functions to shade regions on the basis of value. Can be used to shade contour plots or alone. Copyright 1993 Wesley Ebisuzaki Copyright (C) 2004 Alan W. Irwin This file is part of PLplot. PLplot is free software; you can redistribute it and/or modify it under the terms of the GNU General Library Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. PLplot is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with PLplot; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /*----------------------------------------------------------------------*\ * Call syntax for plshade(): * * void plshade(PLFLT *a, PLINT nx, PLINT ny, char *defined, * PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, * PLFLT shade_min, PLFLT shade_max, * PLINT sh_color, PLINT sh_width, PLINT min_color, PLINT min_width, * PLINT max_color, PLINT max_width, void (*fill)(), PLINT * rectangular, ...) * * arguments: * * PLFLT &(a[0][0]) * * Contains array to be plotted. The array must have been declared as * PLFLT a[nx][ny]. See following note on fortran-style arrays. * * PLINT nx, ny * * Dimension of array "a". * * char &(defined[0][0]) * * Contains array of flags, 1 = data is valid, 0 = data is not valid. * This array determines which sections of the data is to be plotted. * This argument can be NULL if all the values are valid. Must have been * declared as char defined[nx][ny]. * * PLFLT xmin, xmax, ymin, ymax * * Defines the "grid" coordinates. The data a[0][0] has a position of * (xmin,ymin). * * void (*mapform)() * * Transformation from `grid' coordinates to world coordinates. This * pointer to a function can be NULL in which case the grid coordinates * are the same as the world coordinates. * * PLFLT shade_min, shade_max * * Defines the interval to be shaded. If shade_max <= shade_min, plshade * does nothing. * * PLINT sh_cmap, PLFLT sh_color, PLINT sh_width * * Defines color map, color map index, and width used by the fill pattern. * * PLINT min_color, min_width, max_color, max_width * * Defines pen color, width used by the boundary of shaded region. The min * values are used for the shade_min boundary, and the max values are used * on the shade_max boundary. Set color and width to zero for no plotted * boundaries. * * void (*fill)() * * Routine used to fill the region. Use plfill. Future version of plplot * may have other fill routines. * * PLINT rectangular * * Flag. Set to 1 if rectangles map to rectangles after (*mapform)() else * set to zero. If rectangular is set to 1, plshade tries to save time by * filling large rectangles. This optimization fails if (*mapform)() * distorts the shape of rectangles. For example a plot in polor * coordinates has to have rectangular set to zero. * * Example mapform's: * * Grid to world coordinate transformation. * This example goes from a r-theta to x-y for a polar plot. * * void mapform(PLINT n, PLFLT *x, PLFLT *y) { * int i; * double r, theta; * for (i = 0; i < n; i++) { * r = x[i]; * theta = y[i]; * x[i] = r*cos(theta); * y[i] = r*sin(theta); * } * } * * Grid was in cm, convert to world coordinates in inches. * Expands in x direction. * * void mapform(PLINT n, PLFLT *x, PLFLT *y) { * int i; * for (i = 0; i < n; i++) { * x[i] = (1.0 / 2.5) * x[i]; * y[i] = (1.0 / 2.5) * y[i]; * } * } * \*----------------------------------------------------------------------*/ #include "plplotP.h" #include #define MISSING_MIN_DEF (PLFLT) 1.0 #define MISSING_MAX_DEF (PLFLT) -1.0 #define NEG 1 #define POS 8 #define OK 0 #define UNDEF 64 #define linear(val1, val2, level) ((level - val1) / (val2 - val1)) /* Global variables */ static PLFLT sh_max, sh_min; static int min_points, max_points, n_point; static int min_pts[4], max_pts[4]; static PLINT pen_col_min, pen_col_max; static PLINT pen_wd_min, pen_wd_max; static PLFLT int_val; /* Function prototypes */ static void set_cond(register int *cond, register PLFLT *a, register PLINT n); static int find_interval(PLFLT a0, PLFLT a1, PLINT c0, PLINT c1, PLFLT *x); static void selected_polygon(void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT (*defined) (PLFLT, PLFLT), PLFLT *x, PLFLT *y, PLINT v1, PLINT v2, PLINT v3, PLINT v4); static void exfill(void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT (*defined) (PLFLT, PLFLT), int n, PLFLT *x, PLFLT *y); static void big_recl(int *cond_code, register int ny, int dx, int dy, int *ix, int *iy); static void draw_boundary(PLINT slope, PLFLT *x, PLFLT *y); static PLINT plctest(PLFLT *x, PLFLT level); static PLINT plctestez(PLFLT *a, PLINT nx, PLINT ny, PLINT ix, PLINT iy, PLFLT level); static void plshade_int(PLFLT (*f2eval) (PLINT, PLINT, PLPointer), PLPointer f2eval_data, PLFLT (*c2eval) (PLINT, PLINT, PLPointer), PLPointer c2eval_data, PLINT (*defined) (PLFLT, PLFLT), PLFLT missing_min, PLFLT missing_max, PLINT nx, PLINT ny, PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, PLFLT shade_min, PLFLT shade_max, PLINT sh_cmap, PLFLT sh_color, PLINT sh_width, PLINT min_color, PLINT min_width, PLINT max_color, PLINT max_width, void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT rectangular, void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer), PLPointer pltr_data); /*----------------------------------------------------------------------*\ * plshades() * * Shade regions via a series of calls to plshade. * All arguments are the same as plshade except the following: * clevel is a pointer to an array of values representing * the shade edge values, nlevel-1 is * the number of different shades, (nlevel is the number of shade edges), * fill_width is the pattern fill width, and cont_color and cont_width * are the color and width of the contour drawn at each shade edge. * (if cont_color <= 0 or cont_width <=0, no such contours are drawn). \*----------------------------------------------------------------------*/ void c_plshades( PLFLT **a, PLINT nx, PLINT ny, PLINT (*defined) (PLFLT, PLFLT), PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, PLFLT *clevel, PLINT nlevel, PLINT fill_width, PLINT cont_color, PLINT cont_width, void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT rectangular, void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer), PLPointer pltr_data ) { PLFLT shade_min, shade_max, shade_color; PLINT i, init_color, init_width; for (i = 0; i < nlevel-1; i++) { shade_min = clevel[i]; shade_max = clevel[i+1]; shade_color = i / (PLFLT) (nlevel-2); /* The constants in order mean * (1) color map1, * (0, 0, 0, 0) all edge effects will be done with plcont rather * than the normal plshade drawing which gets partially blocked * when sequential shading is done as in the present case */ plshade(a, nx, ny, defined, xmin, xmax, ymin, ymax, shade_min, shade_max, 1, shade_color, fill_width, 0, 0, 0, 0, fill, rectangular, pltr, pltr_data); } if(cont_color > 0 && cont_width > 0) { init_color = plsc->icol0; init_width = plsc->width; plcol0(cont_color); plwid(cont_width); if(pltr && pltr_data) { plcont(a, nx, ny, 1, nx, 1, ny, clevel, nlevel, pltr, pltr_data); } else { /* For this case use the same interpretation that occurs internally * for plshade. That is set up x and y grids that map from the * index ranges to xmin, xmax, ymin, ymax, and use those grids * for the plcont call. */ PLcGrid cgrid1; PLFLT *x, *y; cgrid1.nx = nx; cgrid1.ny = ny; x = (PLFLT *) malloc(nx * sizeof(PLFLT)); if (x == NULL) plexit("plshades: Out of memory for x"); cgrid1.xg = x; for (i = 0; i < nx; i++) cgrid1.xg[i] = xmin + (xmax - xmin)*(float)i/(float)(nx-1); y = (PLFLT *) malloc(ny * sizeof(PLFLT)); if (y == NULL) plexit("plshades: Out of memory for y"); cgrid1.yg = y; for (i = 0; i < ny; i++) cgrid1.yg[i] = ymin + (ymax - ymin)*(float)i/(float)(ny-1); plcont(a, nx, ny, 1, nx, 1, ny, clevel, nlevel, pltr1, (void *) &cgrid1); free(x); free(y); } plcol0(init_color); plwid(init_width); } } /*----------------------------------------------------------------------*\ * plshade() * * Shade region. * This interface to plfshade() assumes the 2d function array is passed * via a (PLFLT **), and is column-dominant (normal C ordering). \*----------------------------------------------------------------------*/ void c_plshade( PLFLT **a, PLINT nx, PLINT ny, PLINT (*defined) (PLFLT, PLFLT), PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, PLFLT shade_min, PLFLT shade_max, PLINT sh_cmap, PLFLT sh_color, PLINT sh_width, PLINT min_color, PLINT min_width, PLINT max_color, PLINT max_width, void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT rectangular, void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer), PLPointer pltr_data ) { PLfGrid2 grid; grid.f = a; grid.nx = nx; grid.ny = ny; plshade_int( plf2eval2, (PLPointer) &grid, NULL, NULL, /* plc2eval, (PLPointer) &cgrid,*/ defined, MISSING_MIN_DEF, MISSING_MAX_DEF, nx, ny, xmin, xmax, ymin, ymax, shade_min, shade_max, sh_cmap, sh_color, sh_width, min_color, min_width, max_color, max_width, fill, rectangular, pltr, pltr_data ); } /*----------------------------------------------------------------------*\ * plshade1() * * Shade region. * This interface to plfshade() assumes the 2d function array is passed * via a (PLFLT *), and is column-dominant (normal C ordering). \*----------------------------------------------------------------------*/ void c_plshade1( PLFLT *a, PLINT nx, PLINT ny, PLINT (*defined) (PLFLT, PLFLT), PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, PLFLT shade_min, PLFLT shade_max, PLINT sh_cmap, PLFLT sh_color, PLINT sh_width, PLINT min_color, PLINT min_width, PLINT max_color, PLINT max_width, void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT rectangular, void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer), PLPointer pltr_data ) { PLfGrid grid; grid.f = a; grid.nx = nx; grid.ny = ny; plshade_int( plf2eval, (PLPointer) &grid, NULL, NULL, /* plc2eval, (PLPointer) &cgrid,*/ defined, MISSING_MIN_DEF, MISSING_MAX_DEF, nx, ny, xmin, xmax, ymin, ymax, shade_min, shade_max, sh_cmap, sh_color, sh_width, min_color, min_width, max_color, max_width, fill, rectangular, pltr, pltr_data ); } /*----------------------------------------------------------------------*\ * plfshade() * * Shade region. * Array values are determined by the input function and the passed data. \*----------------------------------------------------------------------*/ void plfshade(PLFLT (*f2eval) (PLINT, PLINT, PLPointer), PLPointer f2eval_data, PLFLT (*c2eval) (PLINT, PLINT, PLPointer), PLPointer c2eval_data, PLINT nx, PLINT ny, PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, PLFLT shade_min, PLFLT shade_max, PLINT sh_cmap, PLFLT sh_color, PLINT sh_width, PLINT min_color, PLINT min_width, PLINT max_color, PLINT max_width, void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT rectangular, void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer), PLPointer pltr_data) { plshade_int(f2eval, f2eval_data, c2eval, c2eval_data, NULL, MISSING_MIN_DEF, MISSING_MAX_DEF, nx, ny, xmin, xmax, ymin, ymax, shade_min, shade_max, sh_cmap, sh_color, sh_width, min_color, min_width, max_color, max_width, fill, rectangular, pltr, pltr_data); } /*----------------------------------------------------------------------*\ * plshade_int() * * Shade region -- this routine does all the work * * This routine is internal so the arguments can and will change. * To retain some compatibility between versions, you must go through * some stub routine! * * 4/95 * * new: missing_min, missing_max * * if data <= missing_max and data >= missing_min * then the data will beconsidered to be missing * this allows 2nd way to set undefined points (good for ftn) * if missing feature is not used, set missing_max < missing_min * * parameters: * * f2eval, f2eval_data: data to plot * c2eval, c2eval_data: defined mask (not implimented) * defined: defined mask (old API - implimented) * missing_min, missing_max: yet another way to set data to undefined * nx, ny: array dimensions * xmin, xmax, ymin, ymax: grid coordinates * shade_min, shade_max: shade region with values between ... * sh_cmap, sh_color, sh_width: shading parameters, width is only for hatching * min_color, min_width: line parameters for boundary (minimum) * max_color, max_width: line parameters for boundary (maximum) * set min_width == 0 and max_width == 0 for no contours * fill: fill function, set to NULL for no shading (contour plot) * rectangular: flag set to 1 if pltr() maps rectangles to rectangles * this helps optimize the plotting * pltr: function to map from grid to plot coordinates * * \*----------------------------------------------------------------------*/ static void plshade_int(PLFLT (*f2eval) (PLINT, PLINT, PLPointer), PLPointer f2eval_data, PLFLT (*c2eval) (PLINT, PLINT, PLPointer), PLPointer c2eval_data, PLINT (*defined) (PLFLT, PLFLT), PLFLT missing_min, PLFLT missing_max, PLINT nx, PLINT ny, PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, PLFLT shade_min, PLFLT shade_max, PLINT sh_cmap, PLFLT sh_color, PLINT sh_width, PLINT min_color, PLINT min_width, PLINT max_color, PLINT max_width, void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT rectangular, void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer), PLPointer pltr_data) { PLINT init_width, n, slope = 0, ix, iy; int count, i, j, nxny; PLFLT *a, *a0, *a1, dx, dy; PLFLT x[8], y[8], xp[2], tx, ty; int *c, *c0, *c1; (void) c2eval; /* pmr: make it used */ (void) c2eval_data; (void) missing_min; (void) missing_max; if (plsc->level < 3) { plabort("plfshade: window must be set up first"); return; } if (nx <= 0 || ny <= 0) { plabort("plfshade: nx and ny must be positive"); return; } if (shade_min >= shade_max) { plabort("plfshade: shade_max must exceed shade_min"); return; } if (pltr == NULL || pltr_data == NULL) rectangular = 1; int_val = shade_max - shade_min; init_width = plsc->width; pen_col_min = min_color; pen_col_max = max_color; pen_wd_min = min_width; pen_wd_max = max_width; plstyl((PLINT) 0, NULL, NULL); plwid(sh_width); if (fill != NULL) { switch (sh_cmap) { case 0: plcol0((PLINT) sh_color); break; case 1: plcol1(sh_color); break; default: plabort("plfshade: invalid color map selection"); return; } } /* alloc space for value array, and initialize */ /* This is only a temporary kludge */ nxny = nx * ny; if ((a = (PLFLT *) malloc(nxny * sizeof(PLFLT))) == NULL) { plabort("plfshade: unable to allocate memory for value array"); return; } for (ix = 0; ix < nx; ix++) for (iy = 0; iy < ny; iy++) a[iy + ix*ny] = f2eval(ix, iy, f2eval_data); /* alloc space for condition codes */ if ((c = (int *) malloc(nxny * sizeof(int))) == NULL) { plabort("plfshade: unable to allocate memory for condition codes"); free(a); return; } sh_min = shade_min; sh_max = shade_max; set_cond(c, a, nxny); dx = (xmax - xmin) / (nx - 1); dy = (ymax - ymin) / (ny - 1); a0 = a; a1 = a + ny; c0 = c; c1 = c + ny; for (ix = 0; ix < nx - 1; ix++) { for (iy = 0; iy < ny - 1; iy++) { count = c0[iy] + c0[iy + 1] + c1[iy] + c1[iy + 1]; /* No filling needs to be done for these cases */ if (count >= UNDEF) continue; if (count == 4 * POS) continue; if (count == 4 * NEG) continue; /* Entire rectangle can be filled */ if (count == 4 * OK) { /* find biggest rectangle that fits */ if (rectangular) { big_recl(c0 + iy, ny, nx - ix, ny - iy, &i, &j); } else { i = j = 1; } x[0] = x[1] = ix; x[2] = x[3] = ix+i; y[0] = y[3] = iy; y[1] = y[2] = iy+j; if (pltr && pltr_data) { for (i = 0; i < 4; i++) { (*pltr) (x[i], y[i], &tx, &ty, pltr_data); x[i] = tx; y[i] = ty; } } else { for (i = 0; i < 4; i++) { x[i] = xmin + x[i]*dx; y[i] = ymin + y[i]*dy; } } if (fill != NULL) exfill (fill, defined, (PLINT) 4, x, y); iy += j - 1; continue; } /* Only part of rectangle can be filled */ n_point = min_points = max_points = 0; n = find_interval(a0[iy], a0[iy + 1], c0[iy], c0[iy + 1], xp); for (j = 0; j < n; j++) { x[j] = ix; y[j] = iy + xp[j]; } i = find_interval(a0[iy + 1], a1[iy + 1], c0[iy + 1], c1[iy + 1], xp); for (j = 0; j < i; j++) { x[j + n] = ix + xp[j]; y[j + n] = iy + 1; } n += i; i = find_interval(a1[iy + 1], a1[iy], c1[iy + 1], c1[iy], xp); for (j = 0; j < i; j++) { x[n + j] = ix + 1; y[n + j] = iy + 1 - xp[j]; } n += i; i = find_interval(a1[iy], a0[iy], c1[iy], c0[iy], xp); for (j = 0; j < i; j++) { x[n + j] = ix + 1 - xp[j]; y[n + j] = iy; } n += i; if (pltr && pltr_data) { for (i = 0; i < n; i++) { (*pltr) (x[i], y[i], &tx, &ty, pltr_data); x[i] = tx; y[i] = ty; } } else { for (i = 0; i < n; i++) { x[i] = xmin + x[i]*dx; y[i] = ymin + y[i]*dy; } } if (min_points == 4) slope = plctestez(a, nx, ny, ix, iy, shade_min); if (max_points == 4) slope = plctestez(a, nx, ny, ix, iy, shade_max); /* n = number of end of line segments */ /* min_points = number times shade_min meets edge */ /* max_points = number times shade_max meets edge */ /* special cases: check number of times a contour is in a box */ switch ((min_points << 3) + max_points) { case 000: case 020: case 002: case 022: if (fill != NULL && n > 0) exfill (fill, defined, n, x, y); break; case 040: /* 2 contour lines in box */ case 004: if (n != 6) fprintf(stderr, "plfshade err n=%d !6", (int) n); if (slope == 1 && c0[iy] == OK) { if (fill != NULL) exfill (fill, defined, n, x, y); } else if (slope == 1) { selected_polygon(fill, defined, x, y, 0, 1, 2, -1); selected_polygon(fill, defined, x, y, 3, 4, 5, -1); } else if (c0[iy + 1] == OK) { if (fill != NULL) exfill (fill, defined, n, x, y); } else { selected_polygon(fill, defined, x, y, 0, 1, 5, -1); selected_polygon(fill, defined, x, y, 2, 3, 4, -1); } break; case 044: if (n != 8) fprintf(stderr, "plfshade err n=%d !8", (int) n); if (slope == 1) { selected_polygon(fill, defined, x, y, 0, 1, 2, 3); selected_polygon(fill, defined, x, y, 4, 5, 6, 7); } else { selected_polygon(fill, defined, x, y, 0, 1, 6, 7); selected_polygon(fill, defined, x, y, 2, 3, 4, 5); } break; case 024: case 042: /* 3 contours */ if (n != 7) fprintf(stderr, "plfshade err n=%d !7", (int) n); if ((c0[iy] == OK || c1[iy+1] == OK) && slope == 1) { if (fill != NULL) exfill (fill, defined, n, x, y); } else if ((c0[iy+1] == OK || c1[iy] == OK) && slope == 0) { if (fill !=NULL) exfill (fill, defined, n, x, y); } else if (c0[iy] == OK) { selected_polygon(fill, defined, x, y, 0, 1, 6, -1); selected_polygon(fill, defined, x, y, 2, 3, 4, 5); } else if (c0[iy+1] == OK) { selected_polygon(fill, defined, x, y, 0, 1, 2, -1); selected_polygon(fill, defined, x, y, 3, 4, 5, 6); } else if (c1[iy+1] == OK) { selected_polygon(fill, defined, x, y, 0, 1, 5, 6); selected_polygon(fill, defined, x, y, 2, 3, 4, -1); } else if (c1[iy] == OK) { selected_polygon(fill, defined, x, y, 0, 1, 2, 3); selected_polygon(fill, defined, x, y, 4, 5, 6, -1); } else { fprintf(stderr, "plfshade err logic case 024:042\n"); } break; default: fprintf(stderr, "prog err switch\n"); break; } draw_boundary(slope, x, y); if (fill != NULL) { plwid(sh_width); if (sh_cmap == 0) plcol0((PLINT) sh_color); else if (sh_cmap == 1) plcol1(sh_color); } } a0 = a1; c0 = c1; a1 += ny; c1 += ny; } free(c); free(a); plwid(init_width); } /*----------------------------------------------------------------------*\ * set_cond() * * Fills out condition code array. \*----------------------------------------------------------------------*/ static void set_cond(register int *cond, register PLFLT *a, register PLINT n) { while (n--) { if (*a < sh_min) *cond++ = NEG; else if (*a > sh_max) *cond++ = POS; else *cond++ = OK; a++; } } /*----------------------------------------------------------------------*\ * find_interval() * * Two points x(0) = a0, (condition code c0) x(1) = a1, (condition code c1) * return interval on the line that are shaded * * returns 0 : no points to be shaded 1 : x[0] <= x < 1 is the interval 2 : * x[0] <= x <= x[1] < 1 interval to be shaded n_point, max_points, * min_points are incremented location of min/max_points are stored \*----------------------------------------------------------------------*/ static int find_interval(PLFLT a0, PLFLT a1, PLINT c0, PLINT c1, PLFLT *x) { register int n; n = 0; if (c0 == OK) { x[n++] = 0.0; n_point++; } if (c0 == c1) return n; if (c0 == NEG || c1 == POS) { if (c0 == NEG) { x[n++] = linear(a0, a1, sh_min); min_pts[min_points++] = n_point++; } if (c1 == POS) { x[n++] = linear(a0, a1, sh_max); max_pts[max_points++] = n_point++; } } if (c0 == POS || c1 == NEG) { if (c0 == POS) { x[n++] = linear(a0, a1, sh_max); max_pts[max_points++] = n_point++; } if (c1 == NEG) { x[n++] = linear(a0, a1, sh_min); min_pts[min_points++] = n_point++; } } return n; } /*----------------------------------------------------------------------*\ * selected_polygon() * * Draws a polygon from points in x[] and y[]. * Point selected by v1..v4 \*----------------------------------------------------------------------*/ static void selected_polygon(void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT (*defined) (PLFLT, PLFLT), PLFLT *x, PLFLT *y, PLINT v1, PLINT v2, PLINT v3, PLINT v4) { register PLINT n = 0; PLFLT xx[4], yy[4]; if (fill == NULL) return; if (v1 >= 0) { xx[n] = x[v1]; yy[n++] = y[v1]; } if (v2 >= 0) { xx[n] = x[v2]; yy[n++] = y[v2]; } if (v3 >= 0) { xx[n] = x[v3]; yy[n++] = y[v3]; } if (v4 >= 0) { xx[n] = x[v4]; yy[n++] = y[v4]; } exfill (fill, defined, n, xx, yy); } /*----------------------------------------------------------------------*\ * bisect() * * Find boundary recursively by bisection. * (x1, y1) is in the defined region, while (x2, y2) in the undefined one. * The result is returned in \*----------------------------------------------------------------------*/ static void bisect(PLINT (*defined) (PLFLT, PLFLT), PLINT niter, PLFLT xx1, PLFLT yy1, PLFLT xx2, PLFLT yy2, PLFLT* xb, PLFLT* yb) { PLFLT xm; PLFLT ym; if (niter == 0) { *xb = xx1; *yb = yy1; return; } xm = (xx1 + xx2) / 2; ym = (yy1 + yy2) / 2; if (defined (xm, ym)) bisect (defined, niter - 1, xm, ym, xx2, yy2, xb, yb); else bisect (defined, niter - 1, xx1, yy1, xm, ym, xb, yb); } /*----------------------------------------------------------------------*\ * exfill() * * Draws a polygon from points in x[] and y[] by taking into account * eventual exclusions \*----------------------------------------------------------------------*/ static void exfill(void (*fill) (PLINT, PLFLT *, PLFLT *), PLINT (*defined) (PLFLT, PLFLT), int n, PLFLT *x, PLFLT *y) { if (defined == NULL) (*fill) (n, x, y); else { PLFLT xx[16]; PLFLT yy[16]; PLFLT xb, yb; PLINT count = 0; PLINT is_inside = defined (x[n-1], y[n-1]); PLINT i; for (i = 0; i < n; i++) { if (defined(x[i], y[i])) { if (!is_inside) { if (i > 0) bisect (defined, 10, x[i], y[i], x[i-1], y[i-1], &xb, &yb); else bisect (defined, 10, x[i], y[i], x[n-1], y[n-1], &xb, &yb); xx[count] = xb; yy[count++] = yb; } xx[count] = x[i]; yy[count++] = y[i]; is_inside = 1; } else { if (is_inside) { if (i > 0) bisect (defined, 10, x[i-1], y[i-1], x[i], y[i], &xb, &yb); else bisect (defined, 10, x[n-1], y[n-1], x[i], y[i], &xb, &yb); xx[count] = xb; yy[count++] = yb; is_inside = 0; } } } if (count) (*fill) (count, xx, yy); } } /*----------------------------------------------------------------------*\ * big_recl() * * find a big rectangle for shading * * 2 goals: minimize calls to (*fill)() * keep ratio 1:3 for biggest rectangle * * only called by plshade() * * assumed that a 1 x 1 square already fits * * c[] = condition codes * ny = c[1][0] == c[ny] (you know what I mean) * * returns ix, iy = length of rectangle in grid units * * ix < dx - 1 * iy < dy - 1 * * If iy == 1 -> ix = 1 (so that cond code can be set to skip) \*----------------------------------------------------------------------*/ #define RATIO 3 #define COND(x,y) cond_code[x*ny + y] static void big_recl(int *cond_code, register int ny, int dx, int dy, int *ix, int *iy) { int ok_x, ok_y, j; register int i, x, y; register int *cond; /* ok_x = ok to expand in x direction */ /* x = current number of points in x direction */ ok_x = ok_y = 1; x = y = 2; while (ok_x || ok_y) { #ifdef RATIO if (RATIO * x <= y || RATIO * y <= x) break; #endif if (ok_y) { /* expand in vertical */ ok_y = 0; if (y == dy) continue; cond = &COND(0, y); for (i = 0; i < x; i++) { if (*cond != OK) break; cond += ny; } if (i == x) { /* row is ok */ y++; ok_y = 1; } } if (ok_x) { if (y == 2) break; /* expand in x direction */ ok_x = 0; if (x == dx) continue; cond = &COND(x, 0); for (i = 0; i < y; i++) { if (*cond++ != OK) break; } if (i == y) { /* column is OK */ x++; ok_x = 1; } } } /* found the largest rectangle of 'ix' by 'iy' */ *ix = --x; *iy = --y; /* set condition code to UNDEF in interior of rectangle */ for (i = 1; i < x; i++) { cond = &COND(i, 1); for (j = 1; j < y; j++) { *cond++ = UNDEF; } } } /*----------------------------------------------------------------------*\ * draw_boundary() * * Draw boundaries of contour regions based on min_pts[], and max_pts[]. \*----------------------------------------------------------------------*/ static void draw_boundary(PLINT slope, PLFLT *x, PLFLT *y) { int i; if (pen_col_min != 0 && pen_wd_min != 0 && min_points != 0) { plcol0(pen_col_min); plwid(pen_wd_min); if (min_points == 4 && slope == 0) { /* swap points 1 and 3 */ i = min_pts[1]; min_pts[1] = min_pts[3]; min_pts[3] = i; } pljoin(x[min_pts[0]], y[min_pts[0]], x[min_pts[1]], y[min_pts[1]]); if (min_points == 4) { pljoin(x[min_pts[2]], y[min_pts[2]], x[min_pts[3]], y[min_pts[3]]); } } if (pen_col_max != 0 && pen_wd_max != 0 && max_points != 0) { plcol0(pen_col_max); plwid(pen_wd_max); if (max_points == 4 && slope == 0) { /* swap points 1 and 3 */ i = max_pts[1]; max_pts[1] = max_pts[3]; max_pts[3] = i; } pljoin(x[max_pts[0]], y[max_pts[0]], x[max_pts[1]], y[max_pts[1]]); if (max_points == 4) { pljoin(x[max_pts[2]], y[max_pts[2]], x[max_pts[3]], y[max_pts[3]]); } } } /*----------------------------------------------------------------------*\ * * plctest( &(x[0][0]), PLFLT level) * where x was defined as PLFLT x[4][4]; * * determines if the contours associated with level have * positive slope or negative slope in the box: * * (2,3) (3,3) * * (2,2) (3,2) * * this is heuristic and can be changed by the user * * return 1 if positive slope * 0 if negative slope * * algorithmn: * 1st test: * find length of contours assuming positive and negative slopes * if the length of the negative slope contours is much bigger * than the positive slope, then the slope is positive. * (and vice versa) * (this test tries to minimize the length of contours) * * 2nd test: * if abs((top-right corner) - (bottom left corner)) > * abs((top-left corner) - (bottom right corner)) ) then * return negatiave slope. * (this test tries to keep the slope for different contour levels * the same) \*----------------------------------------------------------------------*/ #define X(a,b) (x[a*4+b]) #define POSITIVE_SLOPE (PLINT) 1 #define NEGATIVE_SLOPE (PLINT) 0 #define RATIO_SQ 6.0 static PLINT plctest(PLFLT *x, PLFLT level) { int i, j; double t[4], sorted[4], temp; (void) level; /* pmr: make it used */ sorted[0] = t[0] = X(1,1); sorted[1] = t[1] = X(2,2); sorted[2] = t[2] = X(1,2); sorted[3] = t[3] = X(2,1); for (j = 1; j < 4; j++) { temp = sorted[j]; i = j - 1; while (i >= 0 && sorted[i] > temp) { sorted[i+1] = sorted[i]; i--; } sorted[i+1] = temp; } /* sorted[0] == min */ /* find min contour */ temp = int_val * ceil(sorted[0]/int_val); if (temp < sorted[1]) { /* one contour line */ for (i = 0; i < 4; i++) { if (t[i] < temp) return i/2; } } /* find max contour */ temp = int_val * floor(sorted[3]/int_val); if (temp > sorted[2]) { /* one contour line */ for (i = 0; i < 4; i++) { if (t[i] > temp) return i/2; } } /* nothing better to do - be consistant */ return POSITIVE_SLOPE; } /*----------------------------------------------------------------------*\ * plctestez * * second routine - easier to use * fills in x[4][4] and calls plctest * * test location a[ix][iy] (lower left corner) \*----------------------------------------------------------------------*/ static PLINT plctestez(PLFLT *a, PLINT nx, PLINT ny, PLINT ix, PLINT iy, PLFLT level) { PLFLT x[4][4]; int i, j, ii, jj; for (i = 0; i < 4; i++) { ii = ix + i - 1; ii = MAX(0, ii); ii = MIN(ii, nx - 1); for (j = 0; j < 4; j++) { jj = iy + j - 1; jj = MAX(0, jj); jj = MIN(jj, ny - 1); x[i][j] = a[ii * ny + jj]; } } return plctest(&(x[0][0]), level); }