#!/usr/bin/env python # Copyright 2002 by Thomas Sicheritz-Ponten and Cecilia Alsmark. # Revisions copyright 2014 by Markus Piotrowski. # Revisions copyright 2014-2016 by Peter Cock. # All rights reserved. # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Miscellaneous functions for dealing with sequences.""" from __future__ import print_function import re from math import pi, sin, cos from Bio.Seq import Seq, MutableSeq from Bio import Alphabet from Bio.Data import IUPACData ###################################### # DNA ###################### # {{{ def GC(seq): """Calculate G+C content, return percentage (as float between 0 and 100). Copes mixed case sequences, and with the ambiguous nucleotide S (G or C) when counting the G and C content. The percentage is calculated against the full length, e.g.: >>> from Bio.SeqUtils import GC >>> GC("ACTGN") 40.0 Note that this will return zero for an empty sequence. """ gc = sum(seq.count(x) for x in ['G', 'C', 'g', 'c', 'S', 's']) try: return gc * 100.0 / len(seq) except ZeroDivisionError: return 0.0 def GC123(seq): """Calculate G+C content: total, for first, second and third positions. Returns a tuple of four floats (percentages between 0 and 100) for the entire sequence, and the three codon positions. e.g. >>> from Bio.SeqUtils import GC123 >>> GC123("ACTGTN") (40.0, 50.0, 50.0, 0.0) Copes with mixed case sequences, but does NOT deal with ambiguous nucleotides. """ d = {} for nt in ['A', 'T', 'G', 'C']: d[nt] = [0, 0, 0] for i in range(0, len(seq), 3): codon = seq[i:i + 3] if len(codon) < 3: codon += ' ' for pos in range(0, 3): for nt in ['A', 'T', 'G', 'C']: if codon[pos] == nt or codon[pos] == nt.lower(): d[nt][pos] += 1 gc = {} gcall = 0 nall = 0 for i in range(0, 3): try: n = d['G'][i] + d['C'][i] + d['T'][i] + d['A'][i] gc[i] = (d['G'][i] + d['C'][i]) * 100.0 / n except Exception: # TODO - ValueError? gc[i] = 0 gcall = gcall + d['G'][i] + d['C'][i] nall = nall + n gcall = 100.0 * gcall / nall return gcall, gc[0], gc[1], gc[2] def GC_skew(seq, window=100): """Calculate GC skew (G-C)/(G+C) for multiple windows along the sequence. Returns a list of ratios (floats), controlled by the length of the sequence and the size of the window. Returns 0 for windows without any G/C by handling zero division errors. Does NOT look at any ambiguous nucleotides. """ # 8/19/03: Iddo: added lowercase values = [] for i in range(0, len(seq), window): s = seq[i: i + window] g = s.count('G') + s.count('g') c = s.count('C') + s.count('c') try: skew = (g - c) / float(g + c) except ZeroDivisionError: skew = 0.0 values.append(skew) return values def xGC_skew(seq, window=1000, zoom=100, r=300, px=100, py=100): """Calculate and plot normal and accumulated GC skew (GRAPHICS !!!).""" try: import Tkinter as tkinter # Python 2 except ImportError: import tkinter # Python 3 yscroll = tkinter.Scrollbar(orient=tkinter.VERTICAL) xscroll = tkinter.Scrollbar(orient=tkinter.HORIZONTAL) canvas = tkinter.Canvas(yscrollcommand=yscroll.set, xscrollcommand=xscroll.set, background='white') win = canvas.winfo_toplevel() win.geometry('700x700') yscroll.config(command=canvas.yview) xscroll.config(command=canvas.xview) yscroll.pack(side=tkinter.RIGHT, fill=tkinter.Y) xscroll.pack(side=tkinter.BOTTOM, fill=tkinter.X) canvas.pack(fill=tkinter.BOTH, side=tkinter.LEFT, expand=1) canvas.update() X0, Y0 = r + px, r + py x1, x2, y1, y2 = X0 - r, X0 + r, Y0 - r, Y0 + r ty = Y0 canvas.create_text(X0, ty, text='%s...%s (%d nt)' % (seq[:7], seq[-7:], len(seq))) ty += 20 canvas.create_text(X0, ty, text='GC %3.2f%%' % (GC(seq))) ty += 20 canvas.create_text(X0, ty, text='GC Skew', fill='blue') ty += 20 canvas.create_text(X0, ty, text='Accumulated GC Skew', fill='magenta') ty += 20 canvas.create_oval(x1, y1, x2, y2) acc = 0 start = 0 for gc in GC_skew(seq, window): r1 = r acc += gc # GC skew alpha = pi - (2 * pi * start) / len(seq) r2 = r1 - gc * zoom x1 = X0 + r1 * sin(alpha) y1 = Y0 + r1 * cos(alpha) x2 = X0 + r2 * sin(alpha) y2 = Y0 + r2 * cos(alpha) canvas.create_line(x1, y1, x2, y2, fill='blue') # accumulated GC skew r1 = r - 50 r2 = r1 - acc x1 = X0 + r1 * sin(alpha) y1 = Y0 + r1 * cos(alpha) x2 = X0 + r2 * sin(alpha) y2 = Y0 + r2 * cos(alpha) canvas.create_line(x1, y1, x2, y2, fill='magenta') canvas.update() start += window canvas.configure(scrollregion=canvas.bbox(tkinter.ALL)) def nt_search(seq, subseq): """Search for a DNA subseq in sequence, return list of [subseq, positions]. Use ambiguous values (like N = A or T or C or G, R = A or G etc.), searches only on forward strand. """ pattern = '' for nt in subseq: value = IUPACData.ambiguous_dna_values[nt] if len(value) == 1: pattern += value else: pattern += '[%s]' % value pos = -1 result = [pattern] while True: pos += 1 s = seq[pos:] m = re.search(pattern, s) if not m: break pos += int(m.start(0)) result.append(pos) return result ###################################### # Protein ###################### def seq3(seq, custom_map=None, undef_code='Xaa'): """Convert protein sequence from one-letter to three-letter code. The single required input argument 'seq' should be a protein sequence using single letter codes, either as a Python string or as a Seq or MutableSeq object. This function returns the amino acid sequence as a string using the three letter amino acid codes. Output follows the IUPAC standard (including ambiguous characters B for "Asx", J for "Xle" and X for "Xaa", and also U for "Sel" and O for "Pyl") plus "Ter" for a terminator given as an asterisk. Any unknown character (including possible gap characters), is changed into 'Xaa' by default. e.g. >>> from Bio.SeqUtils import seq3 >>> seq3("MAIVMGRWKGAR*") 'MetAlaIleValMetGlyArgTrpLysGlyAlaArgTer' You can set a custom translation of the codon termination code using the dictionary "custom_map" argument (which defaults to {'*': 'Ter'}), e.g. >>> seq3("MAIVMGRWKGAR*", custom_map={"*": "***"}) 'MetAlaIleValMetGlyArgTrpLysGlyAlaArg***' You can also set a custom translation for non-amino acid characters, such as '-', using the "undef_code" argument, e.g. >>> seq3("MAIVMGRWKGA--R*", undef_code='---') 'MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer' If not given, "undef_code" defaults to "Xaa", e.g. >>> seq3("MAIVMGRWKGA--R*") 'MetAlaIleValMetGlyArgTrpLysGlyAlaXaaXaaArgTer' This function was inspired by BioPerl's seq3. """ if custom_map is None: custom_map = {'*': 'Ter'} # not doing .update() on IUPACData dict with custom_map dict # to preserve its initial state (may be imported in other modules) threecode = dict(list(IUPACData.protein_letters_1to3_extended.items()) + list(custom_map.items())) # We use a default of 'Xaa' for undefined letters # Note this will map '-' to 'Xaa' which may be undesirable! return ''.join(threecode.get(aa, undef_code) for aa in seq) def seq1(seq, custom_map=None, undef_code='X'): """Convert protein sequence from three-letter to one-letter code. The single required input argument 'seq' should be a protein sequence using three-letter codes, either as a Python string or as a Seq or MutableSeq object. This function returns the amino acid sequence as a string using the one letter amino acid codes. Output follows the IUPAC standard (including ambiguous characters "B" for "Asx", "J" for "Xle", "X" for "Xaa", "U" for "Sel", and "O" for "Pyl") plus "*" for a terminator given the "Ter" code. Any unknown character (including possible gap characters), is changed into '-' by default. e.g. >>> from Bio.SeqUtils import seq1 >>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAlaArgTer") 'MAIVMGRWKGAR*' The input is case insensitive, e.g. >>> from Bio.SeqUtils import seq1 >>> seq1("METalaIlEValMetGLYArgtRplysGlyAlaARGTer") 'MAIVMGRWKGAR*' You can set a custom translation of the codon termination code using the dictionary "custom_map" argument (defaulting to {'Ter': '*'}), e.g. >>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla***", custom_map={"***": "*"}) 'MAIVMGRWKGA*' You can also set a custom translation for non-amino acid characters, such as '-', using the "undef_code" argument, e.g. >>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer", undef_code='?') 'MAIVMGRWKGA??R*' If not given, "undef_code" defaults to "X", e.g. >>> seq1("MetAlaIleValMetGlyArgTrpLysGlyAla------ArgTer") 'MAIVMGRWKGAXXR*' """ if custom_map is None: custom_map = {'Ter': '*'} # reverse map of threecode # upper() on all keys to enable caps-insensitive input seq handling onecode = dict((k.upper(), v) for k, v in IUPACData.protein_letters_3to1_extended.items()) # add the given termination codon code and custom maps onecode.update((k.upper(), v) for (k, v) in custom_map.items()) seqlist = [seq[3 * i:3 * (i + 1)] for i in range(len(seq) // 3)] return ''.join(onecode.get(aa.upper(), undef_code) for aa in seqlist) ###################################### # Mixed ??? ###################### def molecular_weight(seq, seq_type=None, double_stranded=False, circular=False, monoisotopic=False): """Calculate the molecular mass of DNA, RNA or protein sequences as float. Only unambiguous letters are allowed. Nucleotide sequences are assumed to have a 5' phosphate. Arguments: - seq: String or Biopython sequence object. - seq_type: The default (None) is to take the alphabet from the seq argument, or assume DNA if the seq argument is a string. Override this with a string 'DNA', 'RNA', or 'protein'. - double_stranded: Calculate the mass for the double stranded molecule? - circular: Is the molecule circular (has no ends)? - monoisotopic: Use the monoisotopic mass tables? Note that for backwards compatibility, if the seq argument is a string, or Seq object with a generic alphabet, and no seq_type is specified (i.e. left as None), then DNA is assumed. >>> print("%0.2f" % molecular_weight("AGC")) 949.61 >>> print("%0.2f" % molecular_weight(Seq("AGC"))) 949.61 However, it is better to be explicit - for example with strings: >>> print("%0.2f" % molecular_weight("AGC", "DNA")) 949.61 >>> print("%0.2f" % molecular_weight("AGC", "RNA")) 997.61 >>> print("%0.2f" % molecular_weight("AGC", "protein")) 249.29 Or, with the sequence alphabet: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna, generic_rna, generic_protein >>> print("%0.2f" % molecular_weight(Seq("AGC", generic_dna))) 949.61 >>> print("%0.2f" % molecular_weight(Seq("AGC", generic_rna))) 997.61 >>> print("%0.2f" % molecular_weight(Seq("AGC", generic_protein))) 249.29 Also note that contradictory sequence alphabets and seq_type will also give an exception: >>> from Bio.Seq import Seq >>> from Bio.Alphabet import generic_dna >>> print("%0.2f" % molecular_weight(Seq("AGC", generic_dna), "RNA")) Traceback (most recent call last): ... ValueError: seq_type='RNA' contradicts DNA from seq alphabet """ # Rewritten by Markus Piotrowski, 2014 # Find the alphabet type tmp_type = '' if isinstance(seq, (Seq, MutableSeq)): base_alphabet = Alphabet._get_base_alphabet(seq.alphabet) if isinstance(base_alphabet, Alphabet.DNAAlphabet): tmp_type = 'DNA' elif isinstance(base_alphabet, Alphabet.RNAAlphabet): tmp_type = 'RNA' elif isinstance(base_alphabet, Alphabet.ProteinAlphabet): tmp_type = 'protein' elif isinstance(base_alphabet, Alphabet.ThreeLetterProtein): tmp_type = 'protein' # Convert to one-letter sequence. Have to use a string for seq1 seq = Seq(seq1(str(seq)), alphabet=Alphabet.ProteinAlphabet()) elif not isinstance(base_alphabet, Alphabet.Alphabet): raise TypeError("%s is not a valid alphabet for mass calculations" % base_alphabet) else: tmp_type = 'DNA' # backward compatibity if seq_type and tmp_type and tmp_type != seq_type: raise ValueError("seq_type=%r contradicts %s from seq alphabet" % (seq_type, tmp_type)) seq_type = tmp_type elif isinstance(seq, str): if seq_type is None: seq_type = 'DNA' # backward compatibity else: raise TypeError("Expected a string or Seq object, not seq=%r" % seq) seq = ''.join(str(seq).split()).upper() # Do the minimum formatting if seq_type == 'DNA': if monoisotopic: weight_table = IUPACData.monoisotopic_unambiguous_dna_weights else: weight_table = IUPACData.unambiguous_dna_weights elif seq_type == 'RNA': if monoisotopic: weight_table = IUPACData.monoisotopic_unambiguous_rna_weights else: weight_table = IUPACData.unambiguous_rna_weights elif seq_type == 'protein': if monoisotopic: weight_table = IUPACData.monoisotopic_protein_weights else: weight_table = IUPACData.protein_weights else: raise ValueError("Allowed seq_types are DNA, RNA or protein, not %r" % seq_type) if monoisotopic: water = 18.010565 else: water = 18.0153 try: weight = sum(weight_table[x] for x in seq) - (len(seq) - 1) * water if circular: weight -= water except KeyError as e: raise ValueError('%s is not a valid unambiguous letter for %s' % (e, seq_type)) if seq_type in ('DNA', 'RNA') and double_stranded: seq = str(Seq(seq).complement()) weight += sum(weight_table[x] for x in seq) - (len(seq) - 1) * water if circular: weight -= water elif seq_type == 'protein' and double_stranded: raise ValueError('double-stranded proteins await their discovery') return weight def six_frame_translations(seq, genetic_code=1): """Return pretty string showing the 6 frame translations and GC content. Nice looking 6 frame translation with GC content - code from xbbtools similar to DNA Striders six-frame translation >>> from Bio.SeqUtils import six_frame_translations >>> print(six_frame_translations("AUGGCCAUUGUAAUGGGCCGCUGA")) GC_Frame: a:5 t:0 g:8 c:5 Sequence: auggccauug ... gggccgcuga, 24 nt, 54.17 %GC 1/1 G H C N G P L W P L * W A A M A I V M G R * auggccauuguaaugggccgcuga 54 % uaccgguaacauuacccggcgacu A M T I P R Q H G N Y H A A S P W Q L P G S """ # noqa for pep8 W291 trailing whitespace from Bio.Seq import reverse_complement, translate anti = reverse_complement(seq) comp = anti[::-1] length = len(seq) frames = {} for i in range(0, 3): fragment_length = 3 * ((length - i) // 3) frames[i + 1] = translate(seq[i:i + fragment_length], genetic_code) frames[-(i + 1)] = translate(anti[i:i + fragment_length], genetic_code)[::-1] # create header if length > 20: short = '%s ... %s' % (seq[:10], seq[-10:]) else: short = seq header = 'GC_Frame: ' for nt in ['a', 't', 'g', 'c']: header += '%s:%d ' % (nt, seq.count(nt.upper())) header += '\nSequence: %s, %d nt, %0.2f %%GC\n\n\n' % (short.lower(), length, GC(seq)) res = header for i in range(0, length, 60): subseq = seq[i:i + 60] csubseq = comp[i:i + 60] p = i // 3 res += '%d/%d\n' % (i + 1, i / 3 + 1) res += ' ' + ' '.join(frames[3][p:p + 20]) + '\n' res += ' ' + ' '.join(frames[2][p:p + 20]) + '\n' res += ' '.join(frames[1][p:p + 20]) + '\n' # seq res += subseq.lower() + '%5d %%\n' % int(GC(subseq)) res += csubseq.lower() + '\n' # - frames res += ' '.join(frames[-2][p:p + 20]) + ' \n' res += ' ' + ' '.join(frames[-1][p:p + 20]) + '\n' res += ' ' + ' '.join(frames[-3][p:p + 20]) + '\n\n' return res if __name__ == "__main__": from Bio._utils import run_doctest run_doctest()