"""MA: a facility for dealing with missing observations MA is generally used as a numpy.array look-alike. by Paul F. Dubois. Copyright 1999, 2000, 2001 Regents of the University of California. Released for unlimited redistribution. Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois. """ import types, sys import numpy.core.umath as umath import numpy.core.fromnumeric as fromnumeric from numpy.core.numeric import newaxis, ndarray, inf from numpy.core.fromnumeric import amax, amin from numpy.core.numerictypes import bool_, typecodes import numpy.core.numeric as numeric import warnings if sys.version_info[0] >= 3: from functools import reduce # Ufunc domain lookup for __array_wrap__ ufunc_domain = {} # Ufunc fills lookup for __array__ ufunc_fills = {} MaskType = bool_ nomask = MaskType(0) divide_tolerance = 1.e-35 class MAError (Exception): def __init__ (self, args=None): "Create an exception" # The .args attribute must be a tuple. if not isinstance(args, tuple): args = (args,) self.args = args def __str__(self): "Calculate the string representation" return str(self.args[0]) __repr__ = __str__ class _MaskedPrintOption: "One instance of this class, masked_print_option, is created." def __init__ (self, display): "Create the masked print option object." self.set_display(display) self._enabled = 1 def display (self): "Show what prints for masked values." return self._display def set_display (self, s): "set_display(s) sets what prints for masked values." self._display = s def enabled (self): "Is the use of the display value enabled?" return self._enabled def enable(self, flag=1): "Set the enabling flag to flag." self._enabled = flag def __str__ (self): return str(self._display) __repr__ = __str__ #if you single index into a masked location you get this object. masked_print_option = _MaskedPrintOption('--') # Use single element arrays or scalars. default_real_fill_value = 1.e20 default_complex_fill_value = 1.e20 + 0.0j default_character_fill_value = '-' default_integer_fill_value = 999999 default_object_fill_value = '?' def default_fill_value (obj): "Function to calculate default fill value for an object." if isinstance(obj, types.FloatType): return default_real_fill_value elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType): return default_integer_fill_value elif isinstance(obj, types.StringType): return default_character_fill_value elif isinstance(obj, types.ComplexType): return default_complex_fill_value elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray): x = obj.dtype.char if x in typecodes['Float']: return default_real_fill_value if x in typecodes['Integer']: return default_integer_fill_value if x in typecodes['Complex']: return default_complex_fill_value if x in typecodes['Character']: return default_character_fill_value if x in typecodes['UnsignedInteger']: return umath.absolute(default_integer_fill_value) return default_object_fill_value else: return default_object_fill_value def minimum_fill_value (obj): "Function to calculate default fill value suitable for taking minima." if isinstance(obj, types.FloatType): return numeric.inf elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType): return sys.maxint elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray): x = obj.dtype.char if x in typecodes['Float']: return numeric.inf if x in typecodes['Integer']: return sys.maxint if x in typecodes['UnsignedInteger']: return sys.maxint else: raise TypeError('Unsuitable type for calculating minimum.') def maximum_fill_value (obj): "Function to calculate default fill value suitable for taking maxima." if isinstance(obj, types.FloatType): return -inf elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType): return -sys.maxint elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray): x = obj.dtype.char if x in typecodes['Float']: return -inf if x in typecodes['Integer']: return -sys.maxint if x in typecodes['UnsignedInteger']: return 0 else: raise TypeError('Unsuitable type for calculating maximum.') def set_fill_value (a, fill_value): "Set fill value of a if it is a masked array." if isMaskedArray(a): a.set_fill_value (fill_value) def getmask (a): """Mask of values in a; could be nomask. Returns nomask if a is not a masked array. To get an array for sure use getmaskarray.""" if isinstance(a, MaskedArray): return a.raw_mask() else: return nomask def getmaskarray (a): """Mask of values in a; an array of zeros if mask is nomask or not a masked array, and is a byte-sized integer. Do not try to add up entries, for example. """ m = getmask(a) if m is nomask: return make_mask_none(shape(a)) else: return m def is_mask (m): """Is m a legal mask? Does not check contents, only type. """ try: return m.dtype.type is MaskType except AttributeError: return False def make_mask (m, copy=0, flag=0): """make_mask(m, copy=0, flag=0) return m as a mask, creating a copy if necessary or requested. Can accept any sequence of integers or nomask. Does not check that contents must be 0s and 1s. if flag, return nomask if m contains no true elements. """ if m is nomask: return nomask elif isinstance(m, ndarray): if m.dtype.type is MaskType: if copy: result = numeric.array(m, dtype=MaskType, copy=copy) else: result = m else: result = m.astype(MaskType) else: result = filled(m, True).astype(MaskType) if flag and not fromnumeric.sometrue(fromnumeric.ravel(result)): return nomask else: return result def make_mask_none (s): "Return a mask of all zeros of shape s." result = numeric.zeros(s, dtype=MaskType) result.shape = s return result def mask_or (m1, m2): """Logical or of the mask candidates m1 and m2, treating nomask as false. Result may equal m1 or m2 if the other is nomask. """ if m1 is nomask: return make_mask(m2) if m2 is nomask: return make_mask(m1) if m1 is m2 and is_mask(m1): return m1 return make_mask(umath.logical_or(m1, m2)) def filled (a, value = None): """a as a contiguous numeric array with any masked areas replaced by value if value is None or the special element "masked", get_fill_value(a) is used instead. If a is already a contiguous numeric array, a itself is returned. filled(a) can be used to be sure that the result is numeric when passing an object a to other software ignorant of MA, in particular to numeric itself. """ if isinstance(a, MaskedArray): return a.filled(value) elif isinstance(a, ndarray) and a.flags['CONTIGUOUS']: return a elif isinstance(a, types.DictType): return numeric.array(a, 'O') else: return numeric.array(a) def get_fill_value (a): """ The fill value of a, if it has one; otherwise, the default fill value for that type. """ if isMaskedArray(a): result = a.fill_value() else: result = default_fill_value(a) return result def common_fill_value (a, b): "The common fill_value of a and b, if there is one, or None" t1 = get_fill_value(a) t2 = get_fill_value(b) if t1 == t2: return t1 return None # Domain functions return 1 where the argument(s) are not in the domain. class domain_check_interval: "domain_check_interval(a,b)(x) = true where x < a or y > b" def __init__(self, y1, y2): "domain_check_interval(a,b)(x) = true where x < a or y > b" self.y1 = y1 self.y2 = y2 def __call__ (self, x): "Execute the call behavior." return umath.logical_or(umath.greater (x, self.y2), umath.less(x, self.y1) ) class domain_tan: "domain_tan(eps) = true where abs(cos(x)) < eps)" def __init__(self, eps): "domain_tan(eps) = true where abs(cos(x)) < eps)" self.eps = eps def __call__ (self, x): "Execute the call behavior." return umath.less(umath.absolute(umath.cos(x)), self.eps) class domain_greater: "domain_greater(v)(x) = true where x <= v" def __init__(self, critical_value): "domain_greater(v)(x) = true where x <= v" self.critical_value = critical_value def __call__ (self, x): "Execute the call behavior." return umath.less_equal (x, self.critical_value) class domain_greater_equal: "domain_greater_equal(v)(x) = true where x < v" def __init__(self, critical_value): "domain_greater_equal(v)(x) = true where x < v" self.critical_value = critical_value def __call__ (self, x): "Execute the call behavior." return umath.less (x, self.critical_value) class masked_unary_operation: def __init__ (self, aufunc, fill=0, domain=None): """ masked_unary_operation(aufunc, fill=0, domain=None) aufunc(fill) must be defined self(x) returns aufunc(x) with masked values where domain(x) is true or getmask(x) is true. """ self.f = aufunc self.fill = fill self.domain = domain self.__doc__ = getattr(aufunc, "__doc__", str(aufunc)) self.__name__ = getattr(aufunc, "__name__", str(aufunc)) ufunc_domain[aufunc] = domain ufunc_fills[aufunc] = fill, def __call__ (self, a, *args, **kwargs): "Execute the call behavior." # numeric tries to return scalars rather than arrays when given scalars. m = getmask(a) d1 = filled(a, self.fill) if self.domain is not None: m = mask_or(m, self.domain(d1)) result = self.f(d1, *args, **kwargs) return masked_array(result, m) def __str__ (self): return "Masked version of " + str(self.f) class domain_safe_divide: def __init__ (self, tolerance=divide_tolerance): self.tolerance = tolerance def __call__ (self, a, b): return umath.absolute(a) * self.tolerance >= umath.absolute(b) class domained_binary_operation: """Binary operations that have a domain, like divide. These are complicated so they are a separate class. They have no reduce, outer or accumulate. """ def __init__ (self, abfunc, domain, fillx=0, filly=0): """abfunc(fillx, filly) must be defined. abfunc(x, filly) = x for all x to enable reduce. """ self.f = abfunc self.domain = domain self.fillx = fillx self.filly = filly self.__doc__ = getattr(abfunc, "__doc__", str(abfunc)) self.__name__ = getattr(abfunc, "__name__", str(abfunc)) ufunc_domain[abfunc] = domain ufunc_fills[abfunc] = fillx, filly def __call__(self, a, b): "Execute the call behavior." ma = getmask(a) mb = getmask(b) d1 = filled(a, self.fillx) d2 = filled(b, self.filly) t = self.domain(d1, d2) if fromnumeric.sometrue(t, None): d2 = where(t, self.filly, d2) mb = mask_or(mb, t) m = mask_or(ma, mb) result = self.f(d1, d2) return masked_array(result, m) def __str__ (self): return "Masked version of " + str(self.f) class masked_binary_operation: def __init__ (self, abfunc, fillx=0, filly=0): """abfunc(fillx, filly) must be defined. abfunc(x, filly) = x for all x to enable reduce. """ self.f = abfunc self.fillx = fillx self.filly = filly self.__doc__ = getattr(abfunc, "__doc__", str(abfunc)) ufunc_domain[abfunc] = None ufunc_fills[abfunc] = fillx, filly def __call__ (self, a, b, *args, **kwargs): "Execute the call behavior." m = mask_or(getmask(a), getmask(b)) d1 = filled(a, self.fillx) d2 = filled(b, self.filly) result = self.f(d1, d2, *args, **kwargs) if isinstance(result, ndarray) \ and m.ndim != 0 \ and m.shape != result.shape: m = mask_or(getmaskarray(a), getmaskarray(b)) return masked_array(result, m) def reduce (self, target, axis=0, dtype=None): """Reduce target along the given axis with this function.""" m = getmask(target) t = filled(target, self.filly) if t.shape == (): t = t.reshape(1) if m is not nomask: m = make_mask(m, copy=1) m.shape = (1,) if m is nomask: t = self.f.reduce(t, axis) else: t = masked_array (t, m) # XXX: "or t.dtype" below is a workaround for what appears # XXX: to be a bug in reduce. t = self.f.reduce(filled(t, self.filly), axis, dtype=dtype or t.dtype) m = umath.logical_and.reduce(m, axis) if isinstance(t, ndarray): return masked_array(t, m, get_fill_value(target)) elif m: return masked else: return t def outer (self, a, b): "Return the function applied to the outer product of a and b." ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: m = nomask else: ma = getmaskarray(a) mb = getmaskarray(b) m = logical_or.outer(ma, mb) d = self.f.outer(filled(a, self.fillx), filled(b, self.filly)) return masked_array(d, m) def accumulate (self, target, axis=0): """Accumulate target along axis after filling with y fill value.""" t = filled(target, self.filly) return masked_array (self.f.accumulate (t, axis)) def __str__ (self): return "Masked version of " + str(self.f) sqrt = masked_unary_operation(umath.sqrt, 0.0, domain_greater_equal(0.0)) log = masked_unary_operation(umath.log, 1.0, domain_greater(0.0)) log10 = masked_unary_operation(umath.log10, 1.0, domain_greater(0.0)) exp = masked_unary_operation(umath.exp) conjugate = masked_unary_operation(umath.conjugate) sin = masked_unary_operation(umath.sin) cos = masked_unary_operation(umath.cos) tan = masked_unary_operation(umath.tan, 0.0, domain_tan(1.e-35)) arcsin = masked_unary_operation(umath.arcsin, 0.0, domain_check_interval(-1.0, 1.0)) arccos = masked_unary_operation(umath.arccos, 0.0, domain_check_interval(-1.0, 1.0)) arctan = masked_unary_operation(umath.arctan) # Missing from numeric arcsinh = masked_unary_operation(umath.arcsinh) arccosh = masked_unary_operation(umath.arccosh, 1.0, domain_greater_equal(1.0)) arctanh = masked_unary_operation(umath.arctanh, 0.0, domain_check_interval(-1.0+1e-15, 1.0-1e-15)) sinh = masked_unary_operation(umath.sinh) cosh = masked_unary_operation(umath.cosh) tanh = masked_unary_operation(umath.tanh) absolute = masked_unary_operation(umath.absolute) fabs = masked_unary_operation(umath.fabs) negative = masked_unary_operation(umath.negative) def nonzero(a): """returns the indices of the elements of a which are not zero and not masked """ return numeric.asarray(filled(a, 0).nonzero()) around = masked_unary_operation(fromnumeric.round_) floor = masked_unary_operation(umath.floor) ceil = masked_unary_operation(umath.ceil) logical_not = masked_unary_operation(umath.logical_not) add = masked_binary_operation(umath.add) subtract = masked_binary_operation(umath.subtract) subtract.reduce = None multiply = masked_binary_operation(umath.multiply, 1, 1) divide = domained_binary_operation(umath.divide, domain_safe_divide(), 0, 1) true_divide = domained_binary_operation(umath.true_divide, domain_safe_divide(), 0, 1) floor_divide = domained_binary_operation(umath.floor_divide, domain_safe_divide(), 0, 1) remainder = domained_binary_operation(umath.remainder, domain_safe_divide(), 0, 1) fmod = domained_binary_operation(umath.fmod, domain_safe_divide(), 0, 1) hypot = masked_binary_operation(umath.hypot) arctan2 = masked_binary_operation(umath.arctan2, 0.0, 1.0) arctan2.reduce = None equal = masked_binary_operation(umath.equal) equal.reduce = None not_equal = masked_binary_operation(umath.not_equal) not_equal.reduce = None less_equal = masked_binary_operation(umath.less_equal) less_equal.reduce = None greater_equal = masked_binary_operation(umath.greater_equal) greater_equal.reduce = None less = masked_binary_operation(umath.less) less.reduce = None greater = masked_binary_operation(umath.greater) greater.reduce = None logical_and = masked_binary_operation(umath.logical_and) alltrue = masked_binary_operation(umath.logical_and, 1, 1).reduce logical_or = masked_binary_operation(umath.logical_or) sometrue = logical_or.reduce logical_xor = masked_binary_operation(umath.logical_xor) bitwise_and = masked_binary_operation(umath.bitwise_and) bitwise_or = masked_binary_operation(umath.bitwise_or) bitwise_xor = masked_binary_operation(umath.bitwise_xor) def rank (object): return fromnumeric.rank(filled(object)) def shape (object): return fromnumeric.shape(filled(object)) def size (object, axis=None): return fromnumeric.size(filled(object), axis) class MaskedArray (object): """Arrays with possibly masked values. Masked values of 1 exclude the corresponding element from any computation. Construction: x = array(data, dtype=None, copy=True, order=False, mask = nomask, fill_value=None) If copy=False, every effort is made not to copy the data: If data is a MaskedArray, and argument mask=nomask, then the candidate data is data.data and the mask used is data.mask. If data is a numeric array, it is used as the candidate raw data. If dtype is not None and is != data.dtype.char then a data copy is required. Otherwise, the candidate is used. If a data copy is required, raw data stored is the result of: numeric.array(data, dtype=dtype.char, copy=copy) If mask is nomask there are no masked values. Otherwise mask must be convertible to an array of booleans with the same shape as x. fill_value is used to fill in masked values when necessary, such as when printing and in method/function filled(). The fill_value is not used for computation within this module. """ __array_priority__ = 10.1 def __init__(self, data, dtype=None, copy=True, order=False, mask=nomask, fill_value=None): """array(data, dtype=None, copy=True, order=False, mask=nomask, fill_value=None) If data already a numeric array, its dtype becomes the default value of dtype. """ if dtype is None: tc = None else: tc = numeric.dtype(dtype) need_data_copied = copy if isinstance(data, MaskedArray): c = data.data if tc is None: tc = c.dtype elif tc != c.dtype: need_data_copied = True if mask is nomask: mask = data.mask elif mask is not nomask: #attempting to change the mask need_data_copied = True elif isinstance(data, ndarray): c = data if tc is None: tc = c.dtype elif tc != c.dtype: need_data_copied = True else: need_data_copied = False #because I'll do it now c = numeric.array(data, dtype=tc, copy=True, order=order) tc = c.dtype if need_data_copied: if tc == c.dtype: self._data = numeric.array(c, dtype=tc, copy=True, order=order) else: self._data = c.astype(tc) else: self._data = c if mask is nomask: self._mask = nomask self._shared_mask = 0 else: self._mask = make_mask (mask) if self._mask is nomask: self._shared_mask = 0 else: self._shared_mask = (self._mask is mask) nm = size(self._mask) nd = size(self._data) if nm != nd: if nm == 1: self._mask = fromnumeric.resize(self._mask, self._data.shape) self._shared_mask = 0 elif nd == 1: self._data = fromnumeric.resize(self._data, self._mask.shape) self._data.shape = self._mask.shape else: raise MAError("Mask and data not compatible.") elif nm == 1 and shape(self._mask) != shape(self._data): self.unshare_mask() self._mask.shape = self._data.shape self.set_fill_value(fill_value) def __array__ (self, t=None, context=None): "Special hook for numeric. Converts to numeric if possible." if self._mask is not nomask: if fromnumeric.ravel(self._mask).any(): if context is None: warnings.warn("Cannot automatically convert masked array to "\ "numeric because data\n is masked in one or "\ "more locations."); return self._data #raise MAError( # """Cannot automatically convert masked array to numeric because data # is masked in one or more locations. # """) else: func, args, i = context fills = ufunc_fills.get(func) if fills is None: raise MAError("%s not known to ma" % func) return self.filled(fills[i]) else: # Mask is all false # Optimize to avoid future invocations of this section. self._mask = nomask self._shared_mask = 0 if t: return self._data.astype(t) else: return self._data def __array_wrap__ (self, array, context=None): """Special hook for ufuncs. Wraps the numpy array and sets the mask according to context. """ if context is None: return MaskedArray(array, copy=False, mask=nomask) func, args = context[:2] domain = ufunc_domain[func] m = reduce(mask_or, [getmask(a) for a in args]) if domain is not None: m = mask_or(m, domain(*[getattr(a, '_data', a) for a in args])) if m is not nomask: try: shape = array.shape except AttributeError: pass else: if m.shape != shape: m = reduce(mask_or, [getmaskarray(a) for a in args]) return MaskedArray(array, copy=False, mask=m) def _get_shape(self): "Return the current shape." return self._data.shape def _set_shape (self, newshape): "Set the array's shape." self._data.shape = newshape if self._mask is not nomask: self._mask = self._mask.copy() self._mask.shape = newshape def _get_flat(self): """Calculate the flat value. """ if self._mask is nomask: return masked_array(self._data.ravel(), mask=nomask, fill_value = self.fill_value()) else: return masked_array(self._data.ravel(), mask=self._mask.ravel(), fill_value = self.fill_value()) def _set_flat (self, value): "x.flat = value" y = self.ravel() y[:] = value def _get_real(self): "Get the real part of a complex array." if self._mask is nomask: return masked_array(self._data.real, mask=nomask, fill_value = self.fill_value()) else: return masked_array(self._data.real, mask=self._mask, fill_value = self.fill_value()) def _set_real (self, value): "x.real = value" y = self.real y[...] = value def _get_imaginary(self): "Get the imaginary part of a complex array." if self._mask is nomask: return masked_array(self._data.imag, mask=nomask, fill_value = self.fill_value()) else: return masked_array(self._data.imag, mask=self._mask, fill_value = self.fill_value()) def _set_imaginary (self, value): "x.imaginary = value" y = self.imaginary y[...] = value def __str__(self): """Calculate the str representation, using masked for fill if it is enabled. Otherwise fill with fill value. """ if masked_print_option.enabled(): f = masked_print_option # XXX: Without the following special case masked # XXX: would print as "[--]", not "--". Can we avoid # XXX: checks for masked by choosing a different value # XXX: for the masked singleton? 2005-01-05 -- sasha if self is masked: return str(f) m = self._mask if m is not nomask and m.shape == () and m: return str(f) # convert to object array to make filled work self = self.astype(object) else: f = self.fill_value() res = self.filled(f) return str(res) def __repr__(self): """Calculate the repr representation, using masked for fill if it is enabled. Otherwise fill with fill value. """ with_mask = """\ array(data = %(data)s, mask = %(mask)s, fill_value=%(fill)s) """ with_mask1 = """\ array(data = %(data)s, mask = %(mask)s, fill_value=%(fill)s) """ without_mask = """array( %(data)s)""" without_mask1 = """array(%(data)s)""" n = len(self.shape) if self._mask is nomask: if n <= 1: return without_mask1 % {'data':str(self.filled())} return without_mask % {'data':str(self.filled())} else: if n <= 1: return with_mask % { 'data': str(self.filled()), 'mask': str(self._mask), 'fill': str(self.fill_value()) } return with_mask % { 'data': str(self.filled()), 'mask': str(self._mask), 'fill': str(self.fill_value()) } without_mask1 = """array(%(data)s)""" if self._mask is nomask: return without_mask % {'data':str(self.filled())} else: return with_mask % { 'data': str(self.filled()), 'mask': str(self._mask), 'fill': str(self.fill_value()) } def __float__(self): "Convert self to float." self.unmask() if self._mask is not nomask: raise MAError('Cannot convert masked element to a Python float.') return float(self.data.item()) def __int__(self): "Convert self to int." self.unmask() if self._mask is not nomask: raise MAError('Cannot convert masked element to a Python int.') return int(self.data.item()) def __getitem__(self, i): "Get item described by i. Not a copy as in previous versions." self.unshare_mask() m = self._mask dout = self._data[i] if m is nomask: try: if dout.size == 1: return dout else: return masked_array(dout, fill_value=self._fill_value) except AttributeError: return dout mi = m[i] if mi.size == 1: if mi: return masked else: return dout else: return masked_array(dout, mi, fill_value=self._fill_value) # -------- # setitem and setslice notes # note that if value is masked, it means to mask those locations. # setting a value changes the mask to match the value in those locations. def __setitem__(self, index, value): "Set item described by index. If value is masked, mask those locations." d = self._data if self is masked: raise MAError('Cannot alter masked elements.') if value is masked: if self._mask is nomask: self._mask = make_mask_none(d.shape) self._shared_mask = False else: self.unshare_mask() self._mask[index] = True return m = getmask(value) value = filled(value).astype(d.dtype) d[index] = value if m is nomask: if self._mask is not nomask: self.unshare_mask() self._mask[index] = False else: if self._mask is nomask: self._mask = make_mask_none(d.shape) self._shared_mask = True else: self.unshare_mask() self._mask[index] = m def __nonzero__(self): """returns true if any element is non-zero or masked """ # XXX: This changes bool conversion logic from MA. # XXX: In MA bool(a) == len(a) != 0, but in numpy # XXX: scalars do not have len m = self._mask d = self._data return bool(m is not nomask and m.any() or d is not nomask and d.any()) def __len__ (self): """Return length of first dimension. This is weird but Python's slicing behavior depends on it.""" return len(self._data) def __and__(self, other): "Return bitwise_and" return bitwise_and(self, other) def __or__(self, other): "Return bitwise_or" return bitwise_or(self, other) def __xor__(self, other): "Return bitwise_xor" return bitwise_xor(self, other) __rand__ = __and__ __ror__ = __or__ __rxor__ = __xor__ def __abs__(self): "Return absolute(self)" return absolute(self) def __neg__(self): "Return negative(self)" return negative(self) def __pos__(self): "Return array(self)" return array(self) def __add__(self, other): "Return add(self, other)" return add(self, other) __radd__ = __add__ def __mod__ (self, other): "Return remainder(self, other)" return remainder(self, other) def __rmod__ (self, other): "Return remainder(other, self)" return remainder(other, self) def __lshift__ (self, n): return left_shift(self, n) def __rshift__ (self, n): return right_shift(self, n) def __sub__(self, other): "Return subtract(self, other)" return subtract(self, other) def __rsub__(self, other): "Return subtract(other, self)" return subtract(other, self) def __mul__(self, other): "Return multiply(self, other)" return multiply(self, other) __rmul__ = __mul__ def __div__(self, other): "Return divide(self, other)" return divide(self, other) def __rdiv__(self, other): "Return divide(other, self)" return divide(other, self) def __truediv__(self, other): "Return divide(self, other)" return true_divide(self, other) def __rtruediv__(self, other): "Return divide(other, self)" return true_divide(other, self) def __floordiv__(self, other): "Return divide(self, other)" return floor_divide(self, other) def __rfloordiv__(self, other): "Return divide(other, self)" return floor_divide(other, self) def __pow__(self, other, third=None): "Return power(self, other, third)" return power(self, other, third) def __sqrt__(self): "Return sqrt(self)" return sqrt(self) def __iadd__(self, other): "Add other to self in place." t = self._data.dtype.char f = filled(other, 0) t1 = f.dtype.char if t == t1: pass elif t in typecodes['Integer']: if t1 in typecodes['Integer']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Float']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Complex']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) elif t1 in typecodes['Complex']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') else: raise TypeError('Incorrect type for in-place operation.') if self._mask is nomask: self._data += f m = getmask(other) self._mask = m self._shared_mask = m is not nomask else: result = add(self, masked_array(f, mask=getmask(other))) self._data = result.data self._mask = result.mask self._shared_mask = 1 return self def __imul__(self, other): "Add other to self in place." t = self._data.dtype.char f = filled(other, 0) t1 = f.dtype.char if t == t1: pass elif t in typecodes['Integer']: if t1 in typecodes['Integer']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Float']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Complex']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) elif t1 in typecodes['Complex']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') else: raise TypeError('Incorrect type for in-place operation.') if self._mask is nomask: self._data *= f m = getmask(other) self._mask = m self._shared_mask = m is not nomask else: result = multiply(self, masked_array(f, mask=getmask(other))) self._data = result.data self._mask = result.mask self._shared_mask = 1 return self def __isub__(self, other): "Subtract other from self in place." t = self._data.dtype.char f = filled(other, 0) t1 = f.dtype.char if t == t1: pass elif t in typecodes['Integer']: if t1 in typecodes['Integer']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Float']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Complex']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) elif t1 in typecodes['Complex']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') else: raise TypeError('Incorrect type for in-place operation.') if self._mask is nomask: self._data -= f m = getmask(other) self._mask = m self._shared_mask = m is not nomask else: result = subtract(self, masked_array(f, mask=getmask(other))) self._data = result.data self._mask = result.mask self._shared_mask = 1 return self def __idiv__(self, other): "Divide self by other in place." t = self._data.dtype.char f = filled(other, 0) t1 = f.dtype.char if t == t1: pass elif t in typecodes['Integer']: if t1 in typecodes['Integer']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Float']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') elif t in typecodes['Complex']: if t1 in typecodes['Integer']: f = f.astype(t) elif t1 in typecodes['Float']: f = f.astype(t) elif t1 in typecodes['Complex']: f = f.astype(t) else: raise TypeError('Incorrect type for in-place operation.') else: raise TypeError('Incorrect type for in-place operation.') mo = getmask(other) result = divide(self, masked_array(f, mask=mo)) self._data = result.data dm = result.raw_mask() if dm is not self._mask: self._mask = dm self._shared_mask = 1 return self def __eq__(self, other): return equal(self,other) def __ne__(self, other): return not_equal(self,other) def __lt__(self, other): return less(self,other) def __le__(self, other): return less_equal(self,other) def __gt__(self, other): return greater(self,other) def __ge__(self, other): return greater_equal(self,other) def astype (self, tc): "return self as array of given type." d = self._data.astype(tc) return array(d, mask=self._mask) def byte_swapped(self): """Returns the raw data field, byte_swapped. Included for consistency with numeric but doesn't make sense in this context. """ return self._data.byte_swapped() def compressed (self): "A 1-D array of all the non-masked data." d = fromnumeric.ravel(self._data) if self._mask is nomask: return array(d) else: m = 1 - fromnumeric.ravel(self._mask) c = fromnumeric.compress(m, d) return array(c, copy=0) def count (self, axis = None): "Count of the non-masked elements in a, or along a certain axis." m = self._mask s = self._data.shape ls = len(s) if m is nomask: if ls == 0: return 1 if ls == 1: return s[0] if axis is None: return reduce(lambda x, y:x*y, s) else: n = s[axis] t = list(s) del t[axis] return ones(t) * n if axis is None: w = fromnumeric.ravel(m).astype(int) n1 = size(w) if n1 == 1: n2 = w[0] else: n2 = umath.add.reduce(w) return n1 - n2 else: n1 = size(m, axis) n2 = sum(m.astype(int), axis) return n1 - n2 def dot (self, other): "s.dot(other) = innerproduct(s, other)" return innerproduct(self, other) def fill_value(self): "Get the current fill value." return self._fill_value def filled (self, fill_value=None): """A numeric array with masked values filled. If fill_value is None, use self.fill_value(). If mask is nomask, copy data only if not contiguous. Result is always a contiguous, numeric array. # Is contiguous really necessary now? """ d = self._data m = self._mask if m is nomask: if d.flags['CONTIGUOUS']: return d else: return d.copy() else: if fill_value is None: value = self._fill_value else: value = fill_value if self is masked: result = numeric.array(value) else: try: result = numeric.array(d, dtype=d.dtype, copy=1) result[m] = value except (TypeError, AttributeError): #ok, can't put that value in here value = numeric.array(value, dtype=object) d = d.astype(object) result = fromnumeric.choose(m, (d, value)) return result def ids (self): """Return the ids of the data and mask areas""" return (id(self._data), id(self._mask)) def iscontiguous (self): "Is the data contiguous?" return self._data.flags['CONTIGUOUS'] def itemsize(self): "Item size of each data item." return self._data.itemsize def outer(self, other): "s.outer(other) = outerproduct(s, other)" return outerproduct(self, other) def put (self, values): """Set the non-masked entries of self to filled(values). No change to mask """ iota = numeric.arange(self.size) d = self._data if self._mask is nomask: ind = iota else: ind = fromnumeric.compress(1 - self._mask, iota) d[ind] = filled(values).astype(d.dtype) def putmask (self, values): """Set the masked entries of self to filled(values). Mask changed to nomask. """ d = self._data if self._mask is not nomask: d[self._mask] = filled(values).astype(d.dtype) self._shared_mask = 0 self._mask = nomask def ravel (self): """Return a 1-D view of self.""" if self._mask is nomask: return masked_array(self._data.ravel()) else: return masked_array(self._data.ravel(), self._mask.ravel()) def raw_data (self): """ Obsolete; use data property instead. The raw data; portions may be meaningless. May be noncontiguous. Expert use only.""" return self._data data = property(fget=raw_data, doc="The data, but values at masked locations are meaningless.") def raw_mask (self): """ Obsolete; use mask property instead. May be noncontiguous. Expert use only. """ return self._mask mask = property(fget=raw_mask, doc="The mask, may be nomask. Values where mask true are meaningless.") def reshape (self, *s): """This array reshaped to shape s""" d = self._data.reshape(*s) if self._mask is nomask: return masked_array(d) else: m = self._mask.reshape(*s) return masked_array(d, m) def set_fill_value (self, v=None): "Set the fill value to v. Omit v to restore default." if v is None: v = default_fill_value (self.raw_data()) self._fill_value = v def _get_ndim(self): return self._data.ndim ndim = property(_get_ndim, doc=numeric.ndarray.ndim.__doc__) def _get_size (self): return self._data.size size = property(fget=_get_size, doc="Number of elements in the array.") ## CHECK THIS: signature of numeric.array.size? def _get_dtype(self): return self._data.dtype dtype = property(fget=_get_dtype, doc="type of the array elements.") def item(self, *args): "Return Python scalar if possible" if self._mask is not nomask: m = self._mask.item(*args) try: if m[0]: return masked except IndexError: return masked return self._data.item(*args) def itemset(self, *args): "Set Python scalar into array" item = args[-1] args = args[:-1] self[args] = item def tolist(self, fill_value=None): "Convert to list" return self.filled(fill_value).tolist() def tostring(self, fill_value=None): "Convert to string" return self.filled(fill_value).tostring() def unmask (self): "Replace the mask by nomask if possible." if self._mask is nomask: return m = make_mask(self._mask, flag=1) if m is nomask: self._mask = nomask self._shared_mask = 0 def unshare_mask (self): "If currently sharing mask, make a copy." if self._shared_mask: self._mask = make_mask (self._mask, copy=1, flag=0) self._shared_mask = 0 def _get_ctypes(self): return self._data.ctypes def _get_T(self): if (self.ndim < 2): return self return self.transpose() shape = property(_get_shape, _set_shape, doc = 'tuple giving the shape of the array') flat = property(_get_flat, _set_flat, doc = 'Access array in flat form.') real = property(_get_real, _set_real, doc = 'Access the real part of the array') imaginary = property(_get_imaginary, _set_imaginary, doc = 'Access the imaginary part of the array') imag = imaginary ctypes = property(_get_ctypes, None, doc="ctypes") T = property(_get_T, None, doc="get transpose") #end class MaskedArray array = MaskedArray def isMaskedArray (x): "Is x a masked array, that is, an instance of MaskedArray?" return isinstance(x, MaskedArray) isarray = isMaskedArray isMA = isMaskedArray #backward compatibility def allclose (a, b, fill_value=1, rtol=1.e-5, atol=1.e-8): """ Returns true if all components of a and b are equal subject to given tolerances. If fill_value is 1, masked values considered equal. If fill_value is 0, masked values considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) x = filled(array(d1, copy=0, mask=m), fill_value).astype(float) y = filled(array(d2, copy=0, mask=m), 1).astype(float) d = umath.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y)) return fromnumeric.alltrue(fromnumeric.ravel(d)) def allequal (a, b, fill_value=1): """ True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked. """ m = mask_or(getmask(a), getmask(b)) if m is nomask: x = filled(a) y = filled(b) d = umath.equal(x, y) return fromnumeric.alltrue(fromnumeric.ravel(d)) elif fill_value: x = filled(a) y = filled(b) d = umath.equal(x, y) dm = array(d, mask=m, copy=0) return fromnumeric.alltrue(fromnumeric.ravel(filled(dm, 1))) else: return 0 def masked_values (data, value, rtol=1.e-5, atol=1.e-8, copy=1): """ masked_values(data, value, rtol=1.e-5, atol=1.e-8) Create a masked array; mask is nomask if possible. If copy==0, and otherwise possible, result may share data values with original array. Let d = filled(data, value). Returns d masked where abs(data-value)<= atol + rtol * abs(value) if d is of a floating point type. Otherwise returns masked_object(d, value, copy) """ abs = umath.absolute d = filled(data, value) if issubclass(d.dtype.type, numeric.floating): m = umath.less_equal(abs(d-value), atol+rtol*abs(value)) m = make_mask(m, flag=1) return array(d, mask = m, copy=copy, fill_value=value) else: return masked_object(d, value, copy=copy) def masked_object (data, value, copy=1): "Create array masked where exactly data equal to value" d = filled(data, value) dm = make_mask(umath.equal(d, value), flag=1) return array(d, mask=dm, copy=copy, fill_value=value) def arange(start, stop=None, step=1, dtype=None): """Just like range() except it returns a array whose type can be specified by the keyword argument dtype. """ return array(numeric.arange(start, stop, step, dtype)) arrayrange = arange def fromstring (s, t): "Construct a masked array from a string. Result will have no mask." return masked_array(numeric.fromstring(s, t)) def left_shift (a, n): "Left shift n bits" m = getmask(a) if m is nomask: d = umath.left_shift(filled(a), n) return masked_array(d) else: d = umath.left_shift(filled(a, 0), n) return masked_array(d, m) def right_shift (a, n): "Right shift n bits" m = getmask(a) if m is nomask: d = umath.right_shift(filled(a), n) return masked_array(d) else: d = umath.right_shift(filled(a, 0), n) return masked_array(d, m) def resize (a, new_shape): """resize(a, new_shape) returns a new array with the specified shape. The original array's total size can be any size.""" m = getmask(a) if m is not nomask: m = fromnumeric.resize(m, new_shape) result = array(fromnumeric.resize(filled(a), new_shape), mask=m) result.set_fill_value(get_fill_value(a)) return result def new_repeat(a, repeats, axis=None): """repeat elements of a repeats times along axis repeats is a sequence of length a.shape[axis] telling how many times to repeat each element. """ af = filled(a) if isinstance(repeats, types.IntType): if axis is None: num = af.size else: num = af.shape[axis] repeats = tuple([repeats]*num) m = getmask(a) if m is not nomask: m = fromnumeric.repeat(m, repeats, axis) d = fromnumeric.repeat(af, repeats, axis) result = masked_array(d, m) result.set_fill_value(get_fill_value(a)) return result def identity(n): """identity(n) returns the identity matrix of shape n x n. """ return array(numeric.identity(n)) def indices (dimensions, dtype=None): """indices(dimensions,dtype=None) returns an array representing a grid of indices with row-only, and column-only variation. """ return array(numeric.indices(dimensions, dtype)) def zeros (shape, dtype=float): """zeros(n, dtype=float) = an array of all zeros of the given length or shape.""" return array(numeric.zeros(shape, dtype)) def ones (shape, dtype=float): """ones(n, dtype=float) = an array of all ones of the given length or shape.""" return array(numeric.ones(shape, dtype)) def count (a, axis = None): "Count of the non-masked elements in a, or along a certain axis." a = masked_array(a) return a.count(axis) def power (a, b, third=None): "a**b" if third is not None: raise MAError("3-argument power not supported.") ma = getmask(a) mb = getmask(b) m = mask_or(ma, mb) fa = filled(a, 1) fb = filled(b, 1) if fb.dtype.char in typecodes["Integer"]: return masked_array(umath.power(fa, fb), m) md = make_mask(umath.less(fa, 0), flag=1) m = mask_or(m, md) if m is nomask: return masked_array(umath.power(fa, fb)) else: fa = numeric.where(m, 1, fa) return masked_array(umath.power(fa, fb), m) def masked_array (a, mask=nomask, fill_value=None): """masked_array(a, mask=nomask) = array(a, mask=mask, copy=0, fill_value=fill_value) """ return array(a, mask=mask, copy=0, fill_value=fill_value) def sum (target, axis=None, dtype=None): if axis is None: target = ravel(target) axis = 0 return add.reduce(target, axis, dtype) def product (target, axis=None, dtype=None): if axis is None: target = ravel(target) axis = 0 return multiply.reduce(target, axis, dtype) def new_average (a, axis=None, weights=None, returned = 0): """average(a, axis=None, weights=None) Computes average along indicated axis. If axis is None, average over the entire array Inputs can be integer or floating types; result is of type float. If weights are given, result is sum(a*weights,axis=0)/(sum(weights,axis=0)*1.0) weights must have a's shape or be the 1-d with length the size of a in the given axis. If returned, return a tuple: the result and the sum of the weights or count of values. Results will have the same shape. masked values in the weights will be set to 0.0 """ a = masked_array(a) mask = a.mask ash = a.shape if ash == (): ash = (1,) if axis is None: if mask is nomask: if weights is None: n = add.reduce(a.raw_data().ravel()) d = reduce(lambda x, y: x * y, ash, 1.0) else: w = filled(weights, 0.0).ravel() n = umath.add.reduce(a.raw_data().ravel() * w) d = umath.add.reduce(w) del w else: if weights is None: n = add.reduce(a.ravel()) w = fromnumeric.choose(mask, (1.0, 0.0)).ravel() d = umath.add.reduce(w) del w else: w = array(filled(weights, 0.0), float, mask=mask).ravel() n = add.reduce(a.ravel() * w) d = add.reduce(w) del w else: if mask is nomask: if weights is None: d = ash[axis] * 1.0 n = umath.add.reduce(a.raw_data(), axis) else: w = filled(weights, 0.0) wsh = w.shape if wsh == (): wsh = (1,) if wsh == ash: w = numeric.array(w, float, copy=0) n = add.reduce(a*w, axis) d = add.reduce(w, axis) del w elif wsh == (ash[axis],): r = [newaxis]*len(ash) r[axis] = slice(None, None, 1) w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)") n = add.reduce(a*w, axis) d = add.reduce(w, axis) del w, r else: raise ValueError('average: weights wrong shape.') else: if weights is None: n = add.reduce(a, axis) w = numeric.choose(mask, (1.0, 0.0)) d = umath.add.reduce(w, axis) del w else: w = filled(weights, 0.0) wsh = w.shape if wsh == (): wsh = (1,) if wsh == ash: w = array(w, float, mask=mask, copy=0) n = add.reduce(a*w, axis) d = add.reduce(w, axis) elif wsh == (ash[axis],): r = [newaxis]*len(ash) r[axis] = slice(None, None, 1) w = eval ("w["+ repr(tuple(r)) + "] * masked_array(ones(ash, float), mask)") n = add.reduce(a*w, axis) d = add.reduce(w, axis) else: raise ValueError('average: weights wrong shape.') del w #print n, d, repr(mask), repr(weights) if n is masked or d is masked: return masked result = divide (n, d) del n if isinstance(result, MaskedArray): result.unmask() if returned: if not isinstance(d, MaskedArray): d = masked_array(d) if not d.shape == result.shape: d = ones(result.shape, float) * d d.unmask() if returned: return result, d else: return result def where (condition, x, y): """where(condition, x, y) is x where condition is nonzero, y otherwise. condition must be convertible to an integer array. Answer is always the shape of condition. The type depends on x and y. It is integer if both x and y are the value masked. """ fc = filled(not_equal(condition, 0), 0) xv = filled(x) xm = getmask(x) yv = filled(y) ym = getmask(y) d = numeric.choose(fc, (yv, xv)) md = numeric.choose(fc, (ym, xm)) m = getmask(condition) m = make_mask(mask_or(m, md), copy=0, flag=1) return masked_array(d, m) def choose (indices, t, out=None, mode='raise'): "Returns array shaped like indices with elements chosen from t" def fmask (x): if x is masked: return 1 return filled(x) def nmask (x): if x is masked: return 1 m = getmask(x) if m is nomask: return 0 return m c = filled(indices, 0) masks = [nmask(x) for x in t] a = [fmask(x) for x in t] d = numeric.choose(c, a) m = numeric.choose(c, masks) m = make_mask(mask_or(m, getmask(indices)), copy=0, flag=1) return masked_array(d, m) def masked_where(condition, x, copy=1): """Return x as an array masked where condition is true. Also masked where x or condition masked. """ cm = filled(condition,1) m = mask_or(getmask(x), cm) return array(filled(x), copy=copy, mask=m) def masked_greater(x, value, copy=1): "masked_greater(x, value) = x masked where x > value" return masked_where(greater(x, value), x, copy) def masked_greater_equal(x, value, copy=1): "masked_greater_equal(x, value) = x masked where x >= value" return masked_where(greater_equal(x, value), x, copy) def masked_less(x, value, copy=1): "masked_less(x, value) = x masked where x < value" return masked_where(less(x, value), x, copy) def masked_less_equal(x, value, copy=1): "masked_less_equal(x, value) = x masked where x <= value" return masked_where(less_equal(x, value), x, copy) def masked_not_equal(x, value, copy=1): "masked_not_equal(x, value) = x masked where x != value" d = filled(x, 0) c = umath.not_equal(d, value) m = mask_or(c, getmask(x)) return array(d, mask=m, copy=copy) def masked_equal(x, value, copy=1): """masked_equal(x, value) = x masked where x == value For floating point consider masked_values(x, value) instead. """ d = filled(x, 0) c = umath.equal(d, value) m = mask_or(c, getmask(x)) return array(d, mask=m, copy=copy) def masked_inside(x, v1, v2, copy=1): """x with mask of all values of x that are inside [v1,v2] v1 and v2 can be given in either order. """ if v2 < v1: t = v2 v2 = v1 v1 = t d = filled(x, 0) c = umath.logical_and(umath.less_equal(d, v2), umath.greater_equal(d, v1)) m = mask_or(c, getmask(x)) return array(d, mask = m, copy=copy) def masked_outside(x, v1, v2, copy=1): """x with mask of all values of x that are outside [v1,v2] v1 and v2 can be given in either order. """ if v2 < v1: t = v2 v2 = v1 v1 = t d = filled(x, 0) c = umath.logical_or(umath.less(d, v1), umath.greater(d, v2)) m = mask_or(c, getmask(x)) return array(d, mask = m, copy=copy) def reshape (a, *newshape): "Copy of a with a new shape." m = getmask(a) d = filled(a).reshape(*newshape) if m is nomask: return masked_array(d) else: return masked_array(d, mask=numeric.reshape(m, *newshape)) def ravel (a): "a as one-dimensional, may share data and mask" m = getmask(a) d = fromnumeric.ravel(filled(a)) if m is nomask: return masked_array(d) else: return masked_array(d, mask=numeric.ravel(m)) def concatenate (arrays, axis=0): "Concatenate the arrays along the given axis" d = [] for x in arrays: d.append(filled(x)) d = numeric.concatenate(d, axis) for x in arrays: if getmask(x) is not nomask: break else: return masked_array(d) dm = [] for x in arrays: dm.append(getmaskarray(x)) dm = numeric.concatenate(dm, axis) return masked_array(d, mask=dm) def swapaxes (a, axis1, axis2): m = getmask(a) d = masked_array(a).data if m is nomask: return masked_array(data=numeric.swapaxes(d, axis1, axis2)) else: return masked_array(data=numeric.swapaxes(d, axis1, axis2), mask=numeric.swapaxes(m, axis1, axis2),) def new_take (a, indices, axis=None, out=None, mode='raise'): "returns selection of items from a." m = getmask(a) # d = masked_array(a).raw_data() d = masked_array(a).data if m is nomask: return masked_array(numeric.take(d, indices, axis)) else: return masked_array(numeric.take(d, indices, axis), mask = numeric.take(m, indices, axis)) def transpose(a, axes=None): "reorder dimensions per tuple axes" m = getmask(a) d = filled(a) if m is nomask: return masked_array(numeric.transpose(d, axes)) else: return masked_array(numeric.transpose(d, axes), mask = numeric.transpose(m, axes)) def put(a, indices, values, mode='raise'): """sets storage-indexed locations to corresponding values. Values and indices are filled if necessary. """ d = a.raw_data() ind = filled(indices) v = filled(values) numeric.put (d, ind, v) m = getmask(a) if m is not nomask: a.unshare_mask() numeric.put(a.raw_mask(), ind, 0) def putmask(a, mask, values): "putmask(a, mask, values) sets a where mask is true." if mask is nomask: return numeric.putmask(a.raw_data(), mask, values) m = getmask(a) if m is nomask: return a.unshare_mask() numeric.putmask(a.raw_mask(), mask, 0) def inner(a, b): """inner(a,b) returns the dot product of two arrays, which has shape a.shape[:-1] + b.shape[:-1] with elements computed by summing the product of the elements from the last dimensions of a and b. Masked elements are replace by zeros. """ fa = filled(a, 0) fb = filled(b, 0) if len(fa.shape) == 0: fa.shape = (1,) if len(fb.shape) == 0: fb.shape = (1,) return masked_array(numeric.inner(fa, fb)) innerproduct = inner def outer(a, b): """outer(a,b) = {a[i]*b[j]}, has shape (len(a),len(b))""" fa = filled(a, 0).ravel() fb = filled(b, 0).ravel() d = numeric.outer(fa, fb) ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: return masked_array(d) ma = getmaskarray(a) mb = getmaskarray(b) m = make_mask(1-numeric.outer(1-ma, 1-mb), copy=0) return masked_array(d, m) outerproduct = outer def dot(a, b): """dot(a,b) returns matrix-multiplication between a and b. The product-sum is over the last dimension of a and the second-to-last dimension of b. Masked values are replaced by zeros. See also innerproduct. """ return innerproduct(filled(a, 0), numeric.swapaxes(filled(b, 0), -1, -2)) def compress(condition, x, dimension=-1, out=None): """Select those parts of x for which condition is true. Masked values in condition are considered false. """ c = filled(condition, 0) m = getmask(x) if m is not nomask: m = numeric.compress(c, m, dimension) d = numeric.compress(c, filled(x), dimension) return masked_array(d, m) class _minimum_operation: "Object to calculate minima" def __init__ (self): """minimum(a, b) or minimum(a) In one argument case returns the scalar minimum. """ pass def __call__ (self, a, b=None): "Execute the call behavior." if b is None: m = getmask(a) if m is nomask: d = amin(filled(a).ravel()) return d ac = a.compressed() if len(ac) == 0: return masked else: return amin(ac.raw_data()) else: return where(less(a, b), a, b) def reduce (self, target, axis=0): """Reduce target along the given axis.""" m = getmask(target) if m is nomask: t = filled(target) return masked_array (umath.minimum.reduce (t, axis)) else: t = umath.minimum.reduce(filled(target, minimum_fill_value(target)), axis) m = umath.logical_and.reduce(m, axis) return masked_array(t, m, get_fill_value(target)) def outer (self, a, b): "Return the function applied to the outer product of a and b." ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: m = nomask else: ma = getmaskarray(a) mb = getmaskarray(b) m = logical_or.outer(ma, mb) d = umath.minimum.outer(filled(a), filled(b)) return masked_array(d, m) minimum = _minimum_operation () class _maximum_operation: "Object to calculate maxima" def __init__ (self): """maximum(a, b) or maximum(a) In one argument case returns the scalar maximum. """ pass def __call__ (self, a, b=None): "Execute the call behavior." if b is None: m = getmask(a) if m is nomask: d = amax(filled(a).ravel()) return d ac = a.compressed() if len(ac) == 0: return masked else: return amax(ac.raw_data()) else: return where(greater(a, b), a, b) def reduce (self, target, axis=0): """Reduce target along the given axis.""" m = getmask(target) if m is nomask: t = filled(target) return masked_array (umath.maximum.reduce (t, axis)) else: t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis) m = umath.logical_and.reduce(m, axis) return masked_array(t, m, get_fill_value(target)) def outer (self, a, b): "Return the function applied to the outer product of a and b." ma = getmask(a) mb = getmask(b) if ma is nomask and mb is nomask: m = nomask else: ma = getmaskarray(a) mb = getmaskarray(b) m = logical_or.outer(ma, mb) d = umath.maximum.outer(filled(a), filled(b)) return masked_array(d, m) maximum = _maximum_operation () def sort (x, axis = -1, fill_value=None): """If x does not have a mask, return a masked array formed from the result of numeric.sort(x, axis). Otherwise, fill x with fill_value. Sort it. Set a mask where the result is equal to fill_value. Note that this may have unintended consequences if the data contains the fill value at a non-masked site. If fill_value is not given the default fill value for x's type will be used. """ if fill_value is None: fill_value = default_fill_value (x) d = filled(x, fill_value) s = fromnumeric.sort(d, axis) if getmask(x) is nomask: return masked_array(s) return masked_values(s, fill_value, copy=0) def diagonal(a, k = 0, axis1=0, axis2=1): """diagonal(a,k=0,axis1=0, axis2=1) = the k'th diagonal of a""" d = fromnumeric.diagonal(filled(a), k, axis1, axis2) m = getmask(a) if m is nomask: return masked_array(d, m) else: return masked_array(d, fromnumeric.diagonal(m, k, axis1, axis2)) def trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None): """trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals (defined by the last two dimenions) of the array. """ return diagonal(a, offset, axis1, axis2).sum(dtype=dtype) def argsort (x, axis = -1, out=None, fill_value=None): """Treating masked values as if they have the value fill_value, return sort indices for sorting along given axis. if fill_value is None, use get_fill_value(x) Returns a numpy array. """ d = filled(x, fill_value) return fromnumeric.argsort(d, axis) def argmin (x, axis = -1, out=None, fill_value=None): """Treating masked values as if they have the value fill_value, return indices for minimum values along given axis. if fill_value is None, use get_fill_value(x). Returns a numpy array if x has more than one dimension. Otherwise, returns a scalar index. """ d = filled(x, fill_value) return fromnumeric.argmin(d, axis) def argmax (x, axis = -1, out=None, fill_value=None): """Treating masked values as if they have the value fill_value, return sort indices for maximum along given axis. if fill_value is None, use -get_fill_value(x) if it exists. Returns a numpy array if x has more than one dimension. Otherwise, returns a scalar index. """ if fill_value is None: fill_value = default_fill_value (x) try: fill_value = - fill_value except: pass d = filled(x, fill_value) return fromnumeric.argmax(d, axis) def fromfunction (f, s): """apply f to s to create array as in umath.""" return masked_array(numeric.fromfunction(f, s)) def asarray(data, dtype=None): """asarray(data, dtype) = array(data, dtype, copy=0) """ if isinstance(data, MaskedArray) and \ (dtype is None or dtype == data.dtype): return data return array(data, dtype=dtype, copy=0) # Add methods to support ndarray interface # XXX: I is better to to change the masked_*_operation adaptors # XXX: to wrap ndarray methods directly to create ma.array methods. from types import MethodType def _m(f): return MethodType(f, None, array) def not_implemented(*args, **kwds): raise NotImplementedError("not yet implemented for numpy.ma arrays") array.all = _m(alltrue) array.any = _m(sometrue) array.argmax = _m(argmax) array.argmin = _m(argmin) array.argsort = _m(argsort) array.base = property(_m(not_implemented)) array.byteswap = _m(not_implemented) def _choose(self, *args, **kwds): return choose(self, args) array.choose = _m(_choose) del _choose def _clip(self,a_min,a_max,out=None): return MaskedArray(data = self.data.clip(asarray(a_min).data, asarray(a_max).data), mask = mask_or(self.mask, mask_or(getmask(a_min),getmask(a_max)))) array.clip = _m(_clip) def _compress(self, cond, axis=None, out=None): return compress(cond, self, axis) array.compress = _m(_compress) del _compress array.conj = array.conjugate = _m(conjugate) array.copy = _m(not_implemented) def _cumprod(self, axis=None, dtype=None, out=None): m = self.mask if m is not nomask: m = umath.logical_or.accumulate(self.mask, axis) return MaskedArray(data = self.filled(1).cumprod(axis, dtype), mask=m) array.cumprod = _m(_cumprod) def _cumsum(self, axis=None, dtype=None, out=None): m = self.mask if m is not nomask: m = umath.logical_or.accumulate(self.mask, axis) return MaskedArray(data=self.filled(0).cumsum(axis, dtype), mask=m) array.cumsum = _m(_cumsum) array.diagonal = _m(diagonal) array.dump = _m(not_implemented) array.dumps = _m(not_implemented) array.fill = _m(not_implemented) array.flags = property(_m(not_implemented)) array.flatten = _m(ravel) array.getfield = _m(not_implemented) def _max(a, axis=None, out=None): if out is not None: raise TypeError("Output arrays Unsupported for masked arrays") if axis is None: return maximum(a) else: return maximum.reduce(a, axis) array.max = _m(_max) del _max def _min(a, axis=None, out=None): if out is not None: raise TypeError("Output arrays Unsupported for masked arrays") if axis is None: return minimum(a) else: return minimum.reduce(a, axis) array.min = _m(_min) del _min array.mean = _m(new_average) array.nbytes = property(_m(not_implemented)) array.newbyteorder = _m(not_implemented) array.nonzero = _m(nonzero) array.prod = _m(product) def _ptp(a,axis=None,out=None): return a.max(axis,out)-a.min(axis) array.ptp = _m(_ptp) array.repeat = _m(new_repeat) array.resize = _m(resize) array.searchsorted = _m(not_implemented) array.setfield = _m(not_implemented) array.setflags = _m(not_implemented) array.sort = _m(not_implemented) # NB: ndarray.sort is inplace def _squeeze(self): try: result = MaskedArray(data = self.data.squeeze(), mask = self.mask.squeeze()) except AttributeError: result = _wrapit(self, 'squeeze') return result array.squeeze = _m(_squeeze) array.strides = property(_m(not_implemented)) array.sum = _m(sum) def _swapaxes(self,axis1,axis2): return MaskedArray(data = self.data.swapaxes(axis1, axis2), mask = self.mask.swapaxes(axis1, axis2)) array.swapaxes = _m(_swapaxes) array.take = _m(new_take) array.tofile = _m(not_implemented) array.trace = _m(trace) array.transpose = _m(transpose) def _var(self,axis=None,dtype=None, out=None): if axis is None: return numeric.asarray(self.compressed()).var() a = self.swapaxes(axis,0) a = a - a.mean(axis=0) a *= a a /= a.count(axis=0) return a.swapaxes(0,axis).sum(axis) def _std(self,axis=None, dtype=None, out=None): return (self.var(axis,dtype))**0.5 array.var = _m(_var) array.std = _m(_std) array.view = _m(not_implemented) array.round = _m(around) del _m, MethodType, not_implemented masked = MaskedArray(0, int, mask=1) def repeat(a, repeats, axis=0): return new_repeat(a, repeats, axis) def average(a, axis=0, weights=None, returned=0): return new_average(a, axis, weights, returned) def take(a, indices, axis=0): return new_take(a, indices, axis)