GREEN FORMS AND THE ARITHMETIC SIEGEL-WEIL FORMULA

LUIS E. GARCIA AND SIDDARTH SANKARAN

ABSTRACT. We construct natural Green forms for special cycles in orthogonal and unitary
Shimura varieties, in all codimensions, and, for compact Shimura varieties of type O(p, 2)
and U(p, 1), we show that the resulting local archimedean height pairings are related to
special values of derivatives of Siegel Eisentein series. A conjecture put forward by Kudla
relates these derivatives to arithmetic intersections of special cycles, and our results settle
the part of his conjecture involving local archimedean heights.
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1. INTRODUCTION

The Arakelov theory of Shimura varieties has been intensively studied since, about
twenty years ago, Kudla [25] launched a program relating families of special cycles in
their arithmetic Chow groups with derivatives of Eisenstein series and Rankin-Selberg L-
functions.

This paper is a contribution to the archimedean aspects of this theory. Building upon
previous work of the first author [11], we use Quillen’s formalism of superconnections [41]
as developed by Bismut-Gillet-Soulé [2, 3] to construct natural Green forms for special
cycles, in all codimensions, on orthogonal and unitary Shimura varieties. We show that
these forms have good functorial properties and are compatible with star products. Next,
specializing to compact Shimura varieties of type GSpin(p,2) or U(p,1), we study these
Green forms using the theta correspondence, relating them to Siegel Eisenstein series.

Our main theorem is an explicit formula for the local archimedean height of a special
cycle in terms of a Fourier coefficient of a special derivative of an Eisenstein series. This
result provides compelling evidence for Kudla’s conjectural identity, termed the arithmetic
Siegel- Weil formula, between special derivatives of Eisenstein series and generating series
of arithmetic heights of special cycles. More precisely, we show that the non-holomorphic
terms on both sides are equal for these Shimura varieties.

Our methods combine Quillen’s extension of Chern-Weil theory with the theory of the
theta correspondence. This allows us to use representation theoretic arguments and the
Siegel-Weil formula when computing archimedean local heights. In this way, we avoid the
highly involved computations that feature in prior work, and give a conceptual explanation
for the equality of non-holomorphic terms in Kudla’s conjectural identities.

1.1. Main results. The remainder of the introduction outlines our results in more detail.
Throughout the paper, we treat GSpin(p, 2) and U(p, ¢) Shimura varieties in parallel; these
are referred to as the orthogonal and unitary cases, respectively.

Let F denote a totally real field of degree [F' : Q] = d and let E be a CM extension
of F' equipped with a fixed CM type. Suppose that V is a quadratic space over F' in the
orthogonal case (resp. a Hermitian space over E in the unitary case). We assume that
there is one archimedean place o; such that V,, satisfies the signature condition

2) with 0 th 1
signature(V,,) = {(p7 ) with p > orthogonal case, (1.1.1)

(p,q) with p,¢ > 0 unitary case,
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and V is positive definite at all other archimedean places. Let

Respg GSpin(V), orthogonal case,

= , (1.1.2)
Resp/q U(V), unitary case,

and D be the hermitian symmetric domain attached to H(R); concretely, D parametrizes
oriented negative-definite real planes (resp. negative definite complex g-dimensional sub-
spaces) in V,, in the orthogonal (resp. unitary) case. For a fixed compact open subgroup
K C H(Ay), let Xv i be the corresponding Shimura variety, which has a canonical model
over o1(F') (resp. 01(£)). Then Xy i is a finite disjoint union

Xvx = [[T\D (1.1.3)

of quotients of D by certain arithmetic subgroups I' C H(Q). Let Xx denote the variety
obtained by viewing the canonical model of Xy g as a variety over Spec(Q). The complex
points

Xk (C) = [ [ Xvpw.ie (1.1.4)
are a finite disjoint union of Shimura varieties attached to V[1] := V and its nearby spaces

V[k] (see Section 4).
The variety X is equipped with a family of rational special cycles

{Z(T,¢5)}, (1.1.5)
as defined by Kudla [24], that are parametrized by pairs (T, ¢¢) consisting of a matrix
T € Sym, (F) (resp. T € Her,(E)) and a K-invariant Schwartz function ¢ € S(V(A;)")E.
These cycles generalize the construction of Heegner points on modular curves and Hirzebruch-
Zagier cycles on Hilbert modular surfaces.

The irreducible components of the cycle Z(T,¢s) on Xy g (say) admit a complex uni-
formization by certain complex submanifolds Dy, of D defined as follows: for a collection
of vectors v = (v1,...,v,) € V" satisfying

T(v) = (%Q(vi’vj))i,jzl,“.,r =T, (1.1.6)
let
Dy == {z€D|zLlvy foralli=1,...,7}, (1.1.7)
so that Dy, if non-empty, is a hermitian symmetric subdomain of ID of codimension 7 :=
rk(7T') in the orthogonal case (resp. 7 := ¢ - rk(7’) in the unitary case).

As a first step towards defining a Green current for Z(T,¢y), we construct a current

g°(v) on D satisfying the equation

dd°g°(v) + opy AT = (0% (V). (1.1.8)
Here dp, is the current defined by integration along Dy and gv is the top Chern form
of the dual of the tautological bundle &, see Section 2.2 below; the form ¢f,,(v) =
> (T M) o (v) is, up to a normalizing factor, the Schwartz!' form pxy(v) € A™ (D)
introduced by Kudla and Millson [29].

1This means that prm(v) and all its derivatives are of exponential decay in v.
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In recent work [11], the first author introduced a superconnection Vy on I and showed
that the component of degree (7, ) of the corresponding Chern form agrees with ¢f,(v).
This allows us to apply the general results of [2] to obtain an explicit natural form v°(v)
satisfying the transgression formula

d
ddv°(Vtv) = —t ﬁgof(M(\/iv), t € Ryo. (1.1.9)

Moreover, the forms v°(tv) and ¢°(tv) are of exponential decay in ¢ on D\Dy.
To define g°(v), assume first that 7" is a non-degenerate matrix (so that r = rk(7")) and
consider the integral
o > o dt
g°(v) = / v (\/iv)? (1.1.10)
1
initially defined on D\DDy,. The estimates in [3] show that g°(v) is smooth on D\Dy, locally
integrable on D, and satisfies (1.1.8), which in this case reduces to Green’s equation; in
other words, g°(v) is a Green form for Dy, in the terminology of [6, §1.1].

When T is degenerate, the expression (1.1.10) is not locally integrable on D in general.
We will circumvent this problem by regularizing the integral and obtain a current g°(v)
satisfying (1.1.8) for every v, see Section 2.6.1.

Returning to the special cycles Z(T, ), we define currents g(7,y,¢s) on Xg(C) as
weighted sums of g°(v) over vectors v satisfying T'(v) = T’; these currents also depend on
a parameter y € Sym,.(F' ®g R)s or y € Her,(E ®qg R)s0 in the orthogonal or unitary
cases, respectively.

Theorem 1.1.1. The current g(T,y, ) satisfies

—rk(T
dd“g(T,y, 5) + dz(rep)@©) N Qv @ = Ty, ep), (1.1.11)
where w(T',y, py) is the T th coefficient in the q-expansion of the theta function attached

to YrM ® 5.
Moreover, if T1 and Ty are non-degenerate and Z(T1,p1) and Z(Ta, p2) intersect prop-
erly, then

o(T,yne1) #8(To,ya,02) = Y, 8(T,(Yy,), 01 @pa)  (mod imd +imd°).

(T =
T=( * T2)

Note that our construction is valid for all T'; for example, when V is anisotropic we
obtain

8(0,5,01)|x,, ) = —25(0) log(det or(y)) - cne) -1 (€Y, V)" A Q! (1.1.12)

for each real embedding oy of F.

When T is non-degenerate, (1.1.11) is Green’s equation for the cycle Z(T', ¢¢) and hence
9(T,y,py) is a Green current (in fact, a Green form) for Z (T, ps). When T is degenerate,
the cycle Z(T', p¢) appears in the “wrong” codimension; following [24], this deficiency can
be rectified by intersecting with a power of the tautological bundle and, as we discuss in
Section 5.4, solutions to (1.1.11) correspond naturally to Green currents for this modified
cycle.
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Our main result computes local archimedean heights of special cycles in terms of Siegel
Eisenstein series. We restrict our attention to the case that V is anisotropic, so that the
corresponding Shimura variety is compact; our assumption on the signature of V ensures
that this is the case whenever F' # Q. We further assume that ¢ = 1 in the unitary case.
Fix an integer » < p+ 1 and let

1—
so = 7%, (1.1.13)

and, for a Schwartz function ¢y € S(V(A;)")E, consider the corresponding genus r Siegel
Eisenstein series

E(1,®;, ) ZET 7,84, 5) (1.1.14)

of parallel scalar weight | = dimp(V)/2 (resp. I = dimpg(V)), see Section 5.2; here 7 =
X + iy € HY, where H, is the Siegel (resp. Hermitian) upper half-space of genus r. Let

d
Ep(t,®,50) = 2. Er(T, 8y, 5) (1.1.15)

S$=50
denote the derivative of its Fourier coeflicient Er (7, ®y,s) at s = so.

Theorem 1.1.2. Suppose that V is anisotropic and, in the unitary case, that ¢ = 1. Then
for any T, there is an explicit constant (T, ®¢), given by Definition 5.2.11, such that

(=1)"ko
QVOI(XVJ(, Qg)

/[ ©) 9(T,y,f) N QP‘H rqf = Ep(r, @4, 80) — H(T,be)qT. (1.1.16)

Here ¢ = e2™"(T7) and ko =1 if so > 0 and kg = 2 if so = 0.
As a special case, suppose that T is non-degenerate, so that there is a factorization
ET(T,CI)f,S) = WToo( (I) ) WTf(e CI)f, ), (1.1.17)

where the factors on the right are the products of the archimedean and non-archimedean
local Whittaker functionals, respectively. Let

E}(T,‘I’f,So)oo = Wéw’oo(T,CI)éo,So)-WTyf(e,(I)f,S()) (1.1.18)

denote the archimedean contribution to the special derivative. Then Theorem 1.1.2 spe-
cializes to the identity

(—=1)"ko
2V01(XV7K, Qg)

if T' is not totally positive definite, and to

(—1)"ko / fl—r T
T,y, o) A QL

/[ o 9(T,y,05) NOETTqT = B (7,85, 50) 00 (1.1.19)

T (um/2)

ud r L
= Ep(1,9f,50)00 — Er(T, ®§, 80) <2 (rlogw — Fr(Lm/2)> + ilogNF/Q detT)

(1.1.20)
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if T is totally positive definite; here + = 1 (resp. ¢ = 2) in the orthogonal (resp. unitary)
case.

When T is non-degenerate, the proof of the theorem can be summarized as follows:
the current g(7,y,¢y) is given by a sum of integrals of the form (1.1.10), for vectors v
with T'(v) = T. Interchanging the order of integration, the Siegel-Weil formula relates the
left hand side of (1.1.16) to the Fourier coefficient Ep (7, ®(v), so) of an Eisenstein series
attached to the Schwartz form

v(v) = e 2T 0y, (1.1.21)

We then analyze the behaviour of v(v) under the action of the metaplectic group Mp,, (R)
(resp. the unitary group U(r,r)) via the Weil representation. A multiplicity one argument
allows us to identify ®(v) explicitly, and in turn relate Ep(7,®(v),so) to EL(T,®f, s0)
via a lowering operator. To conclude the proof, we apply work of Shimura [45] to derive
asymptotic estimates for the Fourier coeflicients Ep (T, ®¢,s) as 'y — oc.

When T is degenerate, the idea is roughly the same, though additional care is required in
handling the regularization, as well as establishing the required asymptotics of Ep (T, ®¢, s).

Prior results of this form have appeared in only a few special cases in the literature. For
divisors, the Green function we define specializes to the one defined by Kudla [25], and
Theorem 1.1.2 was proved in [33] for Shimura curves; a related result for U(p, 1) Shimura
varieties over imaginary quadratic fields was proved by Ehlen and the second author [9].

In higher codimension much less was known. For (arithmetic) codimension two cycles on
Shimura curves, Kudla [25] defined Green currents using star products; this construction
does not coincide with ours, but does agree modulo exact currents by Theorem 1.1.1, and
Theorem 1.1.2 reduces to results proved by elaborate explicit computations in [25] and [34].
Similar methods were used by Liu [37] for arithmetic codimension p 4 1 cycles on U(p, 1)
to prove a star product version of the particular case of the theorem given by (1.1.19).
Again in the non-degenerate case, a recent preprint of Bruinier and Yang [15] proves a star
product version of (1.1.19) for arithmetic codimension p+ 1 cycles on O(p, 2) by a different
argument involving induction on p.

Finally, we place our results in the context of Kudla’s conjectures on special cycles in
arithmetic Chow groups. Putting aside the difficult issues involved in constructing integral
models, the integral appearing in Theorem 1.1.2 is the archimedean contribution to the
height of an arithmetic cycle lifting Z(T', ¢); according to Kudla’s conjectural arithmetic
Siegel-Weil formula, this height should equal the Fourier coefficient of an appropriately
normalized version of the Eisenstein series appearing above. The remaining contribution
to the arithmetic height is purely algebro-geometric in nature, and in particular should be
independent of y; thus Theorem 1.1.2 asserts that the non-holomorphic terms in Kudla’s
conjectural identity coincide. Put another way, our theorem reduces Kudla’s conjecture to
a relatively explicit conjectural formula for the analogue of the Faltings height (as in [6])
of a special cycle Z(T, ¢y) in terms of 7" and ¢y; we discuss this point in more detail in
Section 5.5.
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1.2. Notation and conventions. Let K be a field endowed with a (possibly trivial)
involution a — a. We write Sym,(K) (resp. Her,(K)) for the group of symmetric (resp.
hermitian) r-by-r matrices with coefficients in K under matrix addition. For a € GL,(K)
and b € Her,(K), let

m(a) = < . > n(b) = <10 1br>, wy = (—17« 1?). (1.2.1)

For z = (x1,...,2,) € K", we write

Z1
d(z) = diag(x1,...,2,) = . (1.2.2)

Ly

We fix the following standard choice of additive character ¥ = ¢pp : F' — C* when F'is a
local field of characteristic zero. If F = R we set ¢)(z) = €*™; if F = Q,, we choose ¢ = Yo,
so that ¢(p~') = e~2™/P; if F is a finite extension of Q, we set ¥r(z) = g, (trr/q, (7))
If F is a global field, we write Ay for the ideles of F' and set ¢p : F*\Aj — C*, where
Yr = ®,9p, and the product runs over all places v of F'.

We denote the connected component of the identity of a Lie group G by G°.

We denote by A*(X) (resp. D*(X)) the space of differential forms (resp. currents) on a
smooth manifold X. Given a € A*(X) = @p>0A*(X), we write ) for its component of
degree k. If « is closed, we write [a] € H*(X) for the cohomology class defined by a.

If X is a complex manifold, we let d° = (47i)~1(0 — ), so that dd® = (—2mi)~190.
We denote by * the operator on @;>0A**(X) acting by multiplication by (—2mi)~* on
ARF(X). The canonical orientation on X induces an inclusion AP4(X) C DP9(X) sending
a differential form w to the current given by integration against w on X, which we will
denote by [w] or simply by w.

If f(s) is a meromorphic function of a complex variable s, we write Cl(; f(s) for the
5=

constant term of its Laurent expansion at s = 0.
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2. GREEN FORMS ON HERMITIAN SYMMETRIC DOMAINS

Let X be a complex manifold and Z C X be a closed irreducible analytic subset of
codimension c¢. A Green current for Z is a current gz € D¢~ 1¢71(X) such that

ddgy + 67 = [WZ], (2.0.1)

where 07 denotes the current of integration on Z and wy is a smooth differential form on
X. A Green form is a Green current given by a form that is locally integrable on X and
smooth on X — Z (see [6, §1.1]).

Here we will construct Green forms for certain complex submanifolds of the hermitian
symmetric space D attached to O(p,2) or U(p, q), where p,q > 0. Throughout the paper
we will refer to the case involving O(p, 2) as case 1 (or as the orthogonal case) and to the
case involving U(p, ¢) as case 2 (or as the unitary case). Our methods apply uniformly in
both cases.

There is a natural hermitian holomorphic vector bundle £ over D, and the submanifolds
of D that we consider are the zero loci Z(s) of certain natural holomorphic sections s €
HO((EY)") (r > 1). In this setting, the results in [4, 2, 3] (reviewed in Section 2.1) can
be applied to construct some natural differential forms on I, as we show in Section 2.2.
We give explicit examples in Section 2.3, showing that this construction recovers some
differential forms considered in previous work on special cycles (cf. [25, 28]), and then
(Sections 2.4 and 2.5) we establish the main properties of these forms. Using these results,
in Section 2.6 we define some currents related to Z(s), including a Green form for Z(s).
The final Section 2.7 considers star products and will be used in the proof of Theorem 4.5.1.

2.1. Superconnections and characteristic forms of Koszul complexes. In this sec-
tion we review the construction of some characteristic differential forms attached to a pair
(€,u), where £ is a holomorphic hermitian vector bundle and u is a holomorphic section of
its dual. The results in this section are due to Quillen [41], Bismut [4] and Bismut-Gillet-
Soulé [2, 3].

We will use Quillen’s formalism of superconnections and related notions of superalgebra.
For more details, the reader is referred to [41, 1]. We briefly recall that a super vector space
V is just a complex Z/2Z-graded vector space; we write V' = Vi @ V; and refer to Vj and
V1 as the even and odd part of V' respectively. We write 7 for the endomorphism of V'
determined by 7(v) = (—1)%&(")y, The supertrace trg: End(V) — C is the linear form
defined by

trg(u) = tr(ru), (2.1.1)
where tr denotes the usual trace. Thus if u = (2%) with a € End(Vp), d € End(V}),
b € Hom(V1,Vp) and ¢ € Hom(Vp, V1), then trg(u) = tr(a) — tr(d).

2.1.1.  Let &€ be a holomorphic vector bundle on a complex manifold X and v € H*(£Y) be
a holomorphic section of its dual £Y. Let K (u) be the Koszul complex of u: its underlying
vector bundle is the exterior algebra AE and its differential u : AFE — AF~1E is defined by

uler Ao Nep) = Y (=) ufe)er Ao AE A Ney. (2.1.2)
1<i<k
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The grading on K (u) is given by K (u) ™% = A*E, so that K (u) is supported in non-positive
degrees. We identify K (u) with the corresponding complex of sheaves of sections of AFE,
and say that u is a regular section if the cohomology of K (u) vanishes in negative degrees.
If u is regular with zero locus Z(u), then K(u) is quasi-isomorphic to Oy, (regarded as
a complex supported in degree zero).

2.1.2. Assume now that & is endowed with a hermitian metric || - ||¢. This induces a
hermitian metric on AE: for any = € X, the subspace A*E, is orthogonal to AJE, if
j # k, and an orthonormal basis of AFE, is given by all elements e;, A --- A e;,, where
1 <iyp <+ <ip <rk€ and {ey,...,exe} is an orthonormal basis of £,. Let V be the
corresponding Chern connection on AE. We regard AE as a super vector bundle, with even
part A®°"E and odd part A°44E. and u as an odd endomorphism of AE. Let u* be the
adjoint of u, define the superconnection

Vu=V+iv2r(u+u") (2.1.3)
on A&, and consider Quillen’s Chern form
P° (1) = @°(E, || e u) = trg(eVe) € @) AP (X). (2.1.4)
k>0

We recall some properties of ¢°(u) established (in greater generality) by Quillen [41].
The form ¢°(u) is closed and functorial: given a holomorphic map of complex manifolds
f X' — X, consider the pullback bundle (f*&, f*|| -||) and the pullback section f*u €
HO(f*€Y). Then

@ (ffu) = [7°(u). (2.1.5)
Let * be the operator on @y>0A%*(X) acting by multiplication by (—2mi)~* on AFF(X).
Writing [¢°(u)*] for the cohomology class of ¢°(u)* and ch(-) for the Chern character, we
have

[0°(u)*] = ch(AE) = ch(A®RE) — ch(A°ME). (2.1.6)

2.1.3. In particular, [¢°(u)*] depends on &£, but not on u. Thus the forms ¢°(tu) for
t € R-g all belong to the same cohomology class, but as ¢ — +o0o they concentrate on the
zero locus of u. More precisely, recall that V2 is an even element of the (super)algebra

A(X,End(AE)) := A*(X)®coo(x)T(End(AE)). (2.1.7)

Given a relatively compact open subset U C X whose closure U is disjoint from Z(u)
and a non-negative integer k, consider an algebra seminorm || - ||z ¢, on A(X,End(AE))

measuring uniform convergence on U of partial derivatives of order at most k. We will
need an estimate of ||eViu |77 & 5 for large ¢. To obtain it, write V3, = (VZ,)o] + R, where

(V%u)[o] has form-degree zero and Ry, has form-degree > 1. Note that Ry, is nilpotent and
that

(Vfu)[o] = —2n(tu + tu*)? = —21t*||ul|2 ®@id € A°(X) ® End(AE) (2.1.8)



GREEN FORMS AND THE ARITHMETIC SIEGEL-WEIL FORMULA 10

(here || - ||ev denotes the unique metric on £V such that the isomorphism £¥ ~ & induced
by || - ||¢ is an isometry). In particular, (Vfu)[o] and Ry, commute. Hence we have
Vi — (V20 R

(2.1.9)

N
—2mt?||u||? 1 pk
e—2r?lul® S 4 Rk
k=0

with N < dimg X. Let a be any positive real number strictly less than min_ g {||u(z)||3v }.
Since Ry, is polynomial in ¢, it follows from (2.1.9) that

Ve o, < Ce 2™ e Ry (2.1.10)
for some positive real number C. Thus a similar bound holds for ¢°(tu).

2.1.4. Tt follows from (2.1.6) that the form 4 °(#1/2u) (for t € Rs) is exact, and one can
ask for a construction of a functorial transgression of this form. Bismut, Gillet and Soulé
[2] construct such a transgression, and the resulting form is key to our results. To define
it, let N € End(A&) be the number operator acting on A*E€ by multiplication by —k and
set

Vo(u) = tr(NeVu) € @5 AR (X (2.1.11)

k>0

Then v°(u) is functorial with respect to holomorphic maps f : X’ — X and satisfies ([2,
Thm. 1.15))

- %851/°(t1/2u) = %wtl/%), t>0. (2.1.12)

2.1.5. Assume that the section u has no zeroes on X. Then the Koszul complex K(u) is
acyclic and (2.1.6) shows that ¢°(u) is exact. In this case one can define a characteristic
form £°(u) giving a 00-transgression of ¢°(u) by setting

+oo
£ (u) = /1 Vo (12 )‘f (2.1.13)

The bound (2.1.10) implies that all partial derivatives of v°(¢t'/?u) decrease rapidly as t —
4o00. In particular, the integral converges and defines a form in EBkZOAk’k (X); moreover,
one can differentiate under the integral sign, so that by (2.1.12) we have

00€° (u) = ¢°(u). (2.1.14)

The form £° is functorial with respect to holomorphic maps X’ — X. In addition, £°(tu)
(for t € Ry) is rapidly decreasing as t — oo. More precisely, given a relatively compact
open subset U of X with closure U and a positive integer k, we denote by | - ||z, any

seminorm on A*(X) measuring uniform convergence on U of partial derivatives of order at
most k. The bound (2.1.10) shows that

€0 (tu) |7, < Ce ™ for all ¢ > 1, (2.1.15)

for some positive constants a and C.
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2.1.6. We now go back to the general case where £ is a hermitian holomorphic vector
bundle on X and u € H°(Y), and now make the assumption that u is regular (see Sec-
tion 2.1.1) and the zero locus Z(u) is smooth; thus K (u) is a resolution of O,y and the
codimension of Z(u) (if non-empty) in X equals rk(£). In this setting, the convergence of
©°(tu) and v°(tu) as t — oo was studied by Bismut in [4], whose main result we now state,
for the reader’s convenience, in a form sufficient for our purposes.

Denote by Ng the real conormal bundle to Z(u) in X and let D*ﬁ(X) C D*(X) be the
subset of currents on X whose wave front set is contained in Ny (see [16, Chap. VIII] for
the definition and properties of wave front sets). Hormander [16, p. 262] defines a family
of seminorms on D}‘\,]R,f (X) as follows. Let U C X be an open set that is holomorphically

equivalent to an open ball of CV (N = dim X) and write w ++ & for the Fourier transform
on CV. We identify the real cotangent bundle TpU with U x R?Y. Given a closed cone

I' ¢ R?N such that T'N N} = 0, a compactly supported smooth differential form ¢ on U
and a positive integer m, define

pur.gm(w) = Sup [vI™[¢w(v)],  w € Dy« (X). (2.1.16)
veE

Then pyr ¢,m is a seminorm on D}‘Vﬁ£ (X). For a sequence wy, € D7V]f£ (X) and w € Dj ];g(X)v
we say that w, — w in D}"\,]f£ (X) if wy, converges weakly to w in D*(X) and

PULgm(wn —w) = 0 as n — oo, (2.1.17)

for every choice of U, T', ¢ and m.

For a compact subset K C X and a positive integer k, let || - HC@(X) be a norm on the
space of smooth differential forms on X with support contained in K such that ||wy| — 0
if and only if w,, and its partial derivatives up to order k converge uniformly to 0.

We can now state Bismut’s main result; we note that the bundle Ny is canonically
identified with &|(,), and Assumption (A) in [4, p. 68] holds for the metric on Ny making
this identification an isometry. Note that while the results of [4] are formulated for compact
manifolds, the estimates cited below hold for non-compact manifolds, provided that one
considers differential forms p with support contained in a fixed compact set K and allows
the constants Cj in loc. cit. to vary with K (cf. [3, p. 263]).

Theorem 2.1.7 ([4, Theorem 3.2, Theorem 4.3]). Ast — oo, we have

©° (tu)y, — 0z(u) in Dy=(X),
R (2.1.18)
VO (tu) fgri(ey—g) — 0 in Dy« (X).

More precisely, let k > 1, K be a compact subset of X and i : Z(u) — X be the inclusion
map. There exists a constant C, > 0 such that, if p € A*(X) has support contained in
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K, then fort > 1

o Ck k
/(’D(tl/ fark(e )MM—/ 'n| <=7
i o (2.1.19)
Ckk
‘/X” (") or(e)—2) A 1 Vi lllen (x)
For fized U,T', ¢ and m as above and t > 1, we have
pur.gm ( °(t'/? W) fork(e)] — 5Z(u)) =0t /?),
[2rk(€)] o120
pU,F,dam( °(t ) i) -2 ]) = 0(t71/?).
Define
g°(u) = &°(u )[Qrk £) 2}
(&) > dt (2.1.21)
. Vo (t'/%u) ) j2rk(£)— 25

The following proposition is contained in [3]. It shows that g°(u) is a Green form for Z(u).

Proposition 2.1.8. (1) The integral (2.1.21) converges to a smooth differential form
go(u) c Ark(&‘)fl,rk(g)fl(X _ Z(u))
(2) The form g°(u) is locally integrable on X.
(8) As currents on X we have

dd®g®(u) + dz) = ©° () fau(e))-
where dd® = i@g. Moreover, the wave front set of g°(u) is contained in N.

Proof. Part (1) has already been discussed in Section 2.1.5.

Part (2) is shown to hold in the course of the proof of [3, Thm. 3.3]. In that paper, one
considers an immersion i: M’ — M of complex manifolds, a vector bundle  on M’ and
a complex (&, v) of holomorphic hermitian vector bundles on M that gives a resolution of
ixOp(n). Assume that Z(u) is non-empty. We set M = X, M’ = Z(u), n = Og(,), and
for the complex (£, v) we take the Koszul complex (A€, u); with these choices, the form
v°(tY/%u) agrees with the form oy defined in [3, (3 12)].

Let z € Z(u), choose local coordinates z1,...,zy (N = dim X ) around x such that Z(u)
is defined by the equations z; = --- = zye) = 0 and let y| = (|21)* + -+ + |Zrk(g)|2)1/2.
Since the complex conormal bundle to Z(u) in X is canonically identified with £|4(,, the
equations [3, (3.24), (3.26)] show that

ak(e)—1 [ 1/2,, dt
Yl . vo(t )t (2.1.22)

(2rk(€)—1

is bounded in a neighborhood of x; part (2) follows since |y|~ ) is locally integrable

around z.
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To prove (3), let 8 be a compactly supported form on X. Then

Jowwndas= tm [ [ o P 0 a5

:agrfoo/ / dd®v W) fark(e) 2]/\5

(2.1.23)
L 1/2,, at
_aEI-&I-loo/ / Rt )[2rk ])/\Bt
. ° T or, 1/2, \*
= /X ¢ (Wiangen N B ag{{loo @ ey A B
Here the first equality follows from dominated convergence since the integrals
a dt
‘y’2rk(8)—1/ o (#1120 (2.1.24)
1

for a > 1 are uniformly bounded in a neighborhood of z, as shown in the proof of [3, Thm.
3.3]. The third equality follows from (2.1.12). This establishes the identity of currents in
(3) since g0°(a1/2u)r2rk(5)] approaches dz(,) as a — +oc by Theorem 2.1.7. The statement

regarding the wave front set of g°(u) follows from (2.1.20), as explained in [3, p. 266-
267]. O

2.2. Hermitian symmetric domains of orthogonal and unitary groups.

2.2.1. Let
R casel
K= { C case 2 (2.2.1)
and
id case 1
- { complex conjugation case 2. (2.2.2)

Let m > 2 be a positive integer and let V be a K-vector space of dimension m endowed
with a non-degenerate o-Hermitian bilinear form ) of signature (p,q). We assume that
pg # 0 and in case 1 we further assume that ¢ = 2. Let U(V) := Aut(V, Q) denote its
isometry group, and set

_ 0~ SO(®»2)° casel
G=UV)= { U(p,q) case 2. (2.2.3)

We fix an orthogonal decomposition V = VT®V ™ with VT and V™~ positive and negative
definite respectively; in case 1 we also fix an orientation of V~. Let K be the centralizer
in G of the isometry of V acting as the identity on V' and as —1 on V. Then K is a
maximal compact subgroup of G, given by

_ {SO(V+) x SO(V™), case 1,

U(VT) x U(V™), case 2. (224)
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Let Gr(gq,V) be the Grassmannian of oriented two-dimensional subspaces of V' in case
1, which consists of two copies of the usual Grassmannian. In case 2, we take Gr(q, V) to
be the space of g-dimensional (complex) subspaces of V. Let

D={ze Cr(qg,V)| Q. < 0} (2.2.5)

be the open subset of Gr(gq, V') consisting of negative definite subspaces. Then D has two
connected components in case 1 and is connected in case 2. Let zg € ID be the point
corresponding to V'~ and D' be the connected component of DD containing z9. Then G
acts transitively on Dt and the stabilizer of 2y is K; thus DT ~ G/K is the symmetric
domain associated with G. In case 2 it is clear that D carries a U(V)-invariant complex
structure; to see this in case 1, one can use the model

D~ {[v] € P(V(C))|Q(v,v) =0, Q(v,v) < 0}. (2.2.6)

The correspondence between both models sends z € D to the line [e, + iel] € P(V(C)),
where e, and ¢/, form an oriented orthogonal basis of z satisfying Q(e.,e,) = Q(€., e.).

2.2.2. Let &£ be the tautological bundle on D, whose fiber over z € I is the subspace
z C V. Thus € is a holomorphic line bundle in case 1 (for it corresponds to the pullback
of Op(v(cy)(—1) under the isomorphism (2.2.6)), and a holomorphic vector bundle of rank
q in case 2. It carries a natural hermitian metric hg defined by

retw) ={ T e (227)

for v, € £, = z. This metric is equivariant for the natural U(V)-equivariant structure on
E. We denote by V¢ the corresponding Chern connection on £ and by

Q= Qg = P(E,Ve)* = ()" det(V2) € ARETRE (D) (2.2.8)

its Chern-Weil form of top degree.
We denote by p the Kéahler form

QOp = 00log kp(z, 2), (2.2.9)

where kp is the Bergmann kernel function of D. As shown in [50, p. 219], the invariant
form —;=Qp agrees with the first Chern form cl(Qt)?p) of the canonical bundle Qggp on any
quotient X = I'\D™ by a discrete torsion free subgroup I' C G. When & has rank one,
the canonical bundle on D is naturally isomorphic to £%P in case 1 (as an application of
the adjunction formula shows) and to £2(P*t1) in case 2, and so in both cases —=Qp is a
positive integral multiple of ()¢.

An element v € V defines a global holomorphic section s, of £V: for v/, € £,, we define

sy(v}) = Q(v},v). (2.2.10)
Let D, be the zero locus of s, on D and set D} =D, ND*. We have
D, ={z€Dfv L 2} (2.2.11)

and so D, is non-empty only if Q(v,v) > 0 or v = 0. Assume that Q(v,v) > 0, so that the
orthogonal complement v* of v has signature (p — 1, ¢). Writing G, for the stabilizer of v
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in G, we find that G? ~ Aut(v’, Q) acts transitively on D with stabilizers isomorphic to
SO(p — 1) x SO(q) in case 1 and to U(p — 1) x U(q) in case 2. Thus D} is the symmetric
domain attached to Gg. We conclude that codimpD, = rk€" and hence that s, is a regular
section of £Y. In fact, this shows that s, is regular whenever v # 0, since in the remaining
case we have Q(v,v) < 0 and so s, does not vanish on D.

More generally, given a positive integer r and a vector v = (vy,...,v,) € V", there is a
holomorphic section sy = (Sy,, ..., 8y, ) of (EV)", with zero locus

Dy := Z(SV) = Mi<i<rD (2212)

Vg *

Note that D, depends only on the span (vi,...,v.). It is non-empty if and only if
(v1,...,vr) is a a positive definite subpace of (V, Q) of positive dimension; in that case, its
(complex) codimension in D is tk(€) - dimg (v1, . .., v,). We set D =D, NDT.

Let z € Dy and write 2+ (resp. v*) for the orthogonal complement of the subspace z
(resp. (v1,...,vy)) of V. Then the tangent space T,DD to D at z can be canonically identified
with Hom(z, 1), and the subspace T,y C T,DD corresponds to Hom(z, 2+ Nv+) (see [29,
p. 131)).

2.2.3.  We will now specialize the constructions in Section 2.1 to the setting of hermitian
symmetric domains.

Let r be a positive integer and v = (v1,...,v,) be an r-tuple of vectors in V. We write
K(v) := K(sy) for the Koszul complex associated with the section sy = (Sy,,...,Sy,) of
(E7)V. On its underlying vector bundle A(E"), we consider the superconnection

Vy =V, =V +iV2r(sy + s%), (2.2.13)

and we define forms

P°(v) = () = D (55) " (e i,

k>0

O(v) = 10(sy)" = Y () b (Ne¥¥) oy,
k>0

(2.2.14)

where N is the number operator on A(E7) acting on AF(E™) by multiplication by —k.

Definition 2.2.4. For v = (v1,...,v,) € V", write Q(v,v) = Q(vi,v1) + -+ + Q(vy,v,)
and define

p(v) = eV o(v),
v(v) = e TRV Loy,
Thus p(v) and v(v) belong to ©p>oA* (D).

The forms ¢(v) and v(v) were already defined and studied in the setting of general
period domains in [11].
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2.3. Explicit formulas for O(p,2) and U(p, 1). Let us give some explicit formulas when
the tautological bundle £ is a line bundle. Thus V is either a real vector space of signature
(p,2) (case 1) or a complex vector space of signature (p,1) (case 2). There is a unique
hermitian metric on £Y making the isomorphism £ = £ induced by he an isometry; we
denote this metric by h and its Chern connection by Vev. For v € V' we have

(Qv,0)+2h(s0)) <i8h(3v) AOh(sy) Qg> ’

pv)g =e "

h(sy) (2.3.1)
p(v) = p(v)g ATdHEY, V),
where
1-— efviv
Td 1(EY,V) = det —r (2.3.2)
g\/

denotes the inverse Todd form of (€Y, Vev). This is a special case of the Mathai-Quillen
formula [38, Thm. 8.5]; see also [11, §3] for a proof in our setting, where it is also shown
that the form ¢(v)[) coincides with the form ¢k (v) defined by Kudla and Millson in [28].

Let us now consider the form v(v) for v € V. Here the Koszul complex K(v) has just
two terms: K (v) = (€ 2% Op), and the operator N acts by zero on Op and by —1 on &.
For the component of degree zero of v°(v) we obtain

Vo (v)) = trs(NeV¥) g
= trg(Ne(Vior)

= trS(Ne_Qﬂh(s”))
_ 6727rh(5v).

(2.3.3)

Given z € D, let 2+ be the orthogonal complement of z in V, so that V = 2@ z1; we write
v, and v,1 for the orthogonal projection of v € V to z and z* respectively. Let @, be the
(positive definite) Siegel majorant of @) defined by

Q:(v,v) = Q(v,1,v,1) — Q(vz,v;). (2.3.4)
Then we have Q. (v,v) = Q(v,v) + 2h.(s,) and we conclude that v(v)( is just the Siegel
gaussian:
v(v)g = 3G () 1= e™Q=(00), (2.3.5)
If v # 0, then using (2.3.3) we also obtain an explicit formula for the Green function g°(s,)
defined in (2.1.21) (see Example 2.6.3 below).

2.4. Basic properties of the forms ¢ and v.

2.4.1. We first give formulas for the restriction of ¢ and v to special cycles. Let w € V
with Q(w,w) > 0 and recall the group G,, and complex submanifold D, C D defined in
2.2.2. Then G, is identified with the isometry group of (w™,Q), and we may identify D
with the hermitian symmetric domain attached to GO. We write ¢p,, (v') and vp,, (v') for
the forms on D,, given in Definition 2.2.4.
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Lemma 2.4.2. Let v,w € V with Q(w,w) > 0 and write v = v' + v" with v' € w' and
v" € (w). Then
e_WQ(v//7,U//)VDw (/l}/)7

¢p,, (V).

v°(0)lp, =B, (v'), v(v)lp, =

90"(”)’11% = SD]%JU, ('U,)7 SO('U)’ID)UJ — e—ﬂQ(v//m//)

Proof. Let &, be the tautological bundle on D,, whose fiber over z € D, is z C w™ .

The restriction of £ to D, is isometric to &,. For any v € V, this isometry induces an
isomorphism K (v)|p, = K(v'), where K(v') denotes the Koszul complex with underlying
vector bundle A&, and differential s,,. Thus V,|p, = V., and the lemma follows. Il

2.4.3. The proof of the next proposition is a straightforward consequence of general prop-
erties of Koszul complexes and Chern forms.

Proposition 2.4.4. Letr > 1 and v = (v1,...,v,) € V". Then:

(a) 9(v) = $(0) A - A p(tn).

(b) o(v) is closed.

(c) o(V)i =0 if k < 2r-1k(E).

(d) For every g € Aut(V,Q), we have g*p(gui, ..., gvy) = ©(v1,...,vp).
(e) 9(0) = cue)(EY,V)* A Td=Y(EY,V)* (here we assume r =1).

(f) Let

O(r), case 1
he { U(r), case 2.

Then o((v1,...,vp) - h) = @(v1,...,0.).

Proof. Except for (c), which follows from (a) and the Mathai-Quillen formula [38, Thm.
8.5], all statements are proved in [11, Prop. 2.3 and (2.17)] in case 1, and the proof there
extends without modification to case 2. |

Consider now the form v. We write
o(F,VE) = det(tVe + Ly(ry) = L+ c1(F, V)t + ... + ey (F, V)t (2.4.1)

for the total Chern-Weil form of a vector bundle F' with connection Vp, and recall that
the cohomology class of ci(F, V)" = (—2mi) *¢(F, V) is the k-th Chern class ¢y (F).

Proposition 2.4.5. Letr > 1 and v = (v1,...,v,) € V.
(a) We have v(v) = o, vi(V), where
vi(v) = v(v) A1,y Oy ey vr).
(b) Fort>0:
¢, ,0011/2 d o(41/2
ddve(t 7 v) = —t—°(t"/*v).

dt
(c) v(V)i =0 if k < 2r-1k(€) — 2.
(d) For any g € Aut(V,Q), we have g*v(guvy,...,gv.) = v(v1,...,0p).
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(e) For the zero vector 0 € V', we have

* x\T—1
v(0)jgrak(e)—2] = T Cue)-1(EV, V)" A (aue(EY,V)*) .
In particular, v(0)jg) = 1 when r = rk(£) = 1.
(1) Let

O(r), case 1
he { U(r), case 2.

Then v((vy,...,vp) - h) =v(vi,...,0p).

Proof. Recall that v(v) = e ™@VVir,(NeVv), where N is the number operator on the
Koszul complex K (v) ~ ®1<;<,K(v;). Letting N; be the number operator on K (v;), we
can write N = Ny +---+ N, and V2 = V2 +---+ V2 , where [Ni,ng] =[V2, V%j] =0
for i # j; this proves (a).

Part (b) follows from (2.1.12). By part (a) and Proposition 2.4.4.(c), it suffices to prove
(c) when r = 1. Then (c) is vacuously true if rk(£) = 1, and in general it follows from [5,
(3.72),(3.35), Thm. 3.10].

For any v and any g € U(V), the U(V)-equivariant structure on £ induces an isomor-
phism ¢*K(gv) ~ K(v) preserving the metric; this proves (d).

For part (e), first consider the case r = 1. When £ also has rank one, the desired relation
follows immediately from (2.3.5). For general &€, by taking u = 0 in [5, (3.35)] we find that

d

2\ % 7
trs(Ne¥ ey o = —p det (52 VEv — bluge)) [,
r— d 7
= (=1)"7" o det (5 VE + blue) )|, (2.4.2)

= (=) ee)-1(E,V)*
= C(e)-1(EY, V).

Note that the number operator N in op. cit. has sign opposite from ours. The formula for
general r follows from part (a) above together with Proposition 2.4.4(a),(e).
To prove (f), note that h induces an isometry
i(h
K@) B K((r, . 00) - ) (2.4.3)
that commutes with N and such that V,, )., = i(h) "'V, yi(h). Thus (f) follows
from the conjugation invariance of trs. O

The properties of p(v) and v(v) established in Propositions 2.4.4 and 2.4.5 also hold for
¢°(v) and v°(v). In contrast, the next result, showing that the forms ¢ and v are rapidly
decreasing as functions of v, really requires the additional factor e~ ™@V:V) to hold (note
for example that the restriction of ¢°(tv) to Dy is independent of ¢ € R).

Let S(V") be the Schwartz space of complex-valued smooth functions on V" all whose
derivatives are rapidly decreasing.
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Lemma 2.4.6. For fized z € D and r > 1, we have
(-, 2),v(-,2) € S(V") @ AT, D.

Proof. By Proposition 2.4.4.(a) and Proposition 2.4.5.(a), we may assume that r = 1.
Recall that the quadratic form Q. (v) = 1Q(v,v) + hs(sy) on V is positive definite. Write
V2(z) = (V2))(2) + S(v, z). By Duhamel’s formula ([46, p. 144]) we have

677rQ(v,v)€V§(z) — 6727rQZ(1;)
+ Z(_l)k/ e~ 2 =t)Q:(0) G (4, ) 2m (e —te-1)Q=(v) .. Gy, 2)e 2@ (W gy, ... ..

k>1 Ak
(2.4.4)

Here AF = {(t1,...,t;) € R¥|0 < t; < ... <t} < 1}is the k-simplex and the sum is finite
since S(v, z) has positive degree. Let || - ||z, be an algebra seminorm as in Section 2.1.2

and let Q a positive definite quadratic form on V' such that Q7 < Q. for all z € U. Then
le?m =05, < Ce 2T eV, (2.4.5)

for some positive constant C'. Since S(v, z) grows linearly with v, (2.4.4) implies that
le™QEMVeE| < CeTH )y eV, (2.4.6)

(with different ') and hence that the same bound holds for ||¢(v)||z; ., where ¢(v) is any
derivative of ¢ or v in the v variable. 0

2.5. Behaviour under the Weil representation.

2.5.1. Let r be a positive integer. We write 0 and 1, for the identically zero and identity
r-by-r matrices respectively. Consider the vector space W, := K2?" endowed with the
o-skew-Hermitian form determined by

<_01r 10) . (2.5.1)

Its isometry group is the symplectic group

Spo,(R) = {9 € GLo»(R) [g (9, §)f9=(1 §)} (2.5.2)
in case 1 and the quasi-split unitary group
U(r,r) = {9 € GL(C) [ g (1, §)7=(1, %)} (2.5.3)

in case 2. Denote by Mp,,.(R) the metaplectic double cover of Sp,,.(R), and identify it (as
a set) with Spy,(R) x {£1} as in [42]. Define

(2.5.4)

T

o Mp,,.(R), orthogonal case
U, ), unitary case.
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Let N, and M, be the subgroups of G!. given by

Ny = {(n(8), 1) | b € Sym, (R)} (2.5.5)
M, = {(m(a),e) | a € GL,(R),e = +1}

in case 1 and by

N, ={n(b)|b € Her, },

M, = {m(a)la € GL,(C)} (25.7)

in case 2.
We also fix a maximal compact subgroup K, of G.. as follows. In the orthogonal case,
let K| be the inverse image under the metaplectic cover of the standard maximal compact

subgroup
a —b
b a

of Spy,(R). In the unitary case, we define K] = G NU(2r). Thus in this case K| ~
U(r) x U(r); an explicit isomorphism U(r) x U(r) = K is given by

a+1ibe U(r)} =~ U(r) (2.5.8)

ki+ ko —ik1+ ik‘z)

1
(klu k?) = [klu k?] = 5 (Zk‘l — ko ki + ko (259)

2.5.2. Recall that we have fixed the additive character (x) = €?™*; in the unitary case,
we also fix a character y = yy of C* such that x|gx = sgn(-)™, where m = dim V. Then
G x U(V) acts on S(V") via the Weil representation

Y {w¢, orthogonal case, (2.5.10)

Wiy, unitary case.
(see [14, §1]). Here the action of U(V) is in both cases given by

w(g)¢(v) =¢(g~'v), geU(V), peSV). (2.5.11)

To describe the action of G, we write

(a) = (m(a),1), for a € GL,(R) in case 1,
B , for a € GL,(C) in case 2,

. (2.5.12)
for b € Her, in case 2,

(wy,1), casel,
W, =
Wy, case 2.

n(b) = (n(b),1), for b € Sym,(R) in case 1,
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Let |- |[g denote the normalized absolute value on K; thus |z|g = |z| and |z|c = 2Z. Then

_ m/ Xy (deta) case 1
w(m(a))p(v) = [detalg “p(v-a)- {X(det a) case 2,
(2.5.13)

w(n(b)o(v) = ¥ (tr(bT(v))) é(v),
ww,)p(v) = yro(v);

see [23] and also [19, §4.2] for explicit formulas for x and yy-. Here for v = (v1,...,v;)

we define T'(v) = 3(Q(v;,v;)) and #(v) denotes the Fourier transform

dv) = /V B(w) 1 (Streatr(Q(v, w)) dw, (2.5.14)
where dw is the self-dual Haar measure on V" with respect to .

2.5.3. For our purposes it is crucial to understand the action of K| on the Schwartz
forms ¢ and v. This was done for the form ¢ in [28], where it is shown that ¢ spans a
one-dimensional representation of K. We will show that v also generates an irreducible
representation of K. To describe it we next recall the parametrization of irreducible
representations of K/ by highest weights; we denote by 7 the (unique up to isomorphism)
representation with highest weight .

Consider first the orthogonal case. Then K. is a double cover of U(r) and its irreducible
representations are ) with

A=, ) €ZTUGHT), > >, (2.5.15)

For an integer k, we write det®/? for the character of K| whose square factors through U(r)
and defines the k-th power of the usual determinant character det: U(r) — C*. Kudla
and Millson [28, Thm. 3.1.(ii)] show that

w(k ) = det(K")™2p, K e K., (2.5.16)
and so ¢ affords the one-dimensional representation m; of K/ with highest weight
l:="(1,...,1). (2.5.17)

Now consider the unitary case. Using the isomorphism (2.5.9), any irreducible represen-
tation of K. is isomorphic to my, Xy, for a unique pair A = (A, A2) of dominant weights

of U(r). Let k(x) be the unique integer such that x(z) = (z/]z|)k(X), and note that k(x)
and m have the same parity. Kudla and Millson show that

w([k1, ko)) = (det k1) MHROD/2(det ko) (TR0 2 |y ey € U(r), (2.5.18)

and so ¢ generates the one-dimensional representation m; of K/ with highest weight

= (PR g, =R ). (2.5.19)
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We will now determine the K representation generated by the Schwartz form v(V)2r—2-
Recall that by Proposition 2.4.5 we can write

v(v) = > wilv), (2.5.20)

1<i<r
where )
vi(v) = e ™Rt (N;eVoi ) A @(vy, ..., G, ..., ). (2.5.21)
Let ¢, = 1, and, for 1 <i <7, set
1i1
& = " Ll esom). (2.5.22)
r—i—1
-1 0
Then
vi(v) = w(m(e))v(v), 1<i<r; (2.5.23)

thus v(v)2r_g) belongs to the Kj-representation generated by vy.(v)j2r—2)-
Define a weight Ag of K| by setting

o= (..., 5, —2) (2.5.24a)
in the orthogonal case, and
Ao = ((m+§(><)7 o m+§(x)7 m+§(x) ~1), (—m;k(x) o —m-;k(x), —m-;k(x) +1)) (2.5.24Db)

in the unitary case.

Lemma 2.5.4. Let r > 1 and assume that tk(E) = 1. Under the action of K| via the Weil
representation, the form V(V)[QT_Q] generates an irreducible representation my, with highest
weight Ao. The form v.(V)[ar—g) is a highest weight vector in my,.

Proof. Assume first that » = 1. By (2.3.5), v(2)[o] is the Siegel gaussian, which has weight
7

No=E1="02 (2.5.25)
in case 1 and N ) k; &
Ao = (p—q; 0 q—p; (x)) _ (m+2 ) g —m; 0 4 1) (2.5.26)

in case 2. Now assume that r > 1. By Proposition 2.4.4.(c), we have

vr(V)izr—2) = v(0r)j0) - (01 -+, Ur—1)[2r—g] (2.5.27)
and hence by (2.5.16), (2.5.18), (2.5.25) and (2.5.26), the form v;.(v)[2,_9) has weight Ag. To
show that v,.(V)[2,—9) is a highest weight vector, one needs to check that w(a)v,(v)g,—2) = 0
for every compact positive root o € A} (see (3.1.4) and (3.2.6)). This can be done by a
direct computation using (2.5.13) and the explicit formulas (2.3.5) and (2.3.1) for v and
@, or alternatively as follows. Evaluating at zp, (2.3.5) and (2.3.1) show that

ve(v,20) € (S(V7) @ Ap)™; (2.5.28)

here S(V") € S(V") is the subspace spanned by functions of the form e=@z0(V)p(v),
where p(v) is a polynomial on V". For v,.(v,zy), the degree of these polynomials (called
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the Howe degree) is 2r — 2. Now it follows from the formulas in [21, §IIL.6] (see also [13,
Prop. 4.2.1] in case 1) that the only K/-representation containing the weight )y realized
in S(V") in Howe degree 2r — 2 is m,, and the statement follows. O

2.6. Green forms.

2.6.1. In this section we will construct certain currents on D depending on a parameter
v = (v1,...,v,) € V" and having singularities at Dy. We begin with the following special
case.

Definition 2.6.2. A tuple v = (v1,...,v.) € V" is non-degenerate if {v1, ..., v} is linearly
independent. We say that v is reqular if Dy is either empty or of codimension r in D. Note
that the latter occurs if and only if v is non-degenerate and vy, ..., v, span a positive definite
subspace of V.

If v is regular, then sy is a regular section of (£7) in the sense of Section 2.1.1, and Dy,
is smooth. Therefore, setting

()= [T € 4O D Dy, (2.6.1)
1

Proposition 2.1.8 shows that g°(v) = g°(sy) is smooth on D — Dy, locally integrable on D
and, as a current, satisfies

ddg®(v) + dp, = ©°(V)2r k(&) (2.6.2)
so that g°(v) is a Green form for Dy,.

Ezample 2.6.3. Let v # 0 € V and assume that rk(€) = 1. Then, using (2.3.3), we compute

oo dt +oo dt
e = [ g = [ e e~ oBiamh(s), (@263)
1 1
where Ei(—z) = — [{° e*Zt% denotes the exponential integral. Thus g°(v) coincides with
the Green form defined in [25, (11.24)]. o

2.6.4. If v is no longer assumed regular, then the integral in (2.6.1) is often no longer
convergent. We shall overcome this deficiency by regularization: for any v € V" and p € C
with Re(p) > 0, define

o +oo (o] dt
8°(v;p) =/1 VO (VEV) oy k()2 sy (2.6.4)

As v°(tv) is bounded as t — oo, locally uniformly on DD, this integral defines a smooth form
on D. The integral is an incomplete Mellin transform, in contrast with the usual Mellin
transform used by Bismut-Gillet-Soulé in their construction of Bott-Chern currents, see
e.g. [3, Section 2].

We will show that (2.6.4) admits a meromorphic continuation (as a current) to a neigh-
bourhood of p = 0, beginning first with the case r = 1.
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Lemma 2.6.5. Forv € V with v # 0 and a complex parameter p, consider the integral on
D —-D,:
[e] > o dt
i) = [ (Ve i
For Re(p) > —1/2, this integral converges to a locally integrable form on D, and the con-
vergence s locally uniform on D and in p.

Proof. Recalling that v°(v) = trs(NeV%), it follows by taking s =1 in (2.1.9) that we may

write
rk(£)—1

(V) puk(e)-g) =, tre T pe(w) (2.6.5)
=0

for some differential forms n(v) that are smooth on D. For convenience, set x = 2wh(s,);
then

rk(&)-1 di rk(&)—1 00 dt
g°(v;p) = Z / tk*pe*m7 “mk(v) = Z aP=k (/ tkpett> ne(v). (2.6.6)
k=0 1 k=0 @

The forms 7 (v) are locally bounded since they are smooth, and a straightforward compu-
tation in local coordinates, as in the proof of Proposition 2.1.8, implies that z”~* is locally
integrable for Re(p) > —1/2 and k < rk(€) — 1. As for the integrals, write

o0 dt 1 dt 1 dt o0 dt
/ th=Pe=tZ — / th=r=2 _ / P (1—et) — +/ th=pe=t=
x t x t T t 1 t

1—zkr ! dt o0 dt
- T / th=r (1—e")— —|—/ th=Pe=t—
k —p T t 1 t

(2.6.7)

The latter two integrals are absolutely bounded uniformly in z and in p for —% < Re(p) < %,
say, while the first term is evidently holomorphic on this region. In particular, multiplying
each of these terms by z°~* yields locally integrable functions for —% < Re(p) < %; since
the more direct estimate covers the case Re(p) > 0, this proves the lemma. g
Proposition 2.6.6. Let v = (vi,...,v,) € V" and let ' = dim(vy, ..., v.).

(i) The integral (2.6.4) converges to a smooth form on D if Re(p) > 0.

(ii) Let k € O(r) (case 1) or k € U(r) (case 2). Then

9°(v - ks p) = 6°(v; p)-

(iii) As a current, g°(v;p) extends meromorphically® to the right half plane Re(p) > —3.
() If v is regular, then the current g°(v;p) is reqular at p =0 and

g°(v;0) = g°(v).
Similarly, for any v, the identity g°(v;0) = [{F*° V°(t1/2(v))% holds on D — Dy,.

2More precisely, we are asserting that for any compactly supported form 7, the expression fD g°(v;p)An
admits a meromorphic extension as a function of p, and is continuous in 7 in the sense of distributions.
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(v) The constant term of g°(v;p)at p = 0 is given by
o - o * r—r/— dt
CTp=0 8°(v;p) = /1 (V (V) k()2 — (1 = 17)0Dy A coe)—1(EY, V)" A QL 1) "
(vi) The constant term C’I(; g°(v; p) satisfies the equation
p:

dd® ngo‘ g°(v;p) + dp, A QQVT/ = ©°(V)i2r1k(e)]

of currents on D, where Qgv = ¢°P(EV,V)*.

Proof. Part (i) follows immediately from the expression (2.1.9), which shows that (locally
on D) v°(y/tv) and its partial derivatives stay bounded as ¢ — +oco. Part (i) follows from
Proposition 2.4.5.(f).

To show (iii), let k be as in (44) such that v-k = (0,_,s, v') with v/ non-degenerate. For
convenience, set ¢’ = rk(€). By Propositions 2.4.4.(c) and 2.4.5.(c),(f) we can write

v° (V)[qu’—Q} =v° (V ’ k)[?rq’—Q]

=v° (V/)[Qr’q’—Q] N on(or‘fT/)[Q(r—r’)q’] + 1/0(07,,7«/)[2(7,_7,/)(1/_2} A @° (V/)[Qr’q’]-

(2.6.8)
The same propositions also show that
©°(0r 1) j2(r—r)q] = ngr (2.6.9)
V(0 p(rrygr—2) = (1 = 7)) -1 (EY, V)T A Q"
and hence
VO (V) zrg—2 = V2 (V) gz A 2" (2.6.10)

+ (V) A (r = )engey-1(EY, V)  AQE L
Consider the contribution of each term in the last expression to g°(v;p). Writing v} =

(v,...,0,...,v.,), the first term contributes

+o0o
Z / *(Vt]) g -2 A ° (VEVD) (- }t;ljl ANV (2.6.11)

1<i<r!

Since ¢°(v/tv!) stays bounded as ¢ — +oo0, Lemma 2.6.5 shows that (2.6.11) converges to
a locally integrable form on D for Re(p) > —1/2.
The contribution of the second term is

oo dt * r—r’—
| e e A = e (€79 A 97, (26.12)

hence it suffices to prove meromorphic continuation of the integral in this expression. We
rewrite this integral as

too , dt teo , dt
1 cp(\/iv)pr/q/]tpﬁ: 1 (° (VEV) 2 5Dv)tp+1+ 5Dv, (2.6.13)
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then (2.1.19) implies that the integral on the right hand side converges, as a current, when
Re(p) > —1/2, and so the right hand side provides the desired meromorphic continuation
to Re(p) > —1/2, proving (iii).

When v is regular, or for general v upon restriction to D — Dy, the proof of (iii) shows
that the integral defining g°(v;p) converges when Re(p) > —1/2; thus we can set p = 0
and obtain (iv).

To prove (v), we proceed as in (i7i) and analyze the contribution to CT,— g°(v;p) of
each summand in the right hand side of (2.6.10). Observe that the constant term at p =0
of (2.6.11) is simply

e dt
Z / Vo (Vo) pag—a A an(\/gvg)[Z(r’—l)q’]7 AN (2.6.14)
1<i<p 71
whereas the constant term of (2.6.13) is
R dt
1 (9° (VEV )iy = 0p,) - (2.6.15)

Substituting in (2.6.12) and adding these two contributions gives (v).

Finally, note that (by (i) and Proposition 2.4.4.(f)) all terms in (vi) are invariant under
replacing v with v - k for any matrix k € O(r) (case 1) or k € U(r) (case 2). Thus we can
assume that v = (0,_,,v’), where v/ € V"' is non-degenerate. Then V°(V)j2rq'—2) 18 given
by (2.6.10); since ¢°(v’) is closed, we conclude that

ddCVo(ﬁV)[qu/_2] = ddcljo(\/ivl)[zT/q/_Q] AN QQ;T/

d ) o (2.6.16)
= —t%QOO(\/I;V )[QT’q’] A Qg\/ .
Using (v) gives
dd°CT = g°(v;p) = /1 dd® <V°(t1/2v)[2rq/,2}
1) dt
—(r —")op, A cue)-1(EY, V) AQL 1) "
o0 dt
— dd<v° t1/2 o—
/1 VY )rg )5 (2.6.17)
< d dt .
= /1 —t%@ (tl/zvl)[g,,./q/}? A\ ng

= 0°(V)jrg) — Hm o (1"2V ) gy A Q0
= ¢°(V)porg) = 0oy AR
where the last equality follows from Theorem 2.1.7, proving (vi). O
Definition 2.6.7. Let v = (v1,...,v,) € V". Define
g°(v) = CTy=0 g°(v;p) € D*(D).
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Ezample 2.6.8. Suppose that v € V" is degenerate and choose k in O(r) or U(r) such that
v-k = (0,_,v'), where v/ € V"' is non-degenerate. Then the proof of Proposition 2.6.6. (ii)
shows that

g°(v) = g° (V) AT+ (v, (2.6.18)

where

oo dt e
N(V/) =(r— 7”/)/1 (wo(\/ivl)[wq'] - 51]%) T Crk(é‘)—l(gvv V)" A ng L (2.6.19)

2.7. Star products. Let k,l be positive integers with (k + I)rk(€) < dim(D) + 1. Fix

regular tuples v/ = (v},...,v}) and v/ = (v,...,v/) € V! such that the tuple

v=(v1,...,0pp) = (V),... 0,0, ... 0f) € VEH (2.7.1)

is also regular. Then Dy, and Dy~ intersect transversely (if both are non-empty), as follows
from the description of the tangent spaces T,Dy+ and T,Dy~» in Section 2.2.2.

Define the star product of the Green forms g°(v’) and g°(v”), which for the regular case
are given by (2.6.1), by

02 (V) £ (V") = (V') A G, + 2 (V) ey A 0°(v") € DAFFDRE 2Dy (9.7.9)

Our next goal is to compare the currents g°(v) and g°(v’) xg°(v”). For t1,ty € Rs, define

7 0/,1/2 =/ o 2 dtq dto
alt,ta, v v') = o (V) )=z A D (V") prie)—2) A P
. (2.7.3)
4 o 1/2 0/,1/2 dtq dto
B(ty,t2,v',v") = 5. 0w &V ) prere)—2) A VOt V) pre)—2) A Tt
We set
a(v' V") = alty, tz, v, v"),
1<t <to<+o0 (2‘7.4)
5(V/7V//) - / /B(tlvt27 V/7V”)'
1<t1<te<+o0

The estimate (2.1.10) shows that the integrals converge to smooth forms on D— (Dys UDy~).
Lemma 2.7.1. The forms a(v',v") and B(v',v") are locally integrable on D.

Proof. First, fix t; > 1 and let I’ := [ -1k &, and consider the integral

o dt
/ 3] (y°(t;/ QV”)W,Q]) - (2.7.5)
t1 t2
which defines a smooth form on D — Dy~. Fix x € Dy~, choose local coordinates z1,...,zn

(N = dim D) on a complex open ball U around x such that Dy~ N U is given by zy = -+ =
zp =0 and let |y| = (|21]? + - - - + |2]?) /2. Specializing [3, Theorem 1.4] to our situation,
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we may identify 5(V°(t1/2v”)[2l/,2]) as the component in complex bi-degree (I' — 1,1) of
the form — trs (VtV exp(—A7)) as defined in [3, §1]; then [3, (3.32), (3.33)] imply that

1 =5/, dt
\y|21 1/ 3(” (té/z"”)[m/—ﬂ) =

t1 t2

is bounded on U, uniformly in ¢;. The local integrability of a(v’,v”) follows, using the

fact that Dy, and Dy~ intersect transversely and the bound for [{°v° (ti/ 2y )[Qk.rk(g)_Q}%
given by (2.1.22). A similar proof gives the result for 3(v’,v”). O

Let [a(v',v")] (resp. [B(v',v")]) denote the current on I defined by integration against
a(v',v") (resp. B(v/,v")) on D.

Theorem 2.7.2. The currents [a(v',v")] and [B(v',v")] satisfy g.a[(Vv',v")] = [a(gV’, gv")]
and g.[B(v',v")] = [B(gV', gv")] for g € G and
g°(v)) x g°(v") = g°(v) = 9[a(v', v")] + 9[B(V', v")].

Proof. Set ¢ = rk(€). Denote by t1,t the coordinates on R2 and consider the form
7°(v) € A*(D x R%) defined by

~ o o dt
°(v) = v’ (Vv )prg—2 A @ (VE2v") g Tll
dt
+ (po(\/tlvl)pkq/] A V°(\/tgv//)[glq/,2] 722 (276)

For a piecewise smooth path v: I — R2 (I C R a closed interval) and a € A*(D x R2 ),
let

/a € A*71(D) (2.7.7)
Y

be the form obtained by integrating (id x-y)*« along the fibers of the projection of DxI — D.
Fix a real number M > 1 and consider the paths

Yo = (t.1), var = (1,t), and ~v5; = (¢, M) (2.7.8)
with ¢ € [1, M]. By Proposition 2.4.5.(a), we have

M
dt
. ~0 . o 1/2 o
L, T = i f e = 6, (2.7.9)
Next, note that
: * ~0 o o dt
(id % 731)* 2°(v) = (V) rgr) A v (V) argr—o) A - (2.7.10)
so that
li ° = °(v/ aA gl (v"). 2.7.11
i . °(v) = @*(V)rg A 8°(VY) ( )

Finally, we have

: *7~0 o o dt
(id x vi,) 0 (v) = v (tl/QV')[qu/,Q] Ao (Ml/zv”)[mqq A e (2.7.12)
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Let Nj, and N, denote the real conormal bundles of D, and D, respectively; then
N¥ N NY, = {0} since Dys and Dy~ intersect transversely. Recall that the wave front set
of g°(v’) is contained in N}, see Proposition 2.1.8, and that

M .
(po(Ml/2V”)[21q/] i) (5]1))(; mn DN:,, (]D))

as in Theorem 2.1.7; by [16, Chap. VIII.2] we have

M
dt
: ~o0 : o(41/2 o 1/2 o
A}lgloo Yaar )= J\/lllgloo 1 vt V/)[%q’f?]? A v)pig) = 8°(Y') Adp,,
(2.7.13)
and hence
lim / vo(v) — / °(v) ] = g°(v) —g°(v)) xg°(v"). (2.7.14)
M=00 \ Jyg Y+
Let
Ay = {(t1,t2) | 1 <ty <tg <M} C RZ, (2.7.15)

oriented so that OAN = vanr — Yy — Vis- Let d = dy + da be the differential on D x R2>0,
where d; = 9 + 0 is the differential on I and ds is the differential on R2>0. Then we have

/ §°(v)—/ °(v) = / °(v) = / dyv°(v). (2.7.16)
Vd, M Y Ay Apg
Applying Proposition 2.4.5.(b) we obtain

~0 d o o
dyv°(v) = <t1 prd (1Y) gy A V252Vt o

d dt1dt
_ Vo(t1/2vl)[2kq’—2} A t2d77§2<’0 ( 5/2V,/)[21q’]> tit;
= (—2mi)! (—(aéyf’(ti/%'))[%q,] A (") 1 (2.7.17)
— dtqdt
+I/0 (t}/QV,>[2k_q1_2} /\ (aayo (t;/2vﬁ))[2qu) /\ 1:171522

= da(ty, ta, v/, v") + 0B(t1, t2, v/, v").

The statement follows by taking the limit as M — 400 in (2.7.16), and the equivariance
property under g € G follows from Proposition 2.4.5.(d). O

As a corollary, we obtain the following invariance property of star products.

Corollary 2.7.3. Let k € O(k + 1) (case 1) or k € U(k + 1) (case 2) and suppose that
v = (v,v") € V¥ is non-degenerate. Let v/, v be defined by v - k = (v}, v}) and set

[a(k; Vlv V//)] = [O‘(V/? V”)] - [O‘(V;c? V;cl)]ﬂ [ﬂ(kv Vl? V//)] = [B(V/7 V//)] - [B(V;m VZ)]?
with o and B as in (2.7.4). Then
g°(V) % g°(v") — 0°(v}) % 0°(v}) = Ola(k; v/, v")] + DB (k; v/, v")] € D*FHIHE=2(),
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Proof. This is a consequence of the theorem and the invariance property g°(v-k) = g°(v),
which follows from Proposition 2.4.5.(f). O

When G = SO(1,2)°, this invariance property is one of the main results in [25], where
it is shown to hold by a long explicit computation (see also [37] for a similar proof in
arbitrary dimension in case 2 when ¢ =1 and k41 = p+ 1). Our corollary, and its global
counterpart (Corollary 5.3.3), generalizes these results to arbitrary hermitian symmetric
spaces of orthogonal or unitary type and gives a conceptual proof.

3. ARCHIMEDEAN HEIGHTS AND DERIVATIVES OF WHITTAKER FUNCTIONALS

Let r <p+1and v = (v1,...,v,) € V" be non-degenerate (recall that by this we mean
that vi,...,v, are linearly independent) and denote by Stabg(vi,...,v,) the pointwise
stabilizer of (v1,...,v,) in G. Let g°(v) be the form given in Section 2.6. Assuming that
rk(€) = 1, we will compute the integral

/ g°(v) AQPTTL (3.0.1)
I'v\D+

where I'y is a discrete subgroup of finite covolume in Stabg(vy,...,v,), under some ad-
ditional conditions ensuring that the integral converges. The result is stated in Theo-
rem 3.4.10 and relates this integral to the derivative of a Whittaker functional defined on a
degenerate principal series representation of ... Despite the length of this section, its proof
is conceptually simple and follows easily from Lemma 2.5.4, which determines the weight of
v(V)[2r—2), together with results in [31, 35] concerning reducibility of these representations
and multiplicity one for their K-types (we review these results in Sections 3.1 and 3.2) and
estimates of Shimura [45] for Whittaker functionals that we review in Section 3.3.

3.1. Degenerate principal series of Mp,,.(R). In this section we fix » > 1 and let
G’ = Mp,,(R). We abbreviate N = N,., M = M, and K’ = K/ (see 2.5.1).

3.1.1. We denote by g’ the complexified Lie algebra of G’. We have the Harish-Chandra
decomposition

g=prop-o¥, (3.1.1)
with

X{:—Xl,XZE:XQ},
1 /X iX

b = {p_<X> —p (X = (ffX fﬁf) \ X' = X} -
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Note that ¢ = Lie(K')¢, where K’ is the maximal compact subgroup of G’ in Section 2.5.1.
For z = (z1,...,2,) € C", let d(x) denote the diagonal matrix diag(z,...,z,), write

h(z) = <z -d(z) o dm) (3.1.3)

and define e;j(h(x)) = xj. Then ' = {h(x)|z € C"} is a Cartan subalgebra of ¥, and we

choose the set of positive roots AT = AT U Al given by

A ={e —eill <i<j<rl,
N tei =gl =/ ) (3.1.4)
Ancz{ei—i-ej’ngS]ST},

where AT and A, denote the compact and non-compact roots respectively.

3.1.2. The group P = MN is a maximal parabolic subgroup of G’, the inverse image
under the covering map of the standard Siegel parabolic of Sps,.(R). The group M has a
character of order four given by

i, if deta <0
€)= ’ ’ 3.1.5
x(m(a),€) = € {1, if deta > 0. (3:1.5)
For o € Z/4Z and s € C, consider the character
X7 M =R, (m(a), €) = x(m(a), €)%| det al?, (3.1.6)

which extends to a character of P by declaring it trivial on N. Consider the smooth induced
representation

I%(s) = Ind$ x°| - |* (3.1.7)
with its C* topology, where the induction is normalized so that I%(s) is unitary when
Re(s) = 0. In concrete terms, I*(s) consists of smooth functions ®: G’ — C satisfying

© ((m(a), €)n(b) g') = x(m(a),e)* |deta|" " @(g), pr:= ", (3.1.8)

with the action of G’ defined by r(¢')®(z) = ®(x¢’). Note that, by the Cartan decomposi-
tion G’ = PK’, any such function is determined by its restriction to K’; in particular, given
®(sg) € I%(sp), there is a unique family (®(s) € I%(s))sec such that ®(s)|xr = ®(so)|x
for all s. Such a family is called a standard section of I(s).

3.1.3.  We denote by x® the character of K’ whose differential restricted to b’ has weight
S(1,...,1). The K'-types appearing in 1*(s) were determined by Kudla and Rallis [31] to
be precisely those irreducible representations 7y of K’ with highest weight A\ = (I1,...,1,)
(here I; > --- > 1,.) such that 7\ ® (x®)~! descends to an irreducible representation of U(r)
and satisfies

L € %Jr 9%, 1<i<r (3.1.9)

Moreover, these K’-types appear with multiplicity one in I%(s) (op. cit., p.31). If
®N(-,s) € I%(s) is a non-zero highest weight vector of weight X, then ®*(e,s) # 0 (op.
cit., Prop. 1.1), hence from now on we normalize all such highest weight vectors so that
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®*(e,s) = 1. Note that the restriction of ®* to K’ is independent of s. For scalar weights
A=1(1,...,1) with | € § + 2Z, we have

(K, s) = LD (K s) = (det k'), K e K. (3.1.10)

3.1.4. Suppose that X € g’ is a highest weight vector for K’ of weight A\. Then X ®!(s) is
a highest weight vector of weight A + 1 and hence multiplicity one of K’'-types implies that
Xol(s) = (X, 1,5)2M(s) (3.1.11)

for some constant ¢(X,l,s) € C. We will need to determine this constant explicitly for
certain choices of X; let

ei=(0,...,0, lth,O, ...,0) (3.1.12)

and define X, = p_(d(e;)). When ¢ = r, the vector X~ is a highest weight vector for K’
of weight —2e,. Let ¢,: Mpy(R) — G’ be the embedding defined by

1r—1 Or—1
a b "
<<c d) ! 6) ~ ((orl - b) : 6) : (3.1.13)
c d
Then, for any ® € I*(s), the value of X, ®(e, s) only depends on the pullback function

t5®(s) : Mpy(R) — C. Note that every element ¢’ of Mpy(R) can be written uniquely in
the form

g = (n(x)m(ylﬂ), 1) o, (3.1.14)
where z € R, y € R, 6 € R/477Z and we define
~ 1 if — < i
Fp — (ko, 1), 1 <0<, where kg — cqsﬁ sin 0 . (3.1.15)
(ko,—1), ifm <6 <3m, —sinf cosé

We think of z, y and 6 as coordinates on Mpy(R). In terms of these coordinates, we have

d id
X7% = <—2iy(ﬁ+;d9) LD, (3.1.16)

for any ® € I%(s), where % = % (i + i%). Taking ® = ®', the following lemma is a

T
straightforward computation using the explicit expression

1 r+1\ |
oz, y,0,s) = y2<s+ 2 >ewl. (3.1.17)
Lemma 3.1.5. Letl € § +2Z. Then

X;q)l(l,...7l)<s> — % (S + % . l) @l(l""71)_26T(8). 0

In other words, this shows that ¢(X,",1,s) = 3 (s + =L —1).

ro
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3.1.6. We now return to the quadratic space V over R of signature (p,2). Define
p—r+1

I.(V,s) = Idimv(s) and so = 5 :

(3.1.18)

we assume that » < p+ 1, so that
s0 > 0. (3.1.19)
Consider the Weil representation w = wy, of G’ x O(V) on S(V7), as in Section 2.5.2,

and let R-(V) be its maximal quotient on which (so(V),O(V*') x O(V ™)) acts trivially.
The map

XSV = L(Viso),  A)d) = (wlg)e) (0) (3.1.20)
is G'-intertwining and factors through R, (V). By [31], it defines an embedding
R, (V) = I(V, sp). (3.1.21)

This embedding provides the link between the Schwartz forms defined in Section 2.5.2 and
the Whittaker functionals and Eisenstein series that will figure in our main results, see
Sections 3.4 and 5.3 below.

3.2. Degenerate principal series of U(r,r). In this section we fix r > 1 and let G’ =
U(r,r). We abbreviate N = N, M = M, and K’ = K/ (see Section 2.5.1). Our setup
follows [20].

3.2.1. We denote by g’ the complexified Lie algebra of G’ and let g.,, = {X € ¢'|trX = 0}.
Let

_ 1 ]'7“ 11”
and note that «~'G’u is the isometry group of the Hermitian form determined by ( 10’“ _Olr )
In addition, we have

K. = {[kl, ko] = u ("3 ,S) W ks € U(r)} , (3.2.2)
2
see (2.5.9), and the Harish-Chandra decomposition
g=prop ¥, (3.2.3)

with g’ = Mats,(C) and

¥ = Lie(K])c

P+ = {P+(X) :
p—(X)

X 0\ _4
UOXQU

u (8 )0(> u X € Matr(C)} : (3.2.4)
S CUE S

)
Let ¢, =¥ Ngl, and
h= {u-d(:ﬂ)-u_l | z = (z1,...,29,) € C*, T1+ ...+ a9 =0}. (3.2.5)

X1, X0 € Matr(C)} ,

u

X e Matr((C)} :
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Then b is a Cartan subalgebra of £,,. For 1 < i < 2r, the assignment u - d(z) - u™! > z;
defines a functional e;: h — C. We write A for the set of roots of (gss, h) and fix the set of
positive roots AT = AT U AT given by

Af ={ei—ej|l <i<j<r}u{—e +ejlr<i<j<2r},

N , , (3.2.6)
AV, ={ei—ej|l <i<r<j<2ry,

where AT and A, denote the compact and non-compact roots respectively.

3.2.2. The group P = MN is the Siegel parabolic of G’. For a character x of C* and
s € C, define a character x| - |& : P — C* by

x| - [&(m(a)n(b)) = x(det a)| det al (3.2.7)
and let
I(x,s) = nd§ (x] - 2) (3.28)
be the degenerate principal series representation of G'. Thus I(y, s) is the space of smooth
functions ® : G’ — C satisfying

d(m(a)n(b)g’) = x(deta)|deta|> " ®(q), pr =15, (3.2.9)

and the action of G’ is via right translation: r(¢")®(z) = ®(z¢’). Here the induction is
normalized so that the I, s) is unitary when Y is a unitary character and s = 0. Note that,
by the Cartan decomposition G’ = PK’, any such function is determined by its restriction
to K'; in particular, given ®(sg) € I(x, so), there is a unique family (®(s) € I(x, $))sec
such that ®(s)|xr = P(so)|x for all s. Such a family is called a standard section of I(y, s).

3.2.3.  Some useful facts on K'-types of I(x, s) were proved by Lee [35], namely that I(x, s)
is multiplicity free as a representation of K’, and if ®*122) (. s) € I(x, s) is a highest weight
vector of weight (A1, A2), then ®(*1:42) (e, 5) £ 0. Hence from now on we normalize all such
highest weight vectors so that ®(*1:22) (e, 5) = 1. Note that the restriction of ®*1*2) to K’
is independent of s, and for scalar weights

= (Iy(1,...,1),1a(1,...,1)), I1,ls €7, (3.2.10)
we have
Ot2) ([ky, ks, 5) 1= @Ol (hes D) ([ ko] 5) = (det kp ) (det ko), Ky, ko € U(r).
(3.2.11)

3.2.4. Let X” € p_ beasin Section 3.1.4; that is, X, = p_(d(e,)) withe, = (0,...,0,1) €
C". Then X, is a highest weight vector for K’ of weight (—e,,e,) and so
X7 ®l(s) = (X7, 1,s) dH(erer)(s) (3.2.12)

for some constant ¢(X, ,[,s) € C. To compute this constant, note that U(r,r)NGLg,(R) =
Sps,(R) and X~ € spy, . Moreover, if ® € I(x, s), then the restriction ®|gp,, () belongs
to I%(s"), where s’ = 2s + (r — 1)/2 and « = 0 if x|gx is trivial and a = 2 otherwise (this
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follows directly from a comparison of (3.1.8) and (3.2.9)). If I = (l1(1,...,1),l2(1,...,1))
is a scalar weight, then

®[sp,, (1) (s) = 217 () € 19(s) (3.2.13)

and so Lemma 3.1.5 and the above remarks show that the constant in (3.2.12) is given by
Iy —1

(X Ls) = s+ pr— Sg (3.2.14)

3.2.5. We now return to the m-dimensional hermitian space V over C of signature (p, q)
with pg # 0. From now on we fix a character y = xy of C* such that y|grx = sgn(-)" and
define

I,(V.s) = I(x; ),
m—r (3.2.15)

So —
We assume that r < p + 1, so that
(3.2.16)

with equality only when ¢ =1 and r =p+ 1.
Consider the Weil representation w = wy,, of G’ x U(V') on S(V"), as in Section 2.5.2,
and let R, (V) be its maximal quotient on which (u(V'), K) acts trivially. The map

AS(VT) = L(Viso),  Me)(d) = (w(g)e) (0) (3.2.17)
is G'-intertwining and factors through R, (V'); by [36, Thm. 4.1], it defines an embedding
Ry (V) < L(V, s0). (3.2.18)

This embedding is the crucial link relating the Schwartz forms in Section 2.5.2 to the
Whittaker functionals and Eisenstein series appearing in our main results, see Sections 3.4
and 5.3 below.

3.3. Whittaker functionals.

3.3.1. Let

S R 1
e § Syme(R),  case (3.3.1)
Her,, case 2

be a non-singular matrix and let ¢r: N, — C* denote the character defined by
Yr(n(b)) = ¢ (tr(Th)) = € TP, (3.3.2)

Let I.(V, s) and sg be as in (3.1.18) (resp. (3.2.15)) in case 1 (resp. in case 2). A continuous
functional I: I,.(V, sg) — C is a called a Whittaker functional if it satisfies

l(r(n)®) =p(n)-1(®) foralln e N,, ®eI.(V,sp). (3.3.3)
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Such a functional can be constructed as follows. Let dn be the Haar measure on NV, that
is self-dual with respect to the pairing (n(b), n(b')) — ¥ (tr(bt’)). Embed ® € I,.(V, sp) in a
(unique) standard section (®(s))sec and define

Wr(®,s) :/ ®(w, 'n, s) Yr(—n)dn (3.3.4)
The integral converges for Re(s) > 0 and admits holomorphic continuation to all s [49];
its value at s defines a Whittaker functional Wy (sg). It is shown in op. cit. that Wp(sg)
spans the space of Whittaker functionals. For ¢’ € G. and ® € I,.(V, sy), define

WT(9/7(I)78) = / @(w[lng',s) Yr(—n)dn. (3.3.5)
and
d
Wr(g', @, 50) = —Wr(g', ®,5)| . (3.3.6)
s=s0

3.3.2. In this section, we apply results of [45] to extract some necessary asymptotic esti-
mates for Whittaker functionals. Assume throughout this section that T is non-degenerate.
As in Section 2.2.1, let

R, orth 1
]K:{ ) OTVHOBORATEASE T hd L= [K:R). (3.3.7)

C, unitary case,

It will be useful for us to work in symmetric space coordinates, as follows. Let H, denote
the Siegel (resp. Hermitian) upper half space of genus r, so that in the orthogonal case,

H, = {r=2+1y € Sym,(C) | y > 0} (3.3.8)
and in the unitary case
1
H’r = {T S Matr((c) ’ 2*(7' — t?) > 0} ; (339)
i

in the latter case, write 7 = x + iy with y = %(7‘ —7) € Her,.(C)sp and o = 7 — iy.
For a point 7 = = + iy € H,, fix a matrix o € GL,(K) with det & € R~ and such that
y =« -'a and let

gr =n(x)m(a) € G.. (3.3.10)
Let ®!(s) be the normalized highest weight vector of I,.(V, s) of scalar weight
m
5 orthogonal case
, , unitary case
2 2
(see (3.1.10) and (3.2.11)) and define
Wr(y,s) = (dety) "™/ Wr (i, P!, 5) 2t (Ty). (3.3.12)

note that this is independent of the choice of « in (3.3.10).
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Proposition 3.3.3. Suppose T is positive definite of rank r.
(i) For any integer k > 0 and any fized s € C,
0k
/\lgrolo WWT()\‘U’ s) < 00

(ii) There exists a constant C > 0, depending on s,y,T and k, such that

8 8’“ o
as A — 00.
Let k =1+ 5(r —1) and
m=(r+1)
so(r) = {m_TQ ; Ortﬁogonal case
B unitary case.

Then we have the following more precise results for the value and derivative at so(r):
(iii)

( 27rZ)er/2
22T, (1 2)

Wr(y, so(r)) =
(iv) There is an asymptotic formula

. (—2i)T™/2 (det ) *0(r)

Wr(Ay, s0(r)) = (5 2 —D/2T, (s /2)

(det T)50(")

I (vm/2)
log det 7T — =)
BT T om/2)

+0(\™

as A — 0o, where the implied constant depends on y and T .

Proof. Write T' = (T%) 4T %) for some matrix T2 € GL, (K). If we define

g = 4 (T%) -y (T3), (3.3.13)
then applying [45, (1.29), (3.3), (3.6)] gives
(_27.”')er/2 7B

— B+im/2—k .
WT(y7 S) or(k—1)/2 Fr(ﬁ + Lm/2) (det T) W(g, ﬁ + Lm/27 B) (3314)
where
e B=35(s—s0(r)),
o T,(8) = VAT T(B — tk/2), and
e w(g;, B) is an entire function in (, ) € C2, initially defined by the formula

w(g;a, B) =T,(B) 7! det(g)? / e~ 09%) det(x 4 1) " det ()’ dx (3.3.15)

N+
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on the region Re(f) > k — 1, where the integral is absolutely convergent; here we
abuse notation and write

(3.3.16)

Nt — Sym, (R)~p, orthogonal case
| Her,(C)so, unitary case.

and take the measure dz to be the standard Euclidean measure, following [45,
Section 1]. The analytic continuation of w(g;a, B) to (a, 3) € C? is proven in [45,
Theorem 3.1].

Replacing y by Ay corresponds to replacing g by Ag; thus, in light of (3.3.14), in order to
prove parts (i) and (i7) of the proposition, it suffices to prove the corresponding estimates
for w(g;, B). More precisely, we shall show that for fixed g, integers k,k’ > 0, and
(o, B) € C2,

k+k'
and
B ok+E L

the implied constants may depend on k, k', o, 8 and g.

To prove these estimates, we would like to use (3.3.15), but our choice of parameters
(c, B) may place us outside the range of absolute convergence of the integral; to circumvent
this, consider the differential operator

det (%(1 + 515)%”,) , orthogonal case

A= (3.3.19)

det(%ﬁ), unitary case

as in [45, (3.10.I-II)], where g;; are the coordinates for the entries of g € NT; it satisfies
the identity
Ae 9 = (—1)"e 09, (3.3.20)
Then (3.12) and (3.7) of [45] together imply that for N € Z+,

wlgi B) = (~1)N e det(g)? - AN (59 det(g) Pu(zza — N, 3))
=(—1)"Net"9) det(g)? - AN [e_tr(g) det(g)Pw (g;6 — B,k — a + N)] . (3.3.21)

Fixing N > Re(a) — 1, the final incarnation of w(...) in (3.3.21) is now in the range of
convergence of (3.3.15); for convenience, rewrite (3.3.15) for these parameters as
w(g;a,B) = w(g;k—pB,k—a+ N). (3.3.22)
By passing partial derivatives in the coordinates of g under the integral (3.3.15) defining
w(g; a, B), it follows that w(g; v, B) can be written as a finite sum of terms of the form
Fla, B) (det g) s N=" . By (g) - / e 100 Fy(z) det(z 4+ 1) P det(z)*Ndz  (3.3.23)

N+
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where f(«, ) is a holomorphic function independent of g, m > 0 is an integer, and Fi(g)
and Fy(z) are homogeneous polynomials with deg F; < mr; here F} and F; arise as prod-
ucts of iterated partial derivatives, of det(g) and e 1(9%) respectively, with respect to the
entries of g.

For a parameter A > 0 and fixed g, replacing g by Ag and applying a change of variables
in the previous display implies that w(Ag; a, 8) can be written as a sum of terms of the
form

AM F(a, B) (det )< 2N . By (g) - / et By (2) det(A~Lz + 1)~7 det(z)* N da
N+
(3.3.24)
where M = mr—deg F1+deg F» > 0. It follows (again, for fixed g, etc.) that 821,27;2;,w()\g; a, B)
can be written as a finite sum of terms of the form

AM f(a, B) (log det g)* (det g)* TN~ Fy (g)

X / e~ ) (z) log(det(A\ 2 +1))F det(A Lz + 1) P log(det 2)¢ det (z) " N da

N+
(3.3.25)

where f(«, ) is independent of A, and A, B, C are integers.
For A > 1, we have the (rather crude) estimates

|log(det(A "tz 4 1))8 det(A\ 1z + 1) 77| < |det(A\ Lz +1)7P+5|

- det(z + 1)~ HeB)+B if B> —Re(B)
-1, otherwise.
(3.3.26)

Hence, by dominated convergence, we may pass the limit A — oo inside the integral in
(3.3.25), and, by comparison with (3.3.15), conclude that the limit of this integral exists

as A — oo. Since %wo\g; a, ) is a sum of terms as in (3.3.25), this shows the desired

existence of the limit (3.3.17). To prove the second estimate (3.3.18), differentiate (3.3.25)
with respect to A; dominated convergence again allows us to pass the derivative under
the integral sign, and the estimate in the same way. These two estimates in turn imply
statements (i) and (i7) of the proposition.

We now turn to the more precise versions at s = so(r). To prove (ii), recall that 8 = 0
when s = s¢(r); since w(g;tm/2,0) = 1 by [45, (3.15)], evaluating (3.3.14) at s = so(r)
yields the desired formula.
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Finally to prove (iv), take the logarithmic derivative with respect to s in (3.3.14) to
obtain

27 (+=D/27, (ym)2)
(_27m')m'm/2 (det T)Lso(r)
C WrOwso(r) o CDm/2) 9 ‘
— Wr O 50(r) =3 (logdet 7T Ty (im/2) + aﬁw()\ g; B+ vm/2,5) 5:o> .

It will therefore suffice to show that %w()\ - g; 8+ m/2,8)|g—0 = O(A 7).
To this end, for sufficiently large integer IV, we have

wlgs Srim 2,8) = (~1)Ve@ det(g)- AN [0 det() 1T (g: 6+ m/2,5)] (3.3.25)
with

- Wi (Ay, so(r)) (3.3.27)

w(g;B+tm/2,8) = w(g;k—B,k—B—1tm/2+ N). (3.3.29)
Consider expanding %w()\g, B+wvm/2,3) as a sum of terms as in (3.3.25), and note that

any terms with either F} or Fy non-constant are O(A™1). As these terms arise from the
partial derivatives of det g or w(g, B) respectively, it follows that

0 0 -
%w()\g;ﬁ +um/2,8) = %w(/\g; B+um/2,8)+O0\h). (3.3.30)
We are reduced to proving that %C}(Ag; B+ m/2,B8)|p=0 is itself O(A71); taking N large
enough to ensure the convergence of (3.3.15), and applying a change of variables in the
integral, gives

(det g)n—B—Lm/2+N
I'y(k—p—wm/2+ N)

w(Ag; B+im/2, B) = / e~ det (AL 4-1) P det (z) P2 N gy,

N+
(3.3.31)
Now substitute the Taylor expansion
detOA 'z +1)7 = 1 — log(det(A\ 'z +1)8 + ... (3.3.32)

at f = 0 into the previous expression, and note that the integral in (3.3.31) is uniformly
convergent for 8 in a neighbourhood of = 0. Moreover, there is a useful integral repre-
sentation [45, (1.16)]:

/ e 00 det(z) P/ 2N gy = T(k— B — um/2 + N) det(g) " HAHm/2=N(3.3.33)

N+
Combining these observations, the Taylor expansion of w(Ag; 8+ vm /2, 3) around S = 0 is
of the form

(det g)fifl,m/2+N
I.(k—wm/2+ N)

@(\g; B +vm/2,8) =1 — / e~192) Jog(det (AL + 1)) det(z) "™/ Ndz | 8
N+

+ higher order terms in £. (3.3.34)
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For fixed g, the coefficient of 8 is O(A™!) as A — oo, as can be easily deduced from the
estimate
log(det(A 1z +1)) < A tr(2) forz € N*. (3.3.35)

This proves 6%@()\9; B+ 1m/2,8)|p=0 = O(A™!) as required. O

Proposition 3.3.4. Suppose T is non-degenerate of signature (p,q) with ¢ > 0.
(i) Let so(r) be as in Proposition 3.3.3. Then Wr(y, so(r)) = 0 for all y.
(ii) For any fized so € C, k € N and y > 0, there are positive constants C' and C' such
that
ak

[WWT()\y, s)] - = 0(e” )

and

k
88)\ ([(‘ikWT(x\y,s)] ) = O(efcl/\);

here C,C" and the implied constants also depend on T, so, k and y.

s=S0

Proof. Following the notation of [45], choose a symmetric positive matrix y% such that
Yy = (y%)Q, consider the collection

(1, o) (3.3.36)
of eigenvalues (repeated with multiplicity) of the matrix y%Ty%, and define
5y, T) =[] and 0-(y,T) == ] lmal- (3.3.37)
wi>0 wi<O

Then, by [45, (4.34K)] there is a function w(y,T;, 3) that is holomorphic in (a, 8) € C?
such that

- det(y)fﬁfLm/QJrN
WT(y’S) - Cp:q(ﬁ) <1"p(ﬁ+Lm/2) 'Fq(ﬁ)

X w2my, T; B+ 1m/2,5) - e2mtr(yT) (3.3.38)

) By, T) I Bl (g e

where C) 4(3) is an entire, nowhere vanishing, function depending only on p and ¢; here
B = &(s — so(r)). Note that I'y(8)~" vanishes at 8 = 0, while the remaining terms are
holomorphic; this proves (7).
Moreover, for fixed y and A € Ry, we may write
)\*Lmq/2
Lp(B 4 um/2)Lq(B)

for some function f(y, 8) that is entire and nowhere-vanishing in .
By [45, Theorem 4.2], for any compact subset U of C, there are positive constants A
and B (depending only on 7" and U) such that the estimate

w(2my, T; B+ vm/2, B) 2™ "W < Ae™=WD) (1 4 pu(y, T)~P) (3.3.40)

Wr(\y, s) = f(y. B) w(2m Ay, T; B+ 1m/2, B) 2™ WD) (3.3.39)
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holds for all y € and 8 € U; here 7_(y,T) = >_, o |l and p(y, T) = min(|u,]). Since T'
is not positive definite, at least one eigenvalue p; is negative, so 7_(y,T") > 0. Replacing y
by Ay and noting that

Ay, T) = A7-(y,T) and  p(Ay,T) = Ap(y,T) (3.3.41)
it follows easily that for fixed y, there is a constant C' such that
Wr(\y,s) = O(e” ) (3.3.42)

uniformly for s in some neighbourhood of s = sg, say. This proves (ii) for the case k = 0.
The estimates for £ > 1 follow immediately from Cauchy’s integral formula

ok K Wr(\y, s)

Finally, we turn to the derivative with respect to A\. The results of [45, Section 5|, see
especially Lemma 5.7, imply that for fixed y, the function

F(\s) == Wr(\y,s) (3.3.44)

is entire in s and extends to a complex function in A that is holomorphic on Re(A) > 0 and

s=$0

satisfies, in the same manner as before, the asymptotic %F()\, S)|s=so = O(e=¢" FeM) for
some constant C’. The proposition follows from another application of Cauchy’s integral
formula: for a point Ag > 1,

o ([ o 1 1 ok ,

—~ | | 5% = ¢~ F s — O(e=C"o

Y <|:askWT()\yv s)] SSO)A ) VS WEEE: (A, 8)|s=so N = O(e” ),
=A0

(3.3.45)
where the integral is taken around a circle of radius one (say) around Ag. O

3.4. The integral of g°. For the rest of Section 3 we assume that rk(€) = 1. Recall that

we had constructed a Schwartz form
IS

v(v) = ) ui(v) (3.4.1)
i=1
for v € V", as in Proposition 2.4.5; note that for the permutation matrices ¢; (1 < i <r)
as in (2.5.22), we have v;(v) = w(m(€))vy(v).

3.4.1. Let zyp € D be the base point fixed in Section 2.2.1, and consider the Schwartz
functions 7;, 7 € S(V") defined by

vi(v, 20) AP (20) = 5 (v) QP (20), 1<i<r (3.4.2)

and
vi=U1 4 ..., 40y (3.4.3)
here Q0 = Q¢ = £¢1(€,V).
The next lemma computes the images of 71, ..., 7 under the map A\: S(V") — I.(V, so)
described in Sections 3.1.6 and 3.2.5.
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Lemma 3.4.2. Let \g be the weight of K' defined as follows: in the orthogonal case, we
take

. (m m
)\0 T (77"'a?7

©l3

_ 2)
and in the unitary case,

m+k m+k m+k —m-+k —m-+k —m-+k
Xo = (( +2(><)7'_‘7 +2(x)7 +2(x)_1)’( ﬂ;(x)’_ J;(X)7 J;(x)+1))

ey

where k(x) is given in Section 2.5.3. Let~<I>)‘0(s) be the unique vector in I.(V,s) of weight
Ao with ®*0(e,s) = 1. For 1 <i <7, let ®;(s) = r(m(e;))®(s). Then

M) (g) = w(@)(@)(0) = (-1)""'0i(d',50), ¢ €GCp

Proof. Since the map A: S(V") — I,.(V, s0) is Gl-intertwining, it suffices to consider the
case i = r. By Proposition 2.4.5 we have v;.(0)[2,_9) = (—Q)"~! and hence

w(g)7r(0) = (<171 (g, s0), ¢ € G (3.4.4)

since both sides define highest weight vectors of weight Ao in I, (V, sg) (see Lemma 2.5.4)
that moreover agree for ¢ = 1, and the K’-types in this representation appear with mul-

tiplicity one. O
Thus, setting
T — ) Ao
B(s) = Y r(m()@*(s) € L(V; ), (3.4.5)
1<i<r
we have
w(g")(0) = (=1)"1®(¢', 50). (3.4.6)

The following lemma relating the Whittaker functional Wr (-, s¢) evaluated at ®* with
the derivative W/.(®!, s) is the main ingredient in the proof of Theorem 3.4.10. It will be
convenient to work in classical coordinates: for any ® € I,(V, s) and y € Sym,.(R)~¢ (resp.
y € Her,(C)sg) in the orthogonal (resp. unitary) case, let

Wr(y, ®,s) == (dety) ™ Wr(gl, B,s) 2TV (3.4.7)

where g, = m(«) for any matrix a € GL,(K) with deta € Ryg and y = a - ta.

Lemma 3.4.3. Let Wr(y,s) = Wr(y, ®,s5) be given by (3.3.12) and write Wi(y,s) =
d%WT(y, s). For any t € Rso we have

~ 2 d
WT(tyv <I>7 50) = Z ' t%W%(tyv 50)'

Proof. We begin with the orthogonal case. If k € O(r), a change of variables in (3.3.5)
shows that

Wr(m(k)g, ®,5) = Wi (9, ®,5), @€l (V,s). (3.4.8)

Hence it suffices to consider the case where y is diagonal, i.e. we may assume

y=dy1,--Yr)- (3.4.9)
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The statement is now a direct computation using (3.1.16), as follows. For 1 < j <r, let

®;(s) = r(m(e;))®(s). By Lemma 3.1.5, we can write
Di(s) =2 (s — s0) L Ad(m(e;)) X, ®(s). (3.4.10)

Let F(g) = Wr(g, ®!,s) and Fj(g) = Wr(g, i)j,s) and set y'/2 := d(y 1/2, . ,yi/ ). Using
coordinates x;, y; and 6; for the embedding

1y 1= mle)imm(e;) " Mpy(R) = G = Mpy, (R) (3.4.11)
as in (3.1.13)-(3.1.16), we compute
27! (s — s0) Fy (m(y"/?)) = Ad(m(e;)) X, F(m(y'/?))

B d . d Zi s (3.4.12)

Note that for n(z) € N, and k¥’ € K| we have

VI

Wr (@(x)m(y%)k',q)l,s) = 2m0(T) (et k) Wi (m(y ),CIJl,s> (3.4.13)

and hence, in coordinates (z;,y;,0;) as above, we find

d d i d d m
( Wﬂd + Yi dy; + 2d0j) F(m(y'?)) = (27Tijjj + e 4) F(m(y'?)).
(3.4.14)
Substituting this expression in (3.4.12) we conclude that

d
2 s Wl ) = T [Comu s = 2 )

d
— g . 4.1
Y; Iy Wr(y, s) (3.4.15)

Adding these equations for j = 1,...,r, the lemma follows in the orthogonal case by
comparing the Taylor expansions around s = sg. The unitary case follows from analogous
considerations, using (3.2.14) instead of Lemma 3.1.5. O

3.4.4. Supppose det T # 0 and let
QT(V) = {(Ul, e ’UT) eV’ ‘ (Q(vi,vj))i,j = QT} (3416)

Thus Qp(V) # 0 if and only if (V, Q) represents T, and in this case U(V) = Aut(V, Q) acts
transitively on Qp(V'); assuming this, let du(v) be an U(V)-invariant measure on Qg (V)
and consider the functional S(V") — C defined by

o d(v) du(v). (3.4.17)
Qr(V)
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This functional is obviously U(V)-invariant and non-zero, and hence defines a Whittaker
functional on R, (V). We denote by du(v)SW the unique U(V)-invariant measure on Qz(V)
such that, for any ¢ € S(V"),

/| 1 P =55 Wr(e, @), where ®(9) =w(0)0(0) (3419

We denote by dg(® the invariant measure on U(V) defined as dg®) = dp dk, where dk is
the unique Haar measure on O(V™) x O(V ™) (resp. U(VT) x U(V ™)) with total volume

one in case 1 (resp. case 2), and dp is the left Haar measure on P induced by the invariant
volume form O on DT = G/K.

Lemma 3.4.5. Let \g be given by (2.5.24) and let v = (v1,...,v,) € Qp(V), where
detT # 0. Let Gy C U(V) be the pointwise stabilizer of (vi,...,v,) and I'y C G2 be a
torsion free subgroup of finite covolume. Then, for any g' € G, we have

—p 2 P
/F - W(g/)V(V) N QP - _§CT,FVWT(g,a (I)a 80)7

where ® is as in (3.4.5) and Crr, is the non-zero constant given by

dg(2)/dgv -1

2
= — (=1 II‘v V) v) 7 Now re.
Crr, = = (-1 VollW\Gu.dgv) S5 o7

Here dgy is an arbitrary Haar measure on Gy and dg(z)/dgv denotes the quotient measure
on Qp(V) 2 U(V)/Gy induced by dg® and dg, .

Proof. The hypothesis that detT # 0 implies that G2 is reductive, hence the invariant
measure dg?) /dg, exists. By (3.4.2) and Proposition 2.4.5.(d), we have #(gv) = #(v) for
any g € U(V) stabilizing V—. We compute

/ w(g(v) A QP = / w(g)ir(g ') dg®
I'y\D+

L\U(V)
)
= Vol(T'y\Gv, dgv) / w(gi (g~ v) djg
Gy \U(V) v
@)
Vol(T\ G, dgy) 2140y (g5 () dp(v)SW

du(v)SV Jarw)

dg(Q)/dgV -1

= (-1 1 1Fv v V) 7 N Qw r
( ) VO( \G 7dg ) du(V)SW Tv

WT(g/7 é7 80)7
(3.4.19)
where the last equality follows from (3.4.18) and (3.4.6). O

Remark 3.4.6. In Remark 5.3.5 we will compute the constant Crr, for certain (arithmetic)
cocompact groups I' C G.
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3.4.7. We will now apply the results obtained in this section to compute the integral
(3.0.1) under our standing assumption that rk(£) = 1. Rather than aiming for the most
general result, we restrict to cocompact arithmetic subgroups I' and integral vectors v (see
below); this suffices for the application to compact Shimura varieties in Section 5.

Fix a lattice L C V and a torsion free cocompact arithmetic subgroup I' C G stabilizing
L, and let T'y = Stabr(vy,...,v,) and Xp =T\D™.

Lemma 3.4.8. Assume that v € L" is non-degenerate and let Z(v)r be the image of the
natural map Ty\D{ — Xp.
(a) The sum
e°WMr= Y, ¢°(r'v)
~velv\I'
converges absolutely to a smooth form on Xt — Z(v)r that is locally integrable on Xr.
(b) As currents on Xr we have

M ° _ dt M 00 °
S [ e S oo,

~vyelv\I'

Proof. Let us first show that g°(v)r converges as claimed. Let z € DT and pick a relatively
compact neighborhood U of z. Recall that there is a positive definite form @), defined by
(2.3.4) that varies continuously with z. Write I'v = S} L Sy (disjoint union), with

S ={v eTv| mi[rjlhz(svr) <1} (3.4.20)
ze

then S is finite since I'v C L". We can split the sum defining g°(v)r accordingly; the
sum over 5] converges to a locally integrable form on D that is smooth outside Uy/cg, ]Dj,
by Proposition 2.1.8. The sum over Sy converges to a smooth form on U by the estimate
(2.1.10) and the standard argument of convergence of theta series. By Proposition 2.4.5.(d),
the current defined by g°(v)r is invariant under I', and this shows (a). For part (b), note
that for each v/ € S we have [M 1/°(t1/2v’)[2r_2]% — g°(v') as M — 400 (as currents on
D*) by dominated convergence, as remarked in the proof of Proposition 2.1.8. For the sum
over Sy we apply the bound (2.4.6), and (b) follows. O

Lemma 3.4.9. Assume that v € L" is non-degenerate. Then the integral (3.0.1) converges

and
M dt
/ (V) AQPT = lim / / VO (t /3wy A QP
FV\D"F M —+oc0 1 V\D+ t

Proof. By Lemma 3.4.8.(a), the integral (3.0.1) equals [p\p+ g°(V)r A QP+ and so it
converges since Xr is compact. Applying Lemma 3.4.8.(b) and unfolding the sum and the
integral proves the claim. O

The following theorem can be viewed as a local analogue of our main result, Theo-
rem 5.3.1. While the strategy of proof for both theorems is similar, the assumption that T'
is non-singular simplifies the argument considerably and allows for a local proof that does
not use the technical estimates of Section 5.2.
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Theorem 3.4.10. Suppose detT # 0 and v € Qp(V)NL". Let Crr, be as in Lemma 3.4.5
and | be the weight in (3.3.11). Recall that we assume that tk(E) = 1.

(a) If T is not positive definite (so that Dy =), then
e—27rtr(T) / gO(V) A QP — CT,Fv W}(e’ (I’l, 30)-
ry\D+
(b) If T is positive definite (so that Dy # (), then

o—2mtr(T) / g° (V) NPT = Cpp, Wi(e, @, sp)
I'y\D+

— CT,FV WT(ea q)l, 80) % <10g det(ﬂ_T) B m> '

Proof. The integral converges by Lemma 3.4.9. We compute

/ QO(V) A QP — / / VO(tl/QV) A Qprtl @
Iy \D+ 1 Iy \D+ t
— /OO 6271’tr(tT) / V(t1/2V) A Qp—r+l1 @
1 Iy \D+ t

— _écT,FV / e2ﬂ'tr(tT) I/I/T(m(tl/2 : 17’); &)a SO) tm 4 )
1

where we have used Lemma 3.4.9 and Lemma 3.4.5 for the first and last equality respec-
tively. The last integrand equals Wr(t-1,, ‘i, s0), and so applying Lemma 3.4.3 we conclude
that

g°(v) AP = O p  Wih(e, s0) — lim Wh(t - 1., 80)). (3.4.22)
FV\]D)+ t—o0
If T is not positive definite, then the limit in the above expression vanishes by part (ii) of
Proposition 3.3.4; this proves (a). If T is positive definite, then (b) follows from Proposi-
tion 3.3.3.(iii)-(iv). O

4. GREEN FORMS FOR SPECIAL CYCLES ON SHIMURA VARIETIES

We now shift focus from the Hermitian symmetric domain D to its quotients I'\D by
arithmetic subgroups, and apply the results of the previous sections to construct Green
forms for the special cycles Z (T, ¢¢) on orthogonal and unitary Shimura varieties intro-
duced by Kudla in [24].

4.1. Orthogonal Shimura varieties. Let us briefly recall the definition and basic prop-
erties of orthogonal Shimura varieties attached to quadratic spaces over F'; see [24] for
more detail.
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4.1.1. Let F be a totally real field with real embeddings o1, ..., 04.
Let p > 1 and V be a quadratic space over F of dimension p + 2, with corresponding
bilinear form Q(-,-). Assume that

(p,2) ifi=1
(p+2,0) ifi#1,

where we abbreviate V,, :=V ®p,, R for the real quadratic spaces at each place.
Attached to V,, is the symmetric space D(V) = D(V,, ) defined in (2.2.6); recall that it
is defined to be

signature(V,,) = { (4.1.1)

D(V) = D(Vo,) = {[v] € P(V5,(C)) | Q(v,v) = 0, Q(v,7) < 0} (4.1.2)
Here Q(,-) is the C—bilinear extension of the bilinear form on V,,. Let
Hy := Resp/g GSpin(V). (4.1.3)
Then
Hy(R) ~ GSpin(V,,) x --- x GSpin(V,,) (4.1.4)

acts transitively on D(V) via the first factor.

Definition 4.1.2. For a compact open subgroup K C H(Ay), consider the Shimura variety
Xy i = Hy(Q)\D(V) x Hy(Ay)/K.

If K is neat, then Xy  is a complex quasi-projective algebraic variety. If V is moreover
anisotropic, then Xy g is projective.’

The space Xy x may be written in a perhaps more familiar fashion: fix a connected
component DT C D(V) and let Hy(R)™" denote its stabilizer in Hy(R). Setting Hy(Q)" =
Hy(R)" N Hy(Q), there exist finitely many elements hq, ...k € Hy(Ay) such that

Hy(Af) = HHV(Q)W]-K; (4.1.5)

then we may write

XV,K ~ HFJ\D+ = H XV,j (416)
J J
as a disjoint union of quotients of D by discrete subgroups

I; = Hy(Q)* N (thh]fl) . (4.1.7)

In general, we regard the quotients Xy x and I';\DT as orbifolds. In particular, for a
I'j-invariant differential form 1 of top degree on DT, we define

R (1.1.8)

([ \D+] I\D+

where IV C T'; is any neat subgroup of finite index, and set [ (Xx] = > i f[Fj\Dﬂ'

30ur assumptions on the signature of V imply that this is always the case when F' # Q.
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4.1.3. The theory of canonical models of Shimura varieties (see [44]) implies the existence
of a quasi-projective model Xx over Spec(F'), which is projective when V is anisotropic,
such that
Xk Qrqs C~ Xy k.
From the point of view of arithmetic intersection theory, it will be important to work
with all the complex fibres of Xx simultaneously; the remaining fibres have the following
concrete description.
For each k = 2,...,d, let V[k] denote a quadratic space over F such that

(i) V[k]y, =~ V4, ie. the signature of V[k|s, is (p,2);
(i) V[k]g, > Vo
(iii) and (V[k])y ~ V,, at all other places.
The space V[k] is unique up to isometry, and we have V[1] ~ V.
Fix, once and for all, identifications
Vikl| @r Ay ~V@p Af (4.1.9)
inducing identifications
Hyp(Ay) ~ Hy(Ay)
for all k, and so in particular we may view K C Hy(As). Then, setting D(V[k]) =
D(V[kls,) ~ D(V), the theory of conjugation of Shimura varieties (see [39, 40], as well as
[8, Section 7] for our particular situation) gives identifications

Xic X, € 2 Xy = Hypgg(Q)\D(VIkly,) x Hypy(Ay) /K. (4.1.10)

In particular, viewing Xk as a scheme over Q via the map Spec(F') — Spec(Q), we have
d
X (C) = [] Xviw.x- (4.1.11)
k=1

4.2. Special cycles. Recall that in Section 2.2.2 we have defined the tautological bundle
& over D(V[k]) and a global section sy of (£")Y for any v € (V[k]y,)", whose zero locus
Z(sy) we denote by Dy. Given a rational vector v = (vy,...,v,) € V[k]", we set

Dy = Z(s4, (1)) (4.2.1)

and DY =Dy, ND(V]k])*.

Let Hy(Q) be the pointwise stabilizer of spang {v1,...,v;} in Hy};)(Q). Given a com-
ponent X; = T';\D" C Xy, i associated to hj as in (4.1.6), let I';(v) = I'; N Hy(Q); then
the natural map

L;(v)\DY — T;\D" = X; (4.2.2)
defines a (complex algebraic) cycle on X; that we denote by ¢(v, X;). In addition, recall
that for a matrix 7" € Sym,.(F'), we had defined

Qr(VIk]) = {veVk]"|T(v)=T} (4.2.3)

where T'(v) = (3Q(vi, v;))i; € Sym,(F) is the moment matrix of v.
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Definition 4.2.1 ([24]). Let oy € S(V(Af)")E be a K-invariant Schwartz function which,
for each k =1,...,d, may be viewed as a Schwartz function on V[k|(Af)" via (4.1.9). For
T € Sym, (F), define the weighted special cycle Z(T,py, K) on Xk (C) = [ Xvp,x by

d
Z(T, 5, K) = Z Z Z cpf(hj_lv)c(v,Xj).
k=1 X;CXvy),x V€QQ(¥[k])
mod I’y

This is a complex algebraic cycle on X (C) that is in fact defined over F.

It follows from the discussion after (2.2.12) that if Z(T', ¢, K) is non-empty, then 71" is
totally positive semi-definite and the codimension of Z(T', ¢, K) is equal to the rank of T'.

Note that this definition is independent of all choices. Moreover, if K’ C K is an
open subgroup of finite index and 7: Xx» — Xk is the natural covering map, then
™ Z(T, 5, K) = Z(T,ps, K'). See [24, §5] for a proof of this and further properties of
these cycles.

To lighten notation, we will once and for all fix a compact open subgroup K C Hy(Ay),
and write, for example, Z(T', ¢5) = Z(T, ¢y, K), Xyy) = Xyp),x and X = X, ete.

4.3. Green forms for special cycles.

4.3.1. For the moment, fix a real embedding o;: F' — R and a component
Xj =Tj\D* C Xypy = X, (C)

with Dt = D(V[k],, ); here I'; is attached to h; € Hy(Ay) as in (4.1.7).

Let T € Sym,(F) with detT # 0. Any collection of vectors v = (v1,...,v,) € V[k]"
with T'(v) = T is necessarily linearly independent. For such v, we defined in Section 2.6.1
a form satisfying the equation

dd®g®(ox(v)) + dp, = ©°(ok(V))2r] (4.3.1)

of currents on DT,

Next, we introduce Green forms that, like the Fourier coefficients of derivatives of Siegel
Eisenstein series in the next section, depend on an auxiliary parameter y € Sym, (F' ®q
R)s.0; here y should be thought of as the imaginary part of an “automorphic” variable
T=X+1y € (Hr)d, where H.,. is the Siegel upper half-plane of genus r.

To this end, fix some element o € GL, (Fr) with totally positive determinant such that
y = a-'a and, for a Schwartz function ¢ € S(V(A)")X, define a form g;(T,y,¢f)s, on

DY by setting
6Ty, 00)or = > ¢r(h;'v) 8°(ok(v) - on(a)); (4.3.2)
veQr(VIk])

here we view o(a) € GL,(R) via the R-linear map oj: F ®p R — R induced by oj. The
convergence of this sum to a locally integrable form on DT follows from Lemma 3.4.8.(a)
and the fact that the number of orbits of I'; on Supp(ys) N Qr(V[E]) is finite.
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Note that the definition is independent of the choice of o, by Proposition 2.4.5.(f). More-
over, the form g;(7,y,¢¢)s, is invariant under the action of I'; by Proposition 2.4.5.(d),
and so it descends to a form on the connected component X; that, abusing notation, we
also denote by g;(T,y, ¢f)o, -

Finally, let

9(T,y,¢f)oy (4.3.3)

denote the form on Xy >~ &, (C) whose restriction to X is g;(7,y, ¢y)s,. Essentially by
construction, it is a Green form for the cycle Z(T', ¢y)s,; more precisely, let w(T,y, ),
be the differential form on Xy whose restriction to the component Xj is

w(Ta Yy, Spf)ak ‘Xj = Z gOf(hJ_IV) (po(o—k(v) ' Uk(a))[Qr}? (434)
veQr(VIk])
Then the form w(T,y, ¢¢)s, is the T’th coefficient of the theta function
GKM(Ta Spf)a'k = Z w(T7 Y, ()Df)a'k qT7 (435)
TeSym, (F)
where 7 € (H,)¢ and ¢7 = H‘ii_l e?mt(rioi(T)) - This theta function was considered (in

much greater generality) by Kudla and Millson [29].
Applying the identity (4.3.1) of currents on D, summing over x with T'(x) = T and
descending to the Shimura variety Xy yields the equation

ddcg(Tv Yy, Spf)a'k + 5Z(T,(pf)gk = w<T7 Yy, gof)O'k (436)
of currents on Xy =~ Xy, (C). The collection
{0(T,y,¢8)0, | k=1,...,d} (4.3.7)

defines a Green form g(7',y, ¢y) for the cycle Z(T, ¢¢) on X, in the sense of [46, Chap. II].

4.3.2. We will next construct a current g(7,y;¢r) = {9(T,y,¢¢)s,} for an arbitrary
matrix 7' € Sym,.(F') and y € Sym, (Fr)so. For the moment, choose an embedding o) and
a component X; = I';\D C A, (C). Recall that for any v = (v1,...,v,) € V[k]", we had
defined the current

o dt
#(@¥)in) = [ e s (138)

on D, see (2.6.4). here p is a complex parameter.
Let y € Sym, (Fr)s0 and let @ € GL,(FRr)so such that y = @ - 'a. Given a Schwartz
function py € S(V(A;)")E, consider the sum

8Ty, 05 Po = D w(h;'v) 8° (ok(v) - on(@); p), (4.3.9)
Q7 (V[k))

viewed as a current on DT = D(V[k],,)*. Note that the right hand side is independent of
the choice of @ by Proposition 2.6.6.(ii).
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Proposition 4.3.3. The sum (4.3.9) converges for Re(p) > 0 to a I'j-invariant current
on DT that has a meromorphic continuation to Re(p) > —1/2. In particular, the constant
term in the Laurent expansion

g;(Ta Y, Qof)ok = CTp:O g; (Ta Y, ®@rf; p)ak
descends to a current on X; = T';\D*.
Proof. For convenience, we take o, = o1 and suppress this index from the notation, writing

y = y1 etc. The proof for the other embeddings oy is identical.
It suffices to work on a fixed compact subset K C DT. Let

S1 = {ve V' |T(v) =T, ¢p(h;'v) #0, and Dy N K # 0}, (4.3.10)
and
Sy == {veV |T(v)="T, gof(hj_lv) #0, and Dy N K = 0}, (4.3.11)

so that S7 U Sy indexes the non-zero terms appearing on the right hand side of (4.3.9).
Note also that 57 is finite, while there exists a bound C' > 0 such that

T

mi}l{l hx(o(vi),o(vi)) > C (4.3.12)
ze
i=1
for all v = (v1,...,v,) € Sa.
By Proposition 2.6.6, the finite sum
S or(hiv) @ (0(v) - ol@);p) (4.3.13)
veST

converges for p large, and has meromorphic continuation, as a current on K, to Re(p) >
—1/2. For the same sum where v now runs over Sy, let V' be a sufficiently small, relatively
compact open neighbourhood of K such that D, NV = 0 for all v € S,. Then the
exponential decay estimate (2.1.10) and standard arguments for the convergence of theta
series imply that the sum

_ _ o0 dt
N ophiv) @ (o(v) - ala)ip) = S op(hiv) / v (Vio(v) - o(@) o7 (43.14)
veSs vESy
converges for all p € C to a family of smooth differential forms on V' varying holomorphically
in p, which in turn defines a current by integration.
O

We next show that by patching together the g7 (T,y,®f)o, on Xy, we obtain a current
satisfying an analogue of Green’s equation (4.3.6).

Proposition 4.3.4. Let g°(T,y,ys) denote the current on X(C) = [[, X, (C) whose
restriction to a connected component X; C Xy, (C) is g?(T,y, ©f)oy,- Then there is an
identity of currents

dd°g°(T,y, ¢5) + Ozirpp A U™ = w(T,y, o5) (4.3.15)
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where Qgv = ¢1(EY,V)* and w(T,y, ¢y) is the differential form on X(C) whose restriction
to X5, (C) is w(T,y,¢f) oy -
Proof. It suffices to prove the given identity, for each component X, at the level of I';-

invariant currents on ID. The estimates in the proof of Proposition 4.3.3 allow us to write

= dd°
X

dd°g; (T, y, vs)o,

CTpo Y _r(h;'v) g° (ok(v) - on(e); p)
=Y @p(h;'v) dd°CTy—g ¢° (0k(v) - on(a);p).  (4.3.16)

The proposition follows immediately from Proposition 2.6.6.(vi).
O

Finally, in order to obtain agreement with the derivatives of Eisenstein series in our main
theorem, we introduce a modified version of g°(T,y,¢s). We write det’ A for the product
of non-zero eigenvalues of a square matrix A, with the convention det’(0) = 1.

Definition 4.3.5. Lety = (yu)u|oo € Sym,.(Fk)s0 and T' € Sym,.(F'), and define a current
o9(T,y,or) € D*(X(C)) as follows: if T is not totally positive semidefinite, set

9Ty, ¢5) == 0°(T\y. ¢5)
and if T is totally positive semidefinite, set

g(T’ Yy, Sof) = go(Ta Y, Sof)

det’ o, (T) - det y, k(T —
DG S R S

det’ (a0 (T)yw)

where Qgv = ¢1(EY,V)* = 3-c1(EY,V). Note that the additional term is closed, and
vanishes if T is non-degenerate.

Note also that when detT # 0, the current defined by the Green form (4.3.7) agrees
with the one in Definition 4.3.5 by Proposition 2.6.6.(iv).

4.4. Unitary Shimura varieties. The results in the previous section carry over, essen-
tially verbatim, to the unitary case. To describe the setup, suppose that E is a CM
extension of the totally real field F' with [F' : Q] = d, and that V is a Hermitian space over
E, with Hermitian form Q(,-).

Fix a CM type ® = {01,...,04} C Hom(E,C). For each i, the space V,, =V ®,, g C
is a complex Hermitian space; we assume

(p,q), ifi=1

4.4.1
(p+¢q0), ifi=2,...d (44.1)

signature V,, = {

for some integers p,q > 0.
Let
D(V,,) := {z C V,, negative-definite subspace, dimc z = ¢},
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(see (2.2.5)) be the symmetric space attached to the real points of the unitary group
Hy = Resg/g U(V). (4.4.2)

Just as in Section 4.1, a fixed compact open subgroup K C Hy(Af) determines a complex
Shimura variety

XV = XV,K = Hv(@)\D(Vm) X Hv(Af)/K (4.4.3)

which is quasi-projective, and projective when V is anisotropic; choosing representatives
hi,. .., h for the double coset space Hy(Q)\Hy(Af)/K gives a decomposition

Xy ~ [[t)\D = J[X;,  where T := Hy(Q) N <thhj_1>. (4.4.4)
J J

Let X denote the canonical model over E, so that X, (C) ~ Xy. For the other complex
embeddings, the story is similar to Section 4.1. For each k = 1,...,d, let V[k] denote the
(unique up to isometry) E-Hermitian space such that

o Vikls, ~ V4,
e V[k],, is positive definite, for j # k; and
e V[k], ~V, at all finite places v.

Identifying V[k]®gAf ~ V®qgAy, and in particular, viewing K as a subgroup of Hyj, (Ay),
we may define the complex Shimura variety Xy = Xy}, in the same way as Xv k.

Now suppose p € Hom(E,C) and let of be the element of the CM type such that
plF = or|F. Then there is an identification

this follows from the general considerations of [40] and [39, Section I1.4], or [37, Section
3A] for the case at hand.

The special cycles are defined just as in Section 4.2: recall that a tuple v = (vq,...,v,) €
(V[K])" determines a section of (£")V, where £ is the rank ¢ tautological bundle on D(VI[k]).
Its vanishing locus D, C D(V[k]) determines a cycle ¢(v, X;) on each component X; =
I';\D(VI[k]), which is either empty or of codimension 7’'q, where v’ = dimspan{vy,...,v,}.
Given a K-invariant Schwartz function ¢; € S(V(A;)")X and a matrix T € Her,(E),
define the (complex) special cycle

Z(T,¢y5) = > Y pp(h; V) e(v, X;) (4.4.6)
X CXup X (C) Qr (VIK)
mo j

exactly as in Definition 4.2.1, with the sum taken over all connected components of X'(C);
as before, these are the complex points of a rational cycle.
Given y € Her,(E ®g R)s0, use the CM type ® to identify

y = (Y1, .-,yd) € (Her,(C)s0)? =~ Her,(E ®g R)o. (4.4.7)
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For p: B — C, let g(T',y, py), denote the current on &,(C) >~ Xy whose restriction to a
component X; C Xy is given by

0°(T,y,¢1)p| ., = CTsmg > wphitv) 8% (p(v) - okl@);s) - (4.4.8)
veQr(VIk])

Here @ € GL,.(ER) is any matrix with totally positive determinant such that y = « - 'a.
The independence of the choice of a follows again from Proposition 2.6.6.(ii).

The analogue of Proposition 4.3.4, which can be proved with straightforward modifica-
tions to the arguments in the previous section, is:

Proposition 4.4.1. The following equation of currents on X,(C) holds:

dngO(Tvyszf)p + 5Z(T,<pf)p/\92;rkT = W(T’yagpf)P'

Here Qev = c°P(EV,V)* is the top Chern-Weil form of the Hermitian bundle EV.

As in the orthogonal case, we introduce a modified version of g°(7T,y,¢s) by adding a
closed current.

Definition 4.4.2. Let y = (yv)y|oo € Her,(Er)s0 and T € Her,(E). We set

a(T,y,p5) =9°(T,y, ¢5)

if T is not totally positive semidefinite and
g(T7 Y, pr) = 90(T7 Yy, QOf)

det’ o,(T) - det y, " r—rk(T)—1
~2_log ( det’ o, (T)y, ) 028210, o)1 (E7, V)TN ey

v]oo
if T is totally positive semidefinite; when T is non-degenerate, the additional term vanishes.

Erample 4.4.3. We treat the orthogonal and unitary cases simultaneously here. Assume
that V is anisotropic and that
0
T= ( S> (4.4.9)

with S non-degenerate, where S € Sym,(F) (resp. Hery(F)) in the orthogonal (resp. uni-
tary) cases, and ¢ = rk 7. Then any x with T'(x) = T is of the form x = (0,...,0,x’) with
T(x')=S5.

Suppose that ¢ = ¢ ® ¢ with ¢ € S(V(Ag)"") and o € S(V(Af)"), so that
Z(T,¢r) = ¢(0) - Z(S, ¢}). Suppose furthermore that y is of the form

y= (y/ y,,> , (4.4.10)

where y’ and y” are totally positive definite of rank r — ¢ and ¢, respectively.
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It follows from Example 2.6.8 that, after descending to the Shimura variety A,, (C), we
have the equation of currents

Q(T7Y> Spf)(fk
= 90;‘<0) ’ [g(sa yllv (Pljﬁ)ﬁk N Qgct - log(det ?/) 5Z(S,<p’;)gk N Crk(ﬁ)—l(gva V)* N Qgct_l

o du
+(r— t)/l {w(S, uy", &) - ‘52(5’@’/)%]

u

A Cre)-1(EY, V) A Q! ] -
(4.4.11)

Since w(S, uy”, go’f) and ¢ Z(rypl)) ATe cohomologous, the term appearing on the second line
above is exact, i.e. '

9(T,y,¢f)0, = £(0)- [B(S, Y @) N eyt = log(det yi) dz(5,07),, A Crie)-1(E7, V)" A QQCH}
€ D" V(X (C)) /imd + imd. (4.4.12)

This expression generalizes a similar term appearing indirectly in the work of Kudla-
Rapoport-Yang [34, p. 178|, which dealt with the case of a Shimura curve over Q and
r=2,7"=1.

Finally, we note that for 7" = 0, and V anisotropic, a computation along the same lines
gives g°(0,,y,pr) = 0 and the pleasant expression

8(0,,y, 7)o, = —log(detyr) - 7(0) - cue)-1(EY, V)" A Qi (4.4.13)
Remark 4.4.4. We continue to assume V is anisotropic, and note two useful invariance
properties for g(7,y,f). Set k = F in the orthogonal case and k = E in the unitary one.

(1) Suppose T' = (9 ) for a non-degenerate matrix S € Sym,(F) (resp. S € Hery(E)),
and 6 € SL,(kg) is of the form

0 = (”‘t 1*t> . (4.4.14)
Then
g(T,0y'6,05) = o(T,y,¢5) (4.4.15)
(2) Suppose v € SL,(k), and let T[] := ' T~y~!. Then
g(Th vy73.¢f) = a(T,y,¢5) (4.4.16)

where ¢';(x) = @r(x 7).
Given T', one can always find an element v € SL,(k) as above such that T[y] = (0 S) for
some non-degenerate matrix S. Similarly, we may choose 8 as above, such that 0y'0 =
(y/ y,/> with y” of the same rank as S; thus, up to a factor

det/(T")
o (det%Tm

we may always place ourselves in the setting of Example 4.4.3.

) 02(5,60)0, N Crt(e)-1(€Y, V) ANQETY, (4.4.17)
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4.5. Star products on Xg. In this section, we continue to treat both the orthogonal
and unitary cases. Let g(71,y1,¢1) and g(T,y2,p2) denote two currents attached to
special cycles Z(T1, 1) and Z(Ts, p2). Assume that 77 and T are non-degenerate and
that Z(T1,¢1) and Z(Ts, ¢2) intersect properly, and consider the star product

9(T1,y1,01) x8(12, y2, p2) (4.5.1)
= 911,51, 1) NOz(1y,00) + 8(T2,y2,02) Aw(T1,y1, 1)

in D*<XK)
Theorem 4.5.1. Let ¢ = 1 ® po. With assumptions as above,
9(T17Y17§01)*9(TzaYQ7902) = Z g(Tﬂ(Y1 yz)#’)
T *
TZ( *1 T2>

in D*(X) := D*(Xg)/(imd + imd).

Proof. Fix an embedding o, matrices o; € GL;,(K) such that oy (y;) = ;- '@z for i = 1,2,
and a component X; = I';\D" C X, (C); working with T'j-invariant currents on D7, the
proof of Proposition 4.3.3(i) implies that

Q(TlaYhSDl)*G(T%YZa@2)‘Xj = > erlhyxa) pa(h 'xa) g°(v1) #g°(va) (4.5.2)
x1€Qr, (V[K])
x2€0, (VIK)

where we write v; := o0x(x;) - a;; note that the proper intersection assumption implies
that v = (vi1,vy) is regular for any non-zero term above, i.e. Dy is either empty or of
codimension (r; + r2)rk(€). By Theorem 2.7.2, the previous line becomes

Z <P1(hj_lxl)802(hj_lxz) {g°(v) — 0a(vi,v2) — 9B(v1,va)}
x1€Q7, (V[K])
x2€Q7, (V[k])

= Z Z @(hj_lx)go(v) - Z <P1(hj_lxl)902(hj_lxz) {0a(vi,ve) +9B(v1,va) }
r—(Tr 7 ) xeQu(VIk) x1€Q7, (V[K])
* Ty x2€Q7, (V[k])

= Y 9@ y)e) = Y. el xa)ea(hy  x) {0a(vi, va) + BB(vi, va) }

_ T * x1€Q7, (V[k])
r=("1 7,) s (V]i])

(4.5.3)

where x = (x1,x2) and a(vy,ve) and B(vy, ve) are as in Theorem 2.7.2. Again, an argu-
ment along the lines of Proposition 4.3.3(i) shows that the sum

Z <,01(h]71x1)g02(h;1x2)a(v1,v2), (4.5.4)
x1€Qr, (V[k])
x2€Qr, (V[k])
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and its analogue with o replaced by /3, converge to currents on DV, that are moreover
I'j-invariant by Theorem 2.7.2. The theorem follows upon descending to Xj. (|

5. LOCAL ARCHIMEDEAN HEIGHTS AND DERIVATIVES OF SIEGEL EISENSTEIN SERIES

Here we prove Theorem 5.3.1, our main global result relating archimedean local heights
and derivatives of Siegel Eisenstein series. We review the definition of these Eisenstein
series and the Siegel-Weil formula in Section 5.1. For the proof we also need to explicitly
determine the asymptotics of the Fourier coefficients E7.(A\y, @, s9) as A — co; we do this
in Section 5.2 and give the proof of Theorem 5.3.1 in Section 5.3.

In Section 5.5 we explain how, using our results, Kudla’s conjectural arithmetic Siegel-
Weil fomula can be rephrased in terms of Faltings heights of special cycles.

Fix a totally real number field F of degree d, and a CM extension F, and set

K F, ort.hogonal case, and K — R, ort.hogonal case (5.0.1)
E, unitary case C, unitary case.
Let o01,...,04 the archimedean places of F' in the orthogonal case, or the elements of a

fixed CM type of E in the unitary case.
We fix an m-dimensional Hermitian k-vector space (V, Q) such that V,, 1=V ®y 5, K is
positive definite when ¢ > 1 and

(5.0.2)

: (p,2), orthogonal case
sig Vo, = ‘
(p,1), unitary case

with p > 1. From now on we assume that V is anisotropic.
Finally, let n: F*\Aj; — {£1} the quadratic character corresponding to E and fix a
unitary character x: E*\Aj — C* such that x|, x = n".
F

5.1. Siegel Eisenstein series and the Siegel-Weil formula.

5.1.1. Let Mp,, (AFr) be the metaplectic double cover of Sp,,. (A ) and for a positive integer
T, set

U(r,r)(Ar), case 2,

Denote by P,(A) the standard Siegel parabolic of G/ (A); then P.(A) = M,(A) x N,.(A),
where

GL(A) = {MPQT(AF)’ case 1, (5.1.1)

M. (4) =
N (A) =

(m(a),€)|la € GL,(Ap), € = £1},

(n(b), 1)|b € Sym,.(Ap)} (5.1.2)

{
{
in case 1 and

M, (A) ={m(a)|la € GL.(Ag)}, N,y(A)={n(b)|b € Her,.(Ag)} (5.1.3)
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in case 2. We also write

m(a) = (m(a),1), for a € GL,(AF) in case 1,
7 I'm(a), for a € GL,(AE) in case 2,
n(b) = (n(b),1), forbe SymT(AF? in case 1, (5.1.4)
n(b), for b € Her(Ag) in case 2,
v — (wy, 1), casel,
= Wy, case 2.

where w, = (_;_ "), The multiplication in M,(A) in case 1 is defined by

(m(a1),€1) - (m(az),e2) = (m(aiaz), e1e2(det ar, det az)a), (5.1.5)

where (-, -)a denotes the Hilbert symbol of F'.
Define a character xy of M,(A) as follows: in case 1, set

X (mla), ) = (deta, (~1)"" D2 det V) {i a(deta, )™, iz 2 ijn (5.1.6)
where v, denotes the Weil index, see [23], and in case 2, set
xv(m(a)) = x(deta). (5.1.7)
We may extend xv to a character of P.(A) by declaring it trivial on N,(A), and define
1V, 5) = Indg Gt (e - ) (5.1.8)

(smooth induction), where the induction is normalized so that s = 0 belongs to the unitary
axis. Concretely, elements of I,.(V, s) are smooth functions ®(-, s): Gl.(A) — C satisfying

r+1

D ((m(a),e)(n(b), 1), 5) = |detalt” - x(m(a),e) - B(gs), p="7 (5.1.9)
in case 1 and
@(m(a)n(b)g's) = | detali” - xy(m(a) - @(,5), p= 1 (5.1.10)

in case 2.

We say that a section ®(s) € I.(V,s) is standard if its restriction to the standard
maximal compact K , of G7.(A) is K] ,-finite and independent of s.

Let

(5.1.11)

(F) = Spa, (F), orthogonal case,
' U(r,r)(F'), unitary case;

then there is an embedding G/.(F') — G/.(A); given by simply by the diagonal embedding
in case 2, and the canonical splitting of the metaplectic cover Mp,, (Ap) — Sps,.(Afp) over
Spo,(F) in case 1. In the sequel we will tacitly identify G/.(F) with its image under this
embedding.
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Given a standard section ®(s) € I,.(V,s) and ¢’ € G.(A), the Siegel Eisenstein series
E(gl’q),s) = Z <I>(’79/¢5) (5112)
YEP(FN\GL(F)

converges for Re(s) > 0 and admits meromorphic continuation to s € C. It admits a
Fourier expansion

E(d,®,5) =Y _ Er(d,®,s). (5.1.13)
T
where T ranges over Sym,.(F) in case 1 (resp. Her,(E) in case 2), and
Brigivs) = [ Bu®d.0.90(-uah)de), (G119
Ny (F)\Nr(A)

where dn(b) denotes the Haar measure on N,(Ap) that is self-dual with respect to the
pairing (b, ") — 1(tr(bt')).

5.1.2. Let w = wy,, be the Weil representation of G..(Ar) x U(V(A)) on S(V(Ap)"). For
»€SV(AR)), ¢ € GL(Ar) and h € U(V(A)), define the theta series

O(g' ;o) = Y wl(g h)o(v). (5.1.15)

veV(k)"

The Siegel-Weil formula relates the integral of this function over U(V)(F)\U(V)(A) to the
value of an Eisenstein series. Rather than discussing the formula in full generality, it will
be convenient to recast the theta integral in the context of the Shimura varieties discussed
above. For k = 1,...,d, we have the “nearby” spaces V[k], obtained by switching invariants
at o1 and oy. It follows immediately from definitions that I.(V[k],s) = I.(V,s); in the
sequel, we will implicitly identify these spaces without further mention.

Fix such a k and a compact open subgroup K C Hyp(Ay), and let

Xy = Xypxe = Hyp(Q\D(VIE]) x Hypy(Af) /K. (5.1.16)
Since Hypy (R) acts transitively on D(V[k]), we may identify
Xyp = Hypyy (Q)\Hypy (Ag) /Koo K (5.1.17)

where Koo C Hyp)(R) is the stablilizer of a fixed point 29 € D(V[k]). Thus, if ¢ is Koo K-
invariant, then the theta function ©(¢’, h; ¢) descends to a well defined function O(¢’, h; @)
on G;,(A) X XV[k]

For any ¢ € S(V(Ap)"), the function ®(¢’) = w(g’)¢(0) belongs to I,(V, sg), where

(5.1.18)

r) (m—7r—1)/2, orthogonal case,
s = so(r) =
00 (m—r1)/2, unitary case;

this construction defines a G/.(A)-intertwining map that we denote A\: S(V(Ap)") —
Ir(V, 50).
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Theorem 5.1.3 (Siegel-Weil formula). Suppose V is anisotropic and let ¢ € S(V(A)") KoK,
Denote by ® € I.(V,s) the unique standard section such that ®(-,so(r)) = A(¢). Let
be a positive G(R)-invariant differential form on D(V) of top degree. Then E(g',®,s) is
reqular (in the variable s) at s = so(r), and

—~

Ko

- /o — /
VOI(XV,Q) X0] @(97 7¢)Q E(g 7(1)750(r))7

where

)1, ifso(r) >0,
Ko = {27 if so(r) = 0. (5.1.19)

Proof. Recall the usual formulation of the Siegel-Weil formula: set H%, = Resp/p O(V) in
the orthogonal case and HY, = Hy = Resp/g U(V) in the unitary case. The Siegel-Weil

formula asserts that F (g, ®,s) is regular at s = so(r), and that the value is given by the
formula

E(¢',®,s0(r)) = ko / O(q', h; ) dh, (5.1.20)
H{(Q)\H{(A)

where the Haar measure dh is normalized so that Hi,(Q)\H%(A) has volume one. This is

proved in [18, 20] in the unitary case, and in [30] and [47] for the metaplectic cases with m

even and odd, respectively; a convenient reference treating all cases simultaneously is [10].
We now claim that

O(d,h;0)Q=C-E(J,®,s0(r)) (5.1.21)
Xy

for some constant C' independent of ¢. To see this, note that
o so)0= [ elmedn
Hy(Q)\Hy(A)/ Koo K

= vol(K oK) / O(g', h;9)d'h
Hy(Q)\Hy(A)

Xy
(5.1.22)

for some Haar measure d’h. By (5.1.20), this establishes the claim in the unitary case.
The orthogonal case follows from the fact that the action of Hy(A) = GSpin(V(A)) on
S(V(A)") factors through its quotient SO(V(A)), together with [26, Thm. 4.1.(ii)], which
shows that, up to multiplying by a non-zero constant, the integral over O(V(Q))\O(V(A))
in (5.1.20) can be replaced by integration over SO(V(Q))\SO(V(A)).

To evaluate the constant C, compare the constant terms in the Fourier expansion on
both sides of (5.1.21); the left hand side is vol(Xypy, 2) - w(g')¢(0), while, again using
(5.1.20), the right hand side is C - kg - w(g")#(0). O
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5.2. Fourier coefficients of scalar weight Eisenstein series. In this section we study
the asymptotic behaviour of the Fourier coefficients Er(¢’, @, s) as ¢’ goes to infinity, under
certain hypotheses on ®. More precisely,let K/ be the standard maximal compact subgroup
of GI = G/.(F,) (where v is archimedean) described in Section 2.5.1, and let

m
5 orthogonal case
b= <m +Ek(x) —m+ k:(X)> , (5.2.1)
, , unitary case
2 2
as in (3.3.11). Assume that & = & ® P, with
Do =0 @ @0 e I, (V(R), ),
o0 7'( ( ) ) (5'2‘2)

®r = A(py) for some Schwartz form ¢ € S(V(Af)").
Here A is as in Section 5.1.1.

Lemma 5.2.1. With ® as above, the Eisenstein series E(g', ®, s) is reqular at s = sg.

Proof. When sy = 0, this follows from [32, Thm. 1.1] and [48]. Suppose sy > 0 so that
r < p: let zg € D denote the fixed based point as in Section 2.2.1, and consider the Schwartz
form ¢ € S(Vy, ) defined by

o(v,20) NP (20) = p(v) P(20), veV". (5.2.3)

where Q = ¢1(€,V)*. As remarked in Section 2.5.3, it has weight [ under K. Since
$(0) = (—1)" , an argument as in the proof of Lemma 3.4.2 shows that A\(¢) = (—1)"®!(s).
Thus the global element & = ®,®' @ ® ¢ is in the image of A, and the lemma follows from
Theorem 5.1.3. g

For 7 = (x; + iyj)1<j<a € HY, let g, = (97,) € GL(R) with g- = n(z;)m(a;) as in
(3.3.10) and define

E(1,®f,5) := (dety; - - yq) "™/ * E(gl, ®; @ B, 5). (5.2.4)

Then E(t,®y, s) has a Fourier expansion

7,84, 5) ZET 7,04, 5)

= ZCT (v, @y, ) q’, ¢l = H e2mitr(rvon (1))
T

v|oo

(5.2.5)

where T runs over Sym,.(F') (resp. Her,(E)), and
CT(y’ (I)fa S) = (det Y- yd)_Lm/4 ET(g;" (I)fa S) q_T' (526)

In the rest of this section we will determine the asymptotic behaviour of -2 =Cr(Ny, @y, 50)
as A — +oo.
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5.2.2. Consider first the case detT' # 0. Assuming that ® =[], ®,, we have

Er(g, ® s) = [[Wrolg, v, s), (5.2.7)

where

Wro(gy, @y, 8) = /N - @v(wr_lg(b)g', s)(—tr(Tn(b)))dn(b), Re(s)>0. (5.2.8)

Since T is nonsingular, each Wr,(g.,, ®,, s) admits analytic continuation to s € C and we
can write

d
deT(g/,(b,S) = ZE%(QI,‘I),SO)U, (529)
§ s=50 v
where the sum runs over places of F' and we set
/ / / d /
ET(g , @, 50)11 = H WT,w(gwa Dy, 50) : %WT,U(QU) D, S) . (5‘2-10)
wWHV §=50

Lemma 5.2.3. Suppose @ satisfies (5.2.2) and detT' # 0. Then

/B(Tv ®f) = CT(ya (I)f7 SO(T))

and
. 3 d
K(T, @) = )\li)ngo £C’T(Ay,<1>f,s)|s:80(r)

are independent of y. Let v« = 1 in the orthogonal case and « = 2 in the unitary one and
set k =1+ 5(r —1). Then explicit values for these quantities are as follows:

(1) If T is not totally positive definite, then B(T,®s) = x(T,®5) = 0.

(ii) Suppose T is totally positive definite and set Wr (e, ®yr,5) = [[,co0 Wrw(e, @y, 5)
and
. d

o (_27”)Tl Lso(r)
Then

B(T, @5) = c(T) Wrs(e, Py, s0(r))
and

vd (1) L

kK(T,®f) = (2 <rlog7r — Fr(l)) + 2logNF/@detT>B(T, D)

+¢(T) W}Vf(e, s, 50(r)).
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Note that if (T, ®s) # 0, then the above may be rewritten more suggestively as

in- 4 e

L

WYI“,f(ea Py, s0 (r))
Wrt(e, @y, s0(r))

(#i) In both cases, %%CT()\y, D, 8)|s=so(r) = O\ 1Y) as A — oo, for some C > 0.

/B(T’ cI)f)-

Proof. Writing (5.2.7) in classical coordinates, we have

CT()\y,Q>f,s) = HWUU(T)()\y?MS) . WTJ((B, ®f,s) (5.2.11)

v]oo

where W, (1)(Ayu, s) is the normalized archimedean Whittaker functional as in (3.3.12);
all claims in the lemma follow easily from Propositions 3.3.3 and 3.3.4. g

5.2.4. We now consider the asymptotic behaviour of %C’T()\y,@f,so) as A — +oo for
a general matrix 7. Our approach, which follows that of [30], involves relating these
coefficients to certain Eisenstein series on GL,.

Fix a matrix T" and let t = rk(T") < r. A change of variables in (5.1.14) shows that, for
v € SL,(k) and g € G.(A) we have

Erp(9,®,5) = Br(m(y™)g,®,5), Tl := 57Ty, (5.2.12)

Hence, by choosing an appropriate -y, it suffices to consider the case when T is of the form
_ Or—t

T= < S) , (5.2.13)

where S is non-degenerate of rank ¢ when t # 0. We assume T is of this form until
Proposition 5.2.12.

For integers 1 < k < k' and any ring R, consider the embedding Matog(R) — Matog (R)
given by

]'k/—k Ok’—k
(C D) S 1o r ,  A,B,C,D € Maty(R) (5.2.14)

It is easily checked that in the orthogonal case, this map induces an embedding
M+ Mpog (A) = Mpyy (A) (5.2.15)

with 7' ([1,¢]) = [1, ¢], and in the unitary case an embedding nf : U(k, k)(A) — U(K', k') (A);
the same is true over F, for any place v.
For integers 0 < j < r, define a parabolic subgroup of GL, by

* *
Prj = {(OLM *) } NGL,. (5.2.16)
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Lemma 5.2.5. Suppose T is of the form (5.2.13) and t = tk(T"). For a standard section
®(s) € I,(V, s), there is a decomposition

r

ET(97CI)73) = Z Z B% (m(a 1 )97@73)

j=t a€Pr_¢ j_1(k)\GLy_ (k)

B(g,®,5) := /n o (5 n®)) - g, 5) wr (7 _, ) ). (5.2.17)

and wj = (_q, 13y,

Proof. This follows from the standard unfolding argument for the Fourier coefficients of
Eisenstein series and the Bruhat decomposition. See e.g. [30, Lemma 2.4] for the symplectic
case; the proofs for the cases required here are identical. O

If the section ® = ®, P, is factorizable, then there is a product expansion

Bi(g,®,s) HBTU (Go> Pu, ) (5.2.18)
taken over the places of F', where
B%Vv(gv,%,s) ::/ P, (77] (w; 'n(b))go, ) ¢TU( T _b) dn(b). (5.2.19)
N; (Fv)

Note that if j = r, then these factors are the usual local Whittaker functions

Wialgun@urs) = [ @(w; n(b)g. )0ru(~b) dn). (5:2.20)
N, (Fy)

We shall relate these, as well as the remaining terms, to Whittaker functions of lower rank;

we require a bit more notation.
For positive integers k < k/, pullback by 77’,;, induces a map

/ K —k
(nllz)*:Ik’,v(V75)_>Ik,v<V’3+ 5 ) (5.2.21)

preserving holomorphic standard sections. Given a place v of k, define an operator Uy, i/ ()
as follows: for ® € I}/(V,s) and g € G} (F)), and supposing Re( ) is sufficiently large, let

(U 0(8)®) (9) = / ® (wk/lﬂ (g; 81) ng (w9, S) dby dba,  (5.2.22)

b1EN (ko)
ba€Maty_ 4 (ko)

generalizing the construction in [30, Section 7]. Also, let My(s) = ®, M} (s) denote the
standard intertwining operator, where

Mk,v(s) : Ik;,v (Va 5) — Ik,U(V7 _3) (5223)
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is defined for Re(s) sufficiently large by the integral
My (3)0(g) = / ®(w n(d)g.5) dn(b), @ € Loo(V,5). (5.2.24)
Ny (Fv)

Both My, ,(s) and Mj(s) admit meromorphic continuation to C.

Lemma 5.2.6. Let v be a place of F and suppose T = (° &) as in (5.2.13).

(i) If ® € Ly ,(V,s), then Uy pr ()P € I, (V, 5 — Bk,
(i) Fizx an integer j witht < j <r. Ift # 0, define

09) = [t (54752 ) o ']

which, by (i), defines a G}(Fy,)-intertwining map

r+t
2

Up(s): Ir»(V,s) = I ,(V,0), where 0 = s + — 7.
Then for any ®,,, € I, ,(V,s) and g € GL.(F,),
B (9, Pr,5) = W (e, Un(s) (r(9)®ra) , 0) -

(iii) If T # 0, then

Miso)oUls) = ()"0 M (54757 ) o )"

(iv) If T =0, then
Bhutas.r) = M (s+ 5 ) o | o) 0

Proof. Consider the orthogonal case first. Suppose b1 € Symy,_;.(F,) and by € Maty g, (Fy).
For n(B) € Ni(Fy), a direct computation yields

wtn (800 ) ol (o n(8) = m'om (0 ) wgh o (M) () (5.225)
where m/ = m(1 ’l’fﬁ) € M/ (F,). Similarly, if m(«) € My(F,), then
witn (%) ok ('t m(e)) = of (m(e) - wpt o (W, )l (i), (5.2:26)

Using these relations and applying an appropriate change of variables in (5.2.22) implies
that for any ® € I}y ,(V, s), we have the transformation formula

Ui (5)®) (m(@)n(B)g) = xv(m(@)) - |a*™ 5 - [Uppro(5)8] (9) (5.2.27)

thus Ug i (5)® € I »(V, s — ]‘/T_k), proving (7).
To prove (ii), let & = @, , € I, ,(V,s) and set

' (s') == ()" (r(9)®(s) € Lw(V,s+ (r = j)/2) (5.2.28)
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with 8’ = s + (j — r)/2. Then, identifying Ny (F,) ~ Sym,(F},), we may write
Ws(e,U(s)®,0)

-/ U()®] (wi - n(B)) s(~B) df
BESym, (Fy)
_ / / o (witn (&%) nf (wit - wit - n(8))) ) dby dby s(—B) dB

Br€Sym, (Fy) bles)’mj—t(Fv)
bQEMat]‘_t’t(Fv)

= q)/ 'UJ~717’L b}k bo ,S/ dbi db w _/B dﬁ
/ﬁtGSymt(Fv)ﬁlesymjt(Fv) (*J —(b25> ) 1 dby Yg(—p)

b2€Matj,t,t(F»U)

-/ & (w; " n), ) s(—B) db
beSym ; (Fy)

= o A ,_1 . b - g, 0 B db = B] 7(1)7 :
/bESymj(Fv) <77] <wj ﬂ( )> g 8) wT( b) T,U(g 8)

(5.2.29)
here we used the fact that tr(7(°,)) = tr(S8), and hence ¥r((Y _,)) = 1s(—3). The
proofs of (iii) and (iv) are similar, as are the statements in the unitary case. O

Remark 5.2.7. (i) Since My ,(—0) o My, (o) is given by a meromorphic function in o,
part (iii) shows that U,(s) admits meromorphic continuation to s € C. Setting
U(s) = ®,Uy(s) and using the meromorphic continuation of the global intertwining
operator My (o) we also conclude that the global operator U(s) admits meromorphic
continuation.

(i) f T # 0and j =t or j = r, then P, ;—+ = GL,_; and so the sum over a for
these terms in Lemma 5.2.5 is trivial. Noting that U(s) = (n;)* when j = ¢, and
U(s) = Ut r(s) when j = r, the corresponding summands in Lemma 5.2.5 are

B (0.0.9) = W (e[ o r(a) &, 5+ )

and

2

In particular, when T is non-degenerate we recover the expression Ep(g,®,s) =
H’U WT,v(g’U? (I)va S).

In particular, the lemma implies the global identity
B(g, @y, 5) = W (e,U(s) (r(9)®,) , o). (5.2.30)

We will also need the following invariance property: suppose z € Mat,_(A) and let

BF(g,®,s) = Wg <e, [Urr(s) 01(g)] @, 5 — — t) .

0= (h(;t ﬁ) € GL, (Ay). (5.2.31)
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Then a direct computation using (5.2.17) yields the transformation formula

BJ (m(0)g,®,s) = B (g,®,5). (5.2.32)

5.2.8.  Our next step is to relate the individual terms in Lemma 5.2.5 to Eisenstein series
on GL,_;, generalizing the discussion in [30]. Consider first the orthogonal case and let
GL,_,(A) denote the metaplectic double cover of GL,_(Ap): as a set, GL,_,(A) =
GL,—¢(A) x {£1}, with multiplication

(31,61) . (32,62) = (alag, (detal,det ag)A €1 62). (5233)
It follows from the formulas in [43, §5] that there is an embedding
v: GLL_,(A) — M,.(A), given by (a,e) = (m(%1,), € (5.2.34)

Abusing notation, let yv: GL!_,(A) — C denote the character xv(a) = xv(«(a)), where
the latter xv is defined in (5.1.6).
For the moment, fix an integer j with ¢t < j < r; to lighten notation, we write

P = Pr—t,j—t = {(0 P1 :2> ’ p1 € GLT_]', p2 € GLj_t} C GL,_4. (5.2.35)

j—t,”’—j
Let Pj, denote the inverse image of P(A) with respect to the projection GL,_,(A) —

GL,_(A). Consider the (smooth normalized) induced representation

~; GL._,(A s+l it —s 131
Fv.s) = gy (dentonly T aene ) 230

concretely, 173 ,(V, s) consists of smooth functions ¥(-,s): GL,._,(A) — C such that

s+l —s—T21 4
U(pa,s) = xv(p)|det(p1)|, > |det(p2)|, °*

for all a € GL,_,(A) and p = [(§ ,,). €] € Pj.
In the unitary case, we may be more direct: let fg)(V, s) denote the space of smooth
functions ¥(-,s): GL,_;(Ag) — C such that

¥(a) (5.2.37)

W(pa,s) = xv(p)|det(pr)[;.? [det(po)l,, 2  W(a),  forallp=(Pg,) € P(hp).
(5.2.38)
We also write ¢: GL,_+(Ag) — G/(A) for the embedding a — m (“q,).
Finally, for a finite place v of F, let

K, = CL,_4(Ok) C GL,_4(k,); (5.2.39)

in the orthogonal case we identify K, as a subset of GL_,(F,) via the map k — [k, 1]. For
a real place v, set K, = O(r) or K, = U(r), and finally define K = [[ K,.
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5.2.9. To formulate the connection between BJT(g, ®, s) and Eisenstein series on GL,_y,
assume for the moment that ¢ = rk(7) > 0, and fix an integer j with t < j < r. Let
O, = ®,0,, € I,(V,s) be a standard section such that ®,, = <I>f, at each archimedean
place v.

Suppose that g € GJ.(A) is of the form

g=ug)ni(g"), (5.2.40)

where ¢” € Gi(A) and ¢’ € GL,_,(A) or ¢ € GL,_4(Ag) in the orthogonal or unitary
cases, respectively. As a function of ¢”, the expression

U(s) (r(g)®:) (e) = U(s) (r(e(g))®r) (9") (5.2.41)

defines an element of I;(V,o) by Lemma 5.2.6, and a change of variables in the definition
shows that it defines an element of I %(V,s) as a function of ¢’. In particular, the function

B (g, @, s) = B} (1(g)), 7(g")®u, 5) (5.2.42)

is in Ip(V, s) when viewed as a function of ¢’ with ¢ fixed.
It follows from multiplicity one for Kj-types in I;(V,,o) for archimedean v that, as a

function of g3, the expression (5.2.41) is proportional to [, ®l(g", 0); evaluating at

gh. = e to determine the constant of proportionality, we find that

U(s) (r(9)®r) (e) = (¢, g, 5) [ [ @h(gl, o), (5.2.43)
v|oo
where zﬁ(g’,g;ﬁ,s) =U(s) (r(L(g’) n{(g;ﬁ))i)r> (e). Note that @(g’,g;ﬁ,s) is meromorphic in

s and, as a function of ¢, is Rf—ﬁnite and Ko-invariant. Moreover <i>(~,g}’, s) € fg(V, s)
for fixed ggﬁ and so we can write

(i)(g,a g.,f/? 8) = 041(8) (i)l(gla 3)<I>/1,(g},7 J) +eeet OéN(S) (i)N(glv 5)(1)9(,(9;{7 0)’ (5244)
where ®;(-, s) are Koo-invariant standard sections of fg(V, 5), ®Y(+,0) = Bpoe®?, (-, 0) are

standard sections of I;(V(Ay), o), and the coefficients «;(s) meromorphic in s.
Substituting (5.2.43) and (5.2.44) in (5.2.30) we conclude that, for g as above with

97 =1,

Z B%“ (m(a 1 )g’q)as) = Z ’Yl(s) gj(glaq)ias) HWS,U g'uaq)ffv )
acP(k)\GLr_¢(k) 1<i<N v|oo
(5.2.45)
where

GI(g, s, 5) = Z ®;(ag’, ) (5.2.46)

a€P(k)\GLy—_ (k)
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is an Eisenstein series on GL._,(A) (case 1) or GL,_+(Ag) (case 2), P = Pr_¢j_¢ is as in
(5.2.35), and
vi(s) = a;(s) H Ws, (e, 9], 0) 1<i<N, (5.2.47)
vfoo

is meromorphic in s.

We turn now to the case T'= 0. If 1 < 5 < r — 1, then the same argument as above
shows that, for ¢ € GL.(A) (orthogonal case) or ¢ € GL,(Ag) (unitary case), we can
write

> B} (m(a)u(g),®,5) = > 7ils) G (g i, s) (5.2.48)
acPy ;(k)\GL: (k) 1<i<N

for some standard K,o-invariant sections ®;(s) € I%(V, s) and meromorphic functions
~i(s). In addition, Lemma 5.2.6 shows that

BS(L(Q/), Py, S) = (I)T(L(g/)7 5)

, ), , (5.2.49)
By(u(g'), Bry 5) = M(5)@(u(g") = Wo(ulg), Dr, 5)-

5.2.10. We can now generalize Lemma 5.2.3 to arbitrary matrices 7'; we consider the case
T # 0 first.

Definition 5.2.11. Assume that ®; € I,(V(Ay),s) satisfies (5.2.2) and T = (° ) # 0
with S non-degenerate, cf. (5.2.13). Let ®, @ € I,(V(Ay),0) be given by

(o) = (nf)"@p(s) and (o) = (1) (Mr(=5)2s(=s5)),

where (n;)* is defined as in (5.2.21), M,(s) is the standard intertwining operator (5.2.24),
and o = s+ %
Define constants B(T,®¢) and k(T,®y) as follows:
(i) If so(r) > 0 set B(T, @f) = B(S, ) and k(T', @5) = K(S, @), where these quantities
are defined for the non-degenerate matriz S as in Lemma 5.2.3.
(ii) Suppose so(r) =0, so that r =m — 1 (resp. r = m) in the orthogonal (resp. unitary)
case, and let
Ty (es)
e (5(s+m) Tr (5)
Note that d(s) is holomorphic and non-vanishing at s = 0. Define

~D=es () imr/? (5.2.50)

and
d’(0)

K(T,®5) = r(S,®}) — |d a(0)

B(S, @) + d(0)k (S, )| .

Let us now define constants x(7', ®f) and B(T, ®¢) for an arbitrary (i.e. not necessarily
block diagonal) matrix 7" of rank ¢ > 0.
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Let v € SL, (k) such that

Tl =7 1Ty = <0T—t S) , (5.2.51)

where S is non-degenerate.
Define?

B(T, @) := B(T[], m(7)®y)
det/(T)

K‘(T> (I)f) = H(T['V]?m(f”q)f) - élog NF/Q <det(8)> : B(Tv (I)f)§

that 3(T, ®s) and (7T, @) are independent of v (and hence are well-defined) follows from
a direct computation, or alternatively from the invariance property

CT(y7 (I)fa 5) = CTM (Y[tﬁ_l]a m(’}/)q)f, S)a (5'2'53)
(cf. (5.2.12)) and the next proposition, which shows that the constants (7', ®s) and
k(T,®¢) determine the asymptotic behaviour of the derivative %C’T(y, Dy, 50).

(5.2.52)

Proposition 5.2.12. Assume that ® satisfies (5.2.2) and let y = (Yu)yjoo € Sym,.(FR)s0

(resp. Her(ER)s0). Write det’ A for the product of non-zero eigenvalues of a square matriz
A, and let

d det’ 0, (T) - det y,
F(y):= —C o —w(T,P B(T, @) lo .
)= g5 Orly 21.9) s=so(r) w8 - /) Z < det’ (00(T)y0) )
Then for every fized y, we have
lim F(\y) =0 and 0 FQy)=0\"179) (5.2.54)
A—00 8)\

as A — 00, for some C' >0 .

Proof. We begin with a few preliminary reductions. Choose vy € SL, (k) satisfying (5.2.51),and

note that the quantity % is unchanged upon simultaneously replacing T with

T[y] and y with vy . Moreover, det’'(T[y]) = det(S). Combining these observations
with (5.2.53), it suffices to prove the proposition for 7' of the form 7' = (° ) with S
non-degenerate of rank ¢ = rk(T).

In this case, Lemma 5.2.5 gives a decomposition Cr(y, @y, s) = Z;Zt C’%(y, s, s), where

Ch(y, @5, ) = [ [ det(ys) ™" > Bi (m(®1,)dy.®,8) ¢ F.  (5.2.55)
'U‘OO aG’Pr_t,j_z\GLTft(k)

4In the published version of this article, there is an error in this definition: we had made the erroneous
claim that given a degenerate matrix T, there exists v € SLr(k) such that T[y] = (° 5) with det(S) =
det’(T). We have opted here for a correction that results in minimal deviation from the published version:
with the definition of (T, ®y) and x(T,®y) given here, all the results and proofs go through without
change. Alternatively, the reader may elect to remove the superfluous terms involving logdet’(T) from
(5.2.52), from Proposition 5.2.12, and from Definitions 4.3.5 and 4.4.2; in this case, the statements of all
other results are unchanged and the proofs go through with trivial modifications.
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Next, we may fix an element 6 = (1T tr ) € SL,(kg) ~ SL,(K)¢ such that

0-y-'0 = ( y,,) (5.2.56)

is block diagonal, where y" and y” are totally positive definite of rank r —t and ¢, respec-
tively. Let 8 = (6,¢,...) € SL,(A); then, using the invariance property (5.2.32) and the
relation gg = m(O)gg,, we have

By (m(a 1945 s) = B} (m(®1,)dy, P, ) . (5.2.57)

Moreover, for T'= (© ¢), the quantities det’(o,(T)y,) are unchanged upon replacing y by
0y'0, as are the determinants det y,,.

Thus, we may reduce to the case where T = (?4) and y = (y/ y,,) are both block
diagonal, so that

det sz(T) - det g, _ det 0, (S) - det y, — dety!. (5.2.58)
det’ o, (T)y, det o, (S) det y
Our approach will be to show that the value at so(r) of the derivative of the expression
(5.2.55), after possibly subtracting off a constant and a multiple of > log(det /), satisfies
the condition (5.2.54).
Fix an element p € []

vloo GL,_¢(k,)? of totally positive determinant with y' = u - ',

and let o = ((p,1d,...),1) € GL;—t,AF in the orthogonal case, and g = (u,Id,...) €
GL,_¢+(Apg) in the unitary case. Then

gy = (@) -n; (gyn) - (5.2.59)
Taking into account our normalizations, cf. (3.3.12), we may use (5.2.45) to write
Cily. 0p.5) = (395 (. 8)) T dettl) "W, 9 (o0)  (5:2:60)
v]oo

for some meromorphic functions ~;(s) and standard sections ®; € f{;(V, s), where 0 =
o(s) =s+ =t —j,

Now for fixed y and a parameter A\ > 0, replacing y by Ay corresponds to replacing y”
by Ay”, and replacing g by v/A . Using the transformation formulas (5.2.37) or (5.2.38)
to determine the central character of the Eisenstein series G7 in the orthogonal or unitary
case, respectively, a short computation yields

G/ (VA ®,5) = A% T2 (s=s0(r)

for any section ®. Since each G (f, P, s) is itself meromorphic, it follows that for fixed y,
we have

Co(Ny, By, 5) = f(y,s) AT =20 (s=s0(r)—d(i=1)s0(j T Wouis) (M 0) (5.2.62)

v]oo

vd(r—t)m
fudlrotim

— d(G=0%00) Gi (3, B, s) (5.2.61)
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for some meromorphic function f(y, s) independent of A\. A priori, we do not know whether
f(y, s) has a pole at s = so(r), though one could imagine that an analysis along the lines
of [30, 47] could be used to determine its order. In any case, let

Al(y, @) == A1 (Ch(y, Dy, 5)) (5.2.63)

denote the coefficient of (s — so(r)) in the Laurent expansion at s = so(r), so that

= ZT:A{(Ay,cpf). (5.2.64)

s=s0(r) j=t

0
— 0]
aSCT()‘Ya I S)

Then A} (\y, ® ) can be written as a sum of terms of the form

ol e (i ak”
aly) (log \)* A~ 00500 o | TT W (5) (M, 0(5)) (5.2.65)

v]oo

s=so0(r)

for some Laurent coefficients a(y) of f(y,s) at s = so(r), and integers k, k" > 0.

First, consider the case where S is not totally positive definite. If v is a place such that
0,(S) is not positive, then, by Proposition 3.3.4, the derivatives of W, (s)(Ay,,0) in s and
A are all of exponential decay as A — co. It follows that A](\y, @) satisfies the properties
(5.2.54) for each t < j < r. On the other hand, for non-positive S the constants (S, ®y)
and (S, ®y) are both zero by definition; this proves the proposition in this case.

Next, suppose S is totally positive definite. Assume further that j > t and so(j) # 0,
which implies that —td(j — t)so(j) < —1/2; this is the exponent of A in (5.2.65). For fixed
y, Proposition 3.3.3(i) implies that each W, (g)(\y,, o), along with its derivatives in s, are
bounded as A — co. In light of (5.2.65), this implies

lim A (\y,®;) = 0 (5.2.66)
A—00

for such j. Similarly, differentiating (5.2.65) with respect to A and applying Proposi-
tion 3.3.3(ii) yields the estimate

0 .
aA{(Ay, ;) = 0179 (5.2.67)

for some C' > 0. In other words, for j > ¢t with so(j) # 0, the term Aj(y, D) satisfies the
condition (5.2.54).

Now suppose that S is totally positive definite and j = ¢; the corresponding term can
be written more concretely, using Remark 5.2.7, as

1y, @y, 5) = [ ] det(yo) ™™/ * Ws (e, [(n})* o r(g},)] @, 0) ¢ F (5.2.68)
v|oo

where 0 = s + 5t and (nf)*: I;(V,s) = I(V,0) is the map defined in (5.2.21). For
an archimedean place v, note that multiplicity one for Kg’v—types immediately implies the
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relation (7} )*®! = ®.. More generally, for block diagonal y as above and any h,, € G;, we
have

(1) (r (g3, )21 (s, ) = L (0 (ho) i) 1 (93 )

= @l () i (hu gi). )

L (5.2.69)
= det(y,) 5 @) (] (hu gy, 5)
= det(y,)2(*T7") o (hv Iy C’) '
Hence )
Cjt,(y, (I)f7 S) — H (det y;)ﬁ(S—so(T)) CS(YH, }’ 0'), (5.2.70)
v|oo
where
Cs(y”, ®%,0) =Wy s(e, @, 0) [ [ Wouis) (s 0 (5.2.71)
v]oo
and @ = (])*®y € Lt(V(Ay), 0).
NOW consider the special point s = s¢(r), and note that
r—t
Ols=so(r) = S0(r) +—— = s0(t). (5.2.72)

Since S is non-degenerate, the term Cs(y"”, @, o) is holomorphic at s = so(r), and therefore
the same is true for C}.(y, @y, s). Therefore,

fZlogdet (yy) B(S, ®%) + ;ch(y”, ", 0) . (5.2.73)

s=s0(r) v]oo o=so(t)

0
%C%(Y7 (I)f) )

Applying Lemma 5.2.3 to Cg(...), it follows immediately that the difference

0

t
— P
880T(y78’ )

- 55(5, ) ) " logdet y), — (S, ) (5.2.74)

s=so(r) v]oo

satisfies the conditions in (5.2.54).

Finally, it remains to consider the case j > t and so(j) = 0. Since we are assuming
so(r) > 0, we must have so(j) = so(r) = 0 and hence j = r as well. On the other hand,
if so(r) > 0, then such a term does not arise and we have completed the proof of the
proposition at this stage.

Otherwise, by Remark 5.2.7, the corresponding term is

Cr(y,®y,s) H det(y,) ™™ Wy (e, [Uri(s) or(gy)] @,0) gt (5.2.75)
v|oo
with o = s — 5. Since sg(r) = 0, we have m = r 4+ 1 in the orthogonal case, and m = r
in the unitary case it follows in both cases that
r—t

U’szso(r):O = - 2 = _SO(t)- (5276)
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To compute this term, note that the functional equation of the genus t Eisenstein series
implies

Wg(e, q)t,O') = WS(@,Mt(U)(I)t,—O') (5277)
for any ®; € I;(V,0). To apply this to the present case, recall that
j \ % r— ] 7\ *
M) o) = ()" oy (54757 ) o () (5.2.78)

as in Lemma 5.2.6(iii). Consider an archimedean place v|oo, and define a meromorphic
function d(s) by the relation

M, (8)®L,(s) = d(s)®L,(—s). (5.2.79)

To determine the function d(s), we may evaluate both sides at the identity, and apply [45,
(1.31)]; a little algebra, using the fact so(r) = 0, shows that d(s) is given by the formula
(5.2.50).

On the other hand, by Lemma 5.2.6(iii) with j = r, we find

Mio(0) 0 Urto(9)] (7(3),) @ho(s)) = [0)" © Mya(s)] (7(5),) Lo (5))
= d(s) - ()" [r(g),) Oho(—5)] (5.2.80)

= a(s) (devy,) 2 (v(gpy )L, ) (—0).

Thus, applying the functional equation for Wg(...), taking into account our normalizations,
and noting that so(r) = 0, we have

C%(Ya q>f> 8) = d(s)d ’ H det(yqu)_% : CS(yllv /}7 _0)> (5281)

v|oo

where ®(—0) = (n])*(M.(s)®y(s)). Therefore

0 d'(0 L
%C}(y, Py, s) o = d(0)? dd((())) —5 Zlogdet Yy | - Cs(y", %, s0(t))
s=so(r)=0 oo
4(0 d 9 C /ar N/
a0y 5 Cs(y", @%,0)
o=s0(t)
(5.2.82)
Setting
B = —a(0)?- Cs(y", 8, so(t)) = —a(0)! - B(S, ¥)) (5.2.83)
and
! d d,(O) " "
k' =4d(0)* |d a(0) B(S, (I)f) — k(S, CIJf) (5.2.84)
it follows, in the same manner as the previous case, that the difference
%Cf’}()\y, Dy, s) — % B Zlog dety) — x’ (5.2.85)
s=so(r)=0

v|oo
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satisfies the conditions of (5.2.54). Combining this fact with the previous computations
for the terms with ¢ < j < r, we conclude that

0 L ' / ' ' /

&CT()\y, Py, s) T [B(S, ") + f] ;logdet Yy — [K(S, @) + K] (5.2.86)
It remains to identify the two terms in square brackets in the preceding display as

B(T,®s) and (T, ®y), respectively. First, consider the value of C7(\y, ®, s) at s = so(r) =

0; by egs. (5.2.70) and (5.2.81) and an argument analogous to the one leading to (5.2.65),

we may write

t
Cr(Ay, ®7,0) = Y CTemo C7(Ny, ¥y, 5)
J=1

= B(S,®}) - +0(N°) (5.2.87)

for some C' > 0. On the other hand, the Eisenstein series E(g, ®, s) is incoherent, in the
sense of [32], and hence vanishes identically at s = 0 (this result is [32, Theorem 4.10] in
the orthogonal case with m even; see [10, Proposition 6.2] and the references therein for
more details in the remaining cases). In particular, Cr(y,®s,0) = 0 and 5(S, @’f) =3,
and, comparing with Definition 5.2.11, we find

B(S,@%) + B = 2B(S, @) = B(T, D)) (5.2.88)
and
K(S, @) + k' = K(T, @) (5.2.89)
as required.
O

It remains to consider the case T' = 0.

Proposition 5.2.13. Let

. Qf(e), ifSo(T) >0
b0, @) = {2c1>f(e), if so(r) = 0.
and
0, 7:]050(7“) >0
0,0r) := /
r(0,®y) {_d.i((g)@f(e) — d(0)* W ;(e,@5,0), if s0(r) = 0.

Then the difference

F(y) = iC‘o(3>',<1>f~<>’)

L
- - 1 * (b - (b
S 5 E ogdety, - 5(0, ) (0, )

s=s0(r) v]oo

satisfies the conditions (5.2.54).
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Proof. Using Lemma 5.2.5 and (5.2.48), we may write Co(y,®,s) = Z;:o Cg(y,<1>,s),
where ' B
C] y7q)f7 Hdet Lm/4 ’ Z ’yi(s)gj(a,q)i,s), (5290)
v]oo 1<i<N

for some meromorphic functions v;(s) and standard sections ®; € IN% (V,s). Applying the
transformation formula (5.2.61), with ¢ = 0, we have

CI Ay, By, 5) = A2(=2)(s—s0M)=dino(0) . i (y B, s). (5.2.91)
Thus %Cg(/\y, D, 5)|s—so(r) 18 a finite sum of terms of the form
log(A)F - A=47500) . q(y) (5.2.92)

for some integer k > 0 and Laurent coefficient a(y) of C’é(y, Dy, s).
In particular, if j > 1 and s¢(j) # 0, then

0 0 0 1
lim 70]()‘y)q)fa )’S:S()( ) — 0 and 770(])()‘Yv(1>f75)|s:so(r) = O()‘ ! C)'

A—oo 08 " O\ 0s
(5.2.93)
Next, consider the case j = 0, so that, by (5.2.49), we have
C(O)(y7 (I)fa 5) = H det(yv)_Lm/4Bg (g;, q)fa 5)
v]oo
= [ det(yo)™/*- ®(g},, s) (5.2.94)
v|oo
— H det(y,)2 0N 4 (e).
v]oo
Note here that ®¢(e,s) = ®¢(e) is independent of s. Therefore
0 L
5000 @1 8)smsor) = 5 D logdetyy - @y(e). (5.2.95)
v|oo
Finally, consider the case so(j) = 0, so that 7 = r with so(r) = 0 and
Coly, @g,s) = [ det(yu)™™* - [M(5)2(5)](g})- (5.2.96)
v]oo
We have
M(5)®(5)](9y) = [ [IMo(5)97,0(5)](g},) - M5 (5)](e)
v]oo
_d dH®7"U gy ) =8 WO f(e (Df,—S) (5297)

v|oo

d(s)* ] det(yo)2 0 Wo s (e, @, —5)

v]oo
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Moreover, applying [10, Lemma 6.3] to the incoherent section ® gives
MO)2(0)(gy) = — ] det(w)™* @) = ~[[det()™* 2p(e)  (5.2.98)
v|oo v]oo

and hence, after a little algebra we obtain

d T
%CO(}U q)fv S)

L
=5 Zdet log y, ¢ (e)

s=o0(r)=0 vlos (5.2.99)
—a- Y Oq o) — a0y (e, ;. 0).
d(O) S\ 9
The proposition follows immediately from these observations. O

5.3. Archimedean height pairings. In this section, we prove our main theorem relating
the integrals of the Green forms g(7,y, ) constructed in Section 4 to Eisenstein series.

We continue to assume V is anisotropic and rk(£) = 1. Let X denote the canonical
model of the Shimura variety Xy = Xy g, for a fixed open compact subgroup K C H(Ay),
and recall that there is a decomposition X' (C) = HXV[k] in terms of the nearby spaces
Vik] for k=1,...,d, see Sections 4.1 and 4.4. For each k, let

VK]

where 2 = Qg = ¢1(£, V)" is the first Chern form of the positive line bundle £ on Xy
Then Vol(Xvy, ) = dege(Xvyp) is a positive rational number (a positive integer if K
is neat). As remarked in 2.2.2, the line bundle £ is a rational multiple of the canonical
bundle; in particular we have Vol( Xy, Q) = Vol(Xv, ) for every k.

Theorem 5.3.1. Assume that V is anisotropic and tk(€) = 1. Let r > 1 and

(r) (m—7r—1)/2, orthogonal case,
so(r) =
0 (m—r)/2, unitary case,

and assume that so(r) > 0. Given pf € S(V(Af)")E, let 4(-,s) be the unique standard
section of I.(V(Ay),s) such that ®¢(-,s0) = AMpys) and set

D = R, DL ® By € I(V(A),s), (5.3.2)

where ®L is the standard weight | section given by (3.3.11), (3.1.10) and (3.2.11). For
T:x+iy6H;‘f, let

E(T> (I)f7 3) = (det Y- 'yd)_Lm/4 E(Q‘Ira (I)fv 3) = Z ET(T’ (I)fv 8)
T

be the corresponding Eisenstein series of scalar weight | defined in (5.2.4), and write
Ef(1,®f,8) = LEp(r,®p,5). Then for any T € Sym,.(F) (resp. T € Her,(E)) we
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have

(=1)"ro / T .
VAl Yo O) Ty, AQPHT = Ei(1,®¢,50(r)) — (T, ® ,
2Vol (X, ) [X(C)]g( y:er) q (T, ®f,50(r)) — K(T, ) q

where (T, ®¢) is explicit and defined in Definition 5.2.11, and ko = 2 if so(r) = 0 and
ko = 1 otherwise.

Proof. Fix an archimedean embedding oy, and a component Xvyp,) C X(C). Recall that
the restriction of the Green form g(7,y, ¢y) to Xy is given by

R det’ o1, (T) - det yy, r—rk(T)—1
9Ty, o) xyyy = 8°(TY 0f)oy — 10g< det’ (o (T)gr) )5Z(T:4Pf)gk AQey

(5.3.3)

when T is positive semi-definite, and g(7',y, SOf)|Xw€] =g°(T,y,¥f)o, otherwise (see Defi-
nitions 4.3.5 and 4.4.2); here

o°(Ty,25) = CT(Toy. ¢5:p) (5.3.4)

as in Propositions 4.3.4 and 4.4.1.
Consider the contribution of g°(7,y, ¢f)s, to the integral over X(C); by definition, it
equals CT,—g I(p,o}), where

( 1) Ko / +1—
I(p, o1 —_— 0 (T,y,08;0)0, NPT, 5.3.5
Let us compute I(p,o1). Define the archimedean Schwartz function
P=7Rp,®@ - Rpy € S(V @rR)= ®s (5.3.6)

1<i<d

with 7 € S(V7,) as in (3.4.2) and where ¢ denotes the Gaussian for the positive definite
spaces Vi, (k > 1), given by

@i (v) = e T2 Qiva), (5.3.7)
for v = (v1,...,v,) € Vg .
Consider the theta series
O(gr, b @ p5) = > Or(gh,hi ¢ @ oy) (5.3.8)
T

defined in (5.1.15), and write
Cor(y, hid®pf) = (detyr--ya) ™" Or(gr. hs0® ¢5) ¢ " (5.3.9)
For z = hzp € DT (h € U(V,,)) and Re(p) > 0, we have

0 —r o dt
0°(T,y, 953 P)oy (2) A QPTIT7(2) =/1 Cor(ty, hid @ ¢y) g NP(2), (5.3.10)
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where the estimates in the proof of Proposition 4.3.3 justify the interchange of sum and
integral. Using the Siegel-Weil formula (Theorem 5.1.3) to compute the integral over Xy,
we find

(=" [ dt
I(p,o1) = 5, Cer (ty, Mo ® ¢f),s0(r)) presg (5.3.11)
here the relevant Eisenstein series is
E(¢ Mo @¢f)s) =D Er(d, Ao @ ¢y), s) (5.3.12)
T

where A\: S(V(A)") — I,(V,s0(r)) is as in Section 5.1.2, and we have written

Cor(y, Mo ®¢p),s) = (detyi---ya) ™" Er(gr, Mo @ ¢p),8) ¢ " (53.13)
Our next step is to relate this expression to the coefficient
Or(y, ®f,s) = Er(T,®4,8) ¢ © (5.3.14)

of the scalar weight [ Eisenstein series in the statement. Comparing archimedean compo-
nents, for i > 2 we have A(ds,) = M) = ®!(s0), while A(¢o,) = A7) = (—1)""'®(s0)
as in (3.4.6). Thus, writing C7.(y, @, s0) = %C’T(y, Ps,5)|s=so and y = (y1,...,yaq), the
argument in the proof of Lemma 3.4.3 shows that

12 d
CE7T(ty, )\(¢ X QOf), 80) = (—l)r 12 . t%C{p((tyl, t/yg, o ,t,yr)), (I)f, 80) . (5.3.15)
t=t/
Adding the contributions from all archimedean places, we conclude that

(=1)"ro

A Y O g°(T,y,pp) NPT

o g @t (5.3.16)
— . / -
= CT'DO/l dt (CT(ty,(I)f,S())) tp.

This integral can be evaluated using the following lemma, whose proof is straightforward.

Lemma 5.3.2. Let f: Rsg — C be a smooth function such that for some constants a,b € C,
the function F(t) = f(t) —a — blogt satisfies lim;_,o0 F'(t) = 0 and F'(t) = O(t~17°) as
t — oo, for some positive constant C. Then

T [ £ =) -

By Proposition 5.2.12, the function C/(ty, ®¢,s0), regarded as a function of ¢, satisfies
the hypotheses of the lemma with

det’ 0,(T) - det ys,
et 0u(T) ey). (5.3.17)

L
a=k(T, ®5) + iﬁ(Tv @) ZIOg < det’ o (T)y

v]oo
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To finish the proof, it suffices to show that the contributions from the second terms in
(5.3.3) for the various components Xy}, C &' (C) sum to

d
det’mT)-dewk) (—1)KD) g / a
Y lo 0 A QP—TR(T)
Z g< det’ (ox(T)yx) 2Vol(Xv, Q) o Z(Tf)oy,

7L det/ o (T) - det yy
52l (S ) T2

k=1

(5.3.18)

where we used the identity Qgv = —Q¢ = —. Note that on account of the logarithms,
both sides vanish if T' is non-degenerate. When T is degenerate, the claim is essentially
contained in [29]; we outline the argument in Lemma 5.3.4 below. O

When the matrix 7" is non-degenerate, we recover the identities (1.1.19) and (1.1.20) by
using the explicit expression for x(7T, ®s) given by Lemma 5.2.3.

Combining Theorems 4.5.1 and 5.3.1, we obtain the following corollary generalizing the
main result of [25] (for U(p, 1) this corollary is due to Liu [37]; recently Bruinier and Yang
[15] have treated the O(p,2) case).

Corollary 5.3.3. Assume that Ty and Ty are non-degenerate and that Z(Th,pf1) and
Z(Ty, py2) intersect transversely. Assume also that ri + 12 =p+1. Then

(et / o(Ty,y ) * g(Ta,y )q"
X7 1/ v O 1 17(/0,1 2 27¢,2 q
Vol(Xv, Q) Jix ()] ! d

= Z E’} ((Tl 7‘2)7)‘(90f,1 ®(Pf,2)70)oov
T
T:( . T*z)
It remains to establish the following lemma, which is an application of the results of [29].

Lemma 5.3.4. Suppose T = (0 S) is degenerate. Then for any k=1,...,d,

(‘Drk(T)’iO / —rk(T
~ 7 ) AQPET) = B(T, ® ),

Vol(Xw, ) Jix,) Z(Twpf)ay, BT, 2y)
with notation as in Theorem 5.3.1.

Proof. Suppose first that ¢ = rk(7") > 0, so that S is non-degenerate of rank ¢. As both
sides of the desired identity are linear in ¢, we may also assume that ¢ is of the form
vr=¢@pF e S(V(A) ™)@ S(V(A)). (5.3.19)

By construction, we have Z(T',¢r) = ¢(0)Z(S,¢%). On the other hand, let ®(¢’) and
<I>(<,0’Jﬁ) denote the standard sections corresponding to go} and gp’Jﬁ, respectively. Then Defi-
nition 5.2.11 and a direct computation using explicit formulas for the Weil representation
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(see e.g. [47, Proposition 2.2.5]) give
B(T,®y5) = ko B (S0 Pys) = ko - Csle,n Py, 50(t)))
= ko - ¢4(0) - Cs (e, ®(£}), s0(t))

= ko - ¢4(0) - B(S, D(¢)). (5.3.20)
where n* = (n;)* as in (5.2.21).
To prove the lemma, say for £k =1, let
Oxm(t”, ¢N)o = Y_w(S.y", ¢ ¢° (5.3.21)
S

be the Kudla-Millson theta series of genus ¢, as defined in (4.3.5); here 7/ = x" +iy” € HY.
It is shown in [29] that w(S,y”,¢})s, is a closed form on Xy whose cohomology class is
[Z(S, ¢’f)o,]. In particular, we have

/ 02(Tipp)a, MY = £5(0) / 028y NY" = 5(0) / W(S,y" op)ar NPT
[Xv] [Xv]

[Xv]
(5.3.22)
this also follows from Propositions 4.3.4 and 4.4.1. To compute the latter integral, define
an archimedean Schwartz function

Yoo = PRy @00 € R)S(VE) (5.3.23)

where ¢ is the Schwartz function on V., defined by (5.2.3), and ¢4 is the standard Gauss-
ian. Note that

Aoo) = (—1)" @y Ph(s50), (5.3.24)
as in the proof of Lemma 5.2.1, and
w(S,y", 1) (2) NWTHz) = Cos(y”, h,poo @ ©F)W(2), 2= hz, (5.3.25)

where Co s(y", s oo @ ¢f) is the coefficient of q° of the theta series attached to Yoo ® P
Applying the Siegel-Weil formula (Theorem 5.1.3) again, noting that sg(t) > 0 here, we
conclude

(=1’ noon —t " B "
\bl()(ml)/[xv]w(s’y PP AP = Cs (v, @(py),s0(t) = B(S,@F).  (5.3.26)

Comparing this with (5.3.20) and (5.3.22) proves the lemma for £ = 1, and the proof for
all other values of k follows in exactly the same way.

Finally, when T' = 0,, the left hand side is ko (0) = Ko®y(e), which is by definition
equal to 5(0,®y), cf. Proposition 5.2.13. O

Remark 5.3.5. Theorems 3.4.10 and 5.3.1 can be used to give a different expression, in
certain cases, for the constant Cr r, appearing in Lemma 3.4.5. For simplicity, suppose that
T is totally positive definite, the Schwartz form ¢ = ¢, € S(V(A)") is the characteristic

function of (L ®z 2)7’ for a lattice L C V, and that the level structure K is neat and is
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chosen so that Xy = Xy g is connected; thus Xy = I'\D' with I' = K N H(Q) ™. Assume
further that I stabilizes the lattice L.
A slight adaptation of the proof of Theorem 5.3.1, together with a little algebra, yields
the formula
(—1)"

— T,1d A Qpti=r 5.3.27
2Vol(Xv, ) /ng( 14 1) (5.3.27)

_ (WoyIds0) .
We,(r)(Id, 50) 2 Iy (em/2)

for the integral over the single component Xvy; here @, is the standard section correspond-
ing to ¢, and W, (1(g,s) is the normalized archimedean Whittaker functional, as in

[log det o (T) — W]) -B(T, @r)

(3.3.12). On the other hand, setting Q(7") = {v e V" | T(v) =T}, we have
/ a(T,1d, o) AQPTITT = / a°(o1(v)) AQPHTT (5.3.28)
Xv TAD* veQ )NL"
= / a°(o1(v)) A QP (5.3.29)
VEQ(T )L™ F"\D+
mod I'

note here that the sum over I'-orbits is finite, see [24, §5]. Applying Theorem 3.4.10 and
comparing with (5.3.27), it follows that

> Couryr, = 2(=1)"Vol(Xv,Q)
veQ(T)NL"
mod I"

B(T,®r)
—WUI(T)(Id7 80) (5.3.30)

Finally, note that Hy(Q) acts transitively on Q(T'); it follows from the expression in
Lemma 3.4.5 that Cr, is the same for all v appearing above. Thus, setting r(T,I') :=
#Q(T) N L"/T', and using Proposition 3.3.3(iii) for the value W, 1(Id, s9), we have

2r(5=D/21, (ym/2)
(—2mi)emr/2 det oy (T)450(r)

CU1(T),FV - T(T7 F)_l -2 (_1)T VOI(XVa Q) < ) /B(Ta (I)L>

(5.3.31)

5.4. Classes in arithmetic Chow groups. In this section, we describe how the currents
9(7T,y,¢y) arise as the archimedean parts of classes in arithmetic Chow groups lifting the
cycles Z(T, ¢s). As we will ultimately have little to say about arithmetic aspects of the
theory, we shall gloss over many serious difficulties regarding suitable integral models, bad
reduction, etc. A key point is a natural geometric context for the analogue (4.3.15) of
Green’s equation in the degenerate case.

We continue to assume that V is anisotropic, but drop the assumption rk(€) = 1. We
also assume the level structure K C H(Ay) is neat.

Let k = F (resp. k = F) in the orthogonal (resp. unitary) case, so that X’ is proper
over Speck. Suppose X is a regular integral model, proper and flat over Spec(Q), with
an extension of the tautological bundle that we continue to denote £. Finally, for each T
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and @y, let Z(T,¢y) denote a cycle on X extending Z (7', ¢y) on the generic fibre whose
codimension in X is equal to the codimension of Z(T, ¢y) in X = Xy.

Let Gﬁ&(ae) =, Gﬁ@(%) denote the Gillet-Soulé arithmetic Chow ring (with C co-
efficients), as in [46]. Classes in aﬁfc(.’{) are represented by pairs (Z,gz), where Z is
codimension r cycle on 2~ (with C-coefficients) and ¢z is an (r — 1,7 — 1) current on
X(C) =11, k¢ X-(C) that is invariant under complex conjugation, and satisfies Green’s
equation

dd’gz + dz@c) = [wz]
for some smooth differential form wz on X(C); we may also view gz = {g9z,}o as a
collection consisting of a current gz, on X5(C) for each complex embedding o.

When T is non-degenerate, Proposition 4.3.4 (and the discussion around (4.3.6)) or

Proposition 4.4.1 gives rise to a class

(Z(T,¢5), 8(T,y,¢5)) € CH (%), (5.4.1)

where ¢’ = rk(€).
Now consider a pair (T, ¢f) with T' € Sym,.(F) (resp. T € Her,(E)) a degenerate matrix,
and set t = rank(T"). Let

ey (V) € CHL(X)
denote the arithmetic Chern class attached to £, as in [46, Section IV]. The class of
¢y (EY)""" may be represented by a pair (Zp, go) such that the generic fibre of Z; intersects
properly with Z(T, ), and where the current go satisfies the equation
dd®go + 0zyc) = Q5

and is of logarithmic type, see [46, §I1.2]. On the other hand, consider the set of currents
g of degree (r — 1,r — 1) satisfying the analogue

dd°g + 52(T7¢f)((c) A Qg;t = [w] (5.4.2)

of Green’s equation, for some smooth form w; a short computation reveals that the map

g = g+ 90N 0z(Te(C)

defines a bijection between the solutions of (5.4.2) and Green currents for the intersection
Z(T,¢s)» Zo. Therefore, applying Propositions 4.3.4 and 4.4.1, we obtain a class

~

S(Tv Yy, QOf) = (Z(Ta Sof) : ZOv g(Tu Yy, Sof) + g0 A 6Z(T,<pf)((C)> € éﬁg] (%)
r—t

To see that this construction is independent of the choice of (Zy, go) representing ¢, (€Y)" ™,
choose any Green current g’ for Z(T, ¢y), and note that

~

3(T7 Yy, Spf) = (Z(T7 Sof)v g/) . (20790) + (07 g(T7 Yy, (pf) - g/ A Qgct)
= (Z(T,5),0) - Cu (€)™ + (0, 8(T,y,07) — ¢’ AU (5.4.3)

To preserve uniformity of notation, set E(T,y, o) = (Z(T,¢5),0(T,y,¢¢)) when T is

~

non-degenerate. For any (possibly degenerate) T, restricting the cycle 3(7,y, @) to the
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generic fibre (and forgetting the current) yields a cycle that coincides with the construction
n [24].

As an example of our construction, take T' = 0,; applying the computation (4.4.13) for
9(0,y,¢y) gives the concrete expression

E(Om}’;@f) = ‘Pf(o)'(/c\q’ (gv)r - <0 {logdetyk cg-1(EY, V)" A Qg l}k 1, ))
(5.4.4)

5.5. Kudla’s arithmetic height conjecture. We recast our results in the setting of
Kudla’s conjectures on the arithmetic heights of the cycles B(T,y, @) considered in the
previous section.

Assume that V is anisotropic and rk(£) = 1. Let

& = &(€Y) € CHL(Z) (5.5.1)

denote the arithmetic class attached to £V, or more precisely, to its integral extension as
in the preceding section, and consider the generating series

Z deg< 3Ty, ) - @p“*’j qr (5.5.2)

where deg CH? +1(5&” ) — C is the arithmetic degree map [46, Section III]. A rough form
of Kudla’s conjectural programme, as outlined in e.g. [27], suggests that ¢z(7) is, up to a
normalization, equal to the special derivative of an Eisenstein series.

More precisely, let @ € I.(V(Ay), s) denote the standard section of parallel scalar weight
[ determined by ¢ as in (5.3.2), and consider the parallel weight [ Eisenstein series

E(1,®p,58) = Ar(s)E(r, ®p,5) =0 Y Cr(y, ®p,8)q", (5.5.3)
T
for an appropriate normalizing factor A,(s); then one should have an identity

deg (3(T,y. ) - @177 ) 2 %y, @p, 50(r)) (5.5.4)

up to correction terms involving rational multiples of logp with p in a fixed, finite set of
primes that might depend on ¢, the level structure K, and the choices of integral models.
As these correction terms are expected to arise as contributions from (components of)
cycles at primes of bad reduction, it is reasonable to assume that they are independent of
the parameter y.

Let

ME(T, ¢y)) i=deg (717D | Z(T, ¢y)) (5.5.5)
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denote the Bost-Gillet-Soulé height of Z(T', p) along &, as defined in [6, Proposition 2.3.1].
Using [6, (2.3.3)] and (5.4.3) above, a brief computation gives

. o . -
deg (3(T’y’@f)'wp+l ) = ME(T ep) + 2/25(C)Q(Tay,90f)AQ§¢1

(_1)p+17r

= hET,ep) + 5

/ o(T,y, ) AQEHT.
X(C)
By Theorem 5.3.1, the conjecture (5.5.4) is equivalent to the statement
? —1)PT!vol(Xy
B2 es)) & (Aol - T 0y sl

Ko
(=1)P*! vol(Xy)
Ko

+ Ai(so(r)) - Cr(y, @5, 50(r)) +

for all T and ¢y, where vol(Xy) = vol(Xv, Q7).

Note that only the values A, (so(r)) and Al (so(r)) appear in this expression. To pin
these values down further, suppose for the moment that so(r) > 0, and take y = A - Id,
say; then Proposition 5.2.12 implies that

k(T,®f)  (5.5.6)

ud - (r —1kT)
2
for some function F' satisfying limy_,o F'(A) = 0. Similarly, Cp(X-Id, @y, so(r)) = B(T, Py¢).
Thus, choosing T and ¢f such that rk(7') < r and B(T,®f) # 0, and noting that
h(Z(T,¢y¢)) is evidently independent of y, a necessary condition for (5.5.6) to hold is
(—1)7* vol(Xy)

Ar(so(r)) = p . (5.5.8)

Cr(A-1d, @y, s0(r)) = w(T, ) + log\- B(T,®5) + F(N) (5.5.7)

Now for the derivative A’ (so(r)), assume that ¢(0) = 1, and consider the matrix 7" = 0.
Then

h(Z(0,¢05)) ~ degy @"' = voly(2) (5.5.9)
On the other hand, by Proposition 5.2.13,
K(0,®f) =0, (5.5.10)

and Co(y, so,®) = ©(0) = 1. Therefore (5.5.6) for T = 0 and so(r) > 0 gives the further
necessary condition

Al (so(r)) ~ volg(2). (5.5.11)
In other words, taking A,(s) such that A,(so(r)) = (—1)PT vol(Xvy)kg ' and AL(so(r)) =
\70\1@(%), the conjecture (5.5.4), for so(r) > 0, takes the form

WE(T,¢p) ~ volg(2) - BT, ®s) + (_1)IMFI1£V(’1(AX'V)/€

(T, ®). (5.5.12)

When sg(r) = 0, note that Cr(y,®s,0) = 0 and the conjecture (5.5.6) becomes

h(Z(T, ;) ~ (=17 vol(Xv) (T, ®y) (5.5.13)

Ko
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The point here is that the right hand sides of these relations involve explict constants
depending only on T" and ¢y. This conjecture has been verified in the case of full level
Shimura curves for » = 1 [33], for » = 2 [34], and for Hilbert modular surfaces with r = 1
in [7] (these results also include contributions from places of bad reduction). A slightly
weaker version of this conjecture (i.e. away from an explicit set of primes determined by
T and ¢) was proved for general orthogonal Shimura varieties over Q by Hoérmann [17].
Several cases involving cycles of top arithmetic codimension supported at finite primes
were also established by Kudla and Rapoport, see e.g. [22], or the discussion in [27, §II] for
more details.
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