UNIVERSITY OF MANITOBA, DEPARTMENT OF CHEMISTRY Chemistry 2290, Winter 2012, G. Schreckenbach

Formula Sheet (Midterm 2)

This formula sheet can be taken home after the exam

Gas Laws (Ideal and Real Gases)

Ideal gas law:
$$PV = nRT$$
Compression factor:
$$Z = \frac{PV_m}{RT}$$

van der Waals equation:
$$\left(P + \frac{a}{V^2}\right) \left(V_m - b\right) = RT$$

Virial equation of state:
$$Z = \frac{PV_m}{RT} = 1 + \frac{B(T)}{V} + \frac{C(T)}{V^2} + \dots$$

Law of corresponding states
$$\left(P_R + \frac{3}{V_*^2}\right)\left(V_{R,m} - \frac{1}{3}\right) = \frac{8}{3}RT_R$$

where
$$P_{R} = \frac{P}{P_{C}} \; ; \quad V_{R} = \frac{V}{V_{C}} \; ; \; T_{R} = \frac{T}{T_{C}}$$

First Law of Thermodynamics

First law:
$$\Delta U = q + w$$
 (where q and w are the heat transferred to the system and the work done on the system, respectively)

Reversible
$$pV$$
 work: $w_{rev} = -\int_{V_1}^{V_2} P dV$; $\delta w_{rev} = -P dV$

Enthalpy (definition):
$$H = U + PV$$

Heat capacity at constant volume:
$$C_V = \frac{\delta q_V}{dT} = \left(\frac{\partial U}{\partial T}\right)_V$$

Heat capacity at constant pressure:
$$C_P = \frac{\delta q_P}{dT} = \left(\frac{\partial H}{\partial T}\right)_P$$

For an ideal gas:
$$C_{P,m} = C_{V,m} + R$$

Ideal gas, reversible isothermal process:
$$\left(\frac{\partial U}{\partial V}\right)_T = 0$$
, and $w_{rev} = -q_{rev} = nRT \ln \frac{V_1}{V_2}$

Ideal gas, reversible adiabatic process:
$$P_i V_i^{\gamma} = P_f V_f^{\gamma}$$
 where $\gamma = \frac{C_p}{C_V}$

Second Law of Thermodynamics

Carnot cycle, work and heat:
$$q_{cycle} = R(T_{hot} - T_{cold}) \ln \frac{V_b}{V_a} = -w_{cycle}$$
 (per mole of ideal gas)

Carnot cycle, thermodynamic efficiency:
$$\varepsilon = \frac{-w_{cycle}}{q_{hot}} = 1 - \frac{T_{cold}}{T_{hot}}$$

Entropy (definition)
$$\Delta S_{A \to B} = S_B - S_A \equiv \int_A^B \frac{\delta q_{rev}}{T} \quad or \quad dS \equiv \frac{\delta q_{rev}}{T}$$

Second Law of Thermodynamics: $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} \ge 0$;

Clausius inequality $dS \ge \frac{\delta q}{T}$

Ideal gas, entropy change: $\Delta S = n \int_{T_c}^{T_c} C_{V,m} \frac{dT}{T} + nR \ln \frac{V_2}{V_1}$

Ideal gas, molar entropy of mixing: $\Delta S_m = -R(x_1 \ln x_1 + x_2 \ln x_2)$

Entropy of fusion (melting): $\Delta S = \frac{q_{fus}}{T_{fus}} = \frac{\Delta H_{fus}}{T_{fus}} \quad (similar for other phase transitions)$

Joule-Thomson coefficient: $\mu_{J-T} = \left(\frac{\partial T}{\partial P}\right)_H$

First and Second Laws Combined - Free Energies

Gibbs energy (definition) G = H - TS Helmholtz energy (definition) A = U - TSProcess at const. T, V: spontaneous process if dA < 0; equilibrium if dA = 0spontaneous process if dG < 0; equilibrium if dG = 0

Gibbs equations: for U = U(V,S): dU = -pdV + TdS

for H = H(p,S): dH = Vdp + TdSfor A = A(V,T): dA = -pdV - SdTfor G = G(p,T): dG = Vdp - SdT

Maxwell's relations: $\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V} \qquad \left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{D}$

 $\left(\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T} \qquad \left(\frac{\partial V}{\partial T}\right)_{p} = -\left(\frac{\partial S}{\partial p}\right)_{T}$

Gibbs-Helmholtz equation: $-\frac{\Delta H}{T^2} = \left[\frac{\partial}{\partial T} \left(\frac{\Delta G}{T}\right)\right]_p$

Thermochemistry – equilibrium constant: $\ln K = -\frac{\Delta G_R}{RT}$

Chemical Potential

Chemical potential of component i (definition) $\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,p,n_{j\neq i}}$ (similarly for multi-phase systems)

Gibbs energy for an open system: $dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i} \quad (Gibbs \ equation)$

Material equilibrium condition: $\sum \mu_i dn_i = 0$

Phase equilibrium condition: $\mu_i^{\beta} = \mu_i^{\delta}$

Phase Diagrams

Phase rule: F = C - P + 2

Units, Constants

Pressure: $Pa = kg \text{ m}^{-1} \text{ s}^{-2}$ Energy: $J = kg \text{ m}^2 \text{ s}^{-2}$; 1 cal = 4.184 J $1 \text{ atm} = 1.01325 \text{ x} 10^5 \text{ Pa}$; Temperature: $T/K = \theta/{^{\circ}C} + 273.15$

1 Torr = 133.322 Pa; 1 bar = 10^5 Pa Avogadro's number: $N_0 = 6.02214 \times 10^{23} \text{ mol}^{-1}$

Ideal gas constant: $R = 8.3145101 \text{ J mol}^{-1} \text{ K}^{-1} = 0.0820578 \text{ atm L K}^{-1} \text{ mol}^{-1}$