UNIVERSITY OF MANITOBA, DEPARTMENT OF CHEMISTRY Chemistry 2290, Winter 2012, G. Schreckenbach

Formula Sheet (Final Exam)

This formula sheet can be taken home after the exam

Gas Laws (Ideal and Real Gases)

Ideal gas law: PV = nRTCompression factor: $Z = \frac{PV_m}{RT}$

van der Waals equation: $\left(P + \frac{a}{V_m^2}\right) \left(V_m - b\right) = RT$

Virial equation of state: $Z = \frac{PV_m}{RT} = 1 + \frac{B(T)}{V_m} + \frac{C(T)}{V_m^2} + \dots$

Law of corresponding states $\left(P_R + \frac{3}{V_{R,m}^2}\right)\left(V_{R,m} - \frac{1}{3}\right) = \frac{8}{3}RT_R$

where $P_R = \frac{P}{P_C}$; $V_R = \frac{V}{V_C}$; $T_R = \frac{T}{T_C}$

First Law of Thermodynamics

First law: $\Delta U = q + w$ (where q and w are the heat transferred to the system and the

work done on the system, respectively)

Reversible pV work: $w_{rev} = -\int_{V_1}^{V_2} P dV$; $\delta w_{rev} = -P dV$

Enthalpy (definition): H = U + PV

Heat capacity at constant volume: $C_V = \frac{\delta q_V}{dT} = \left(\frac{\partial U}{\partial T}\right)_V$

Heat capacity at constant pressure: $C_P = \frac{\delta q_P}{dT} = \left(\frac{\partial H}{\partial T}\right)_P$

For an ideal gas: $C_{Pm} = C_{Vm} + R$

Ideal gas, reversible isothermal process: $\left(\frac{\partial U}{\partial V}\right)_T = 0$, and $w_{rev} = -q_{rev} = nRT \ln \frac{V_1}{V_2}$

Ideal gas, reversible adiabatic process: $P_i V_i^{\gamma} = P_f V_f^{\gamma}$ where $\gamma = \frac{C_p}{C_V}$

Second Law of Thermodynamics

Carnot cycle, work and heat: $q_{cycle} = R \left(T_{hot} - T_{cold} \right) \ln \frac{V_b}{V_a} = -w_{cycle} \; (per \; mole \; of \; ideal \; gas)$

1

Carnot cycle, thermodynamic efficiency: $\varepsilon = \frac{-w_{cycle}}{q_{hot}} = 1 - \frac{T_{cold}}{T_{hot}}$

Entropy (definition)
$$\Delta S_{A \to B} = S_B - S_A \equiv \int_{-T}^{B} \frac{\delta q_{rev}}{T} \quad or \quad dS \equiv \frac{\delta q_{rev}}{T}$$

Second Law of Thermodynamics:
$$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} \ge 0$$
;

Clausius inequality
$$dS \ge \frac{\delta q}{T}$$

Ideal gas, entropy change:
$$\Delta S = n \int_{T_1}^{T_2} C_{V,m} \frac{dT}{T} + nR \ln \frac{V_2}{V_1}$$

Ideal gas, molar entropy of mixing:
$$\Delta S_m = -R(x_1 \ln x_1 + x_2 \ln x_2)$$

Entropy of fusion (melting):
$$\Delta S = \frac{q_{fus}}{T_{fus}} = \frac{\Delta H_{fus}}{T_{fus}} \quad (similar for other phase transitions)$$

Joule-Thomson coefficient:
$$\mu_{J-T} = \left(\frac{\partial T}{\partial P}\right)_H$$

First and Second Laws Combined - Free Energies

Gibbs energy (definition)
$$G = H - TS$$
 Helmholtz energy (definition) $A = U - TS$
Process at const. T, V: spontaneous process if $dA < 0$; equilibrium if $dA = 0$
spontaneous process if $dG < 0$; equilibrium if $dG = 0$

Gibbs equations: for
$$U = U(V,S)$$
: $dU = -PdV + TdS$
for $H = H(p,S)$: $dH = VdP + TdS$

for
$$A = A(V,T)$$
:
for $G = G(p,T)$:
 $dA = -PdV - SdT$
 $dG = VdP - SdT$

Maxwell's relations:
$$\left(\frac{\partial T}{\partial V} \right)_{S} = -\left(\frac{\partial P}{\partial S} \right)_{V} \quad \left(\frac{\partial T}{\partial P} \right)_{S} = \left(\frac{\partial V}{\partial S} \right)_{P}$$

$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T} \qquad \left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T}$$

Gibbs-Helmholtz equation:
$$-\frac{\Delta H}{T^2} = \left[\frac{\partial}{\partial T} \left(\frac{\Delta G}{T} \right) \right]_{R}$$

Thermochemistry – equilibrium constant:
$$\ln K = -\frac{\Delta G_R}{RT}$$
 Extent of reaction: $n_i(t) = n_i^{initial} + v_i \xi$

Chemical Potential

Chemical potential of component i (definition)
$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_{i+1}}$$
 (similarly for multi-phase systems)

Gibbs energy for an open system:
$$dG = -SdT + VdP + \sum_{i} \mu_{i} dn_{i} \quad (Gibbs \ equation)$$

Material equilibrium condition:
$$\sum \mu_i dn_i = 0$$

Phase equilibrium condition:
$$\mu_i^{\beta} = \mu_i^{\alpha}$$

Phase Diagrams

Phase rule:
$$F = C - P + 2$$

Clapeyron equation (differential form):
$$\frac{dP}{dT} = \frac{\Delta H_m}{T\Delta V_m}$$
 (for a one-component system)

Clausius-Clapeyron equation (differential form):
$$\frac{d \ln P}{dT} = \frac{\Delta H_m}{RT^2}$$
 (if one phase corresponds to vapor)

Solutions

 $\overline{V}_i \equiv \left(\frac{\partial V}{\partial n_i}\right)_{T,P,n_{j\neq i}} \quad (and \ similarly \ for \ any \ other \ extensive \ property)$ Partial molar volume:

 $V = \sum_{i} n_i \overline{V}_i$ (and similarly for any other extensive property) Solution volume:

 $\mu_A = \mu_A^* + RT \ln x_A$ Ideal solutions:

 $P_A = x_A P_A^*$ Henry's law: $P_j = x_j K_H^j$ Raoult's law:

 $a_i = \frac{P_i}{P_i^*} = \gamma_i x_i$ Activity; activity coeficient:

 $\Delta T_{fus} = -\frac{RT_{fus}^{*2}}{\Delta H_{fus,m}} x_B$ Freezing point depression:

 $\Delta T_{vap} = \frac{RT_{vap}^2}{\Delta H_{vap,m}} x_B$ Boiling point elevation:

 $\pi = \frac{RT}{V_{m.solvent}^*} x_B \quad (ideal \ solution)$ Osmotic pressure:

> $\pi = \frac{n_B}{V}RT$ van't Hoff's equation:

Electrochemistry

 $\mu_{\pm} = \frac{\mu_{solute}}{v} = \frac{v_{+}\mu_{+} + v_{-}\mu_{-}}{v} \quad where \qquad v = v_{+} + v_{-}$ Electrolyte solution:

 $\mu_{\pm} = \mu_{\pm}^{0} = RT \ln a_{\pm}$ $a_{\pm}^{v} = a_{+}^{v_{+}} a_{-}^{v_{-}}$ (mean ionic activity) where

Cell potential *E* and free energy of reaction:

 $\Delta G_R = -nFE$ (where n is the number of electrons.)

 $E = E^0 - \frac{RT}{nF} \ln Q$ Nernst equation:

where Q ... reaction quotient

with a_i ... activities:

At chemical equilibrium: Q = K and thus $\ln K = \frac{nFE^0}{RT}$

Units, Constants

 $Pa = kg m^{-1} s^{-2}$ Pressure:

 $1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$; 1 Torr = 133.322 Pa; $1 \text{ bar} = 10^5 \text{ Pa}$

 $J = kg m^2 s^{-2}$; 1 cal = 4.184 J Energy:

 $T/K = \theta/{^{\circ}C} + 273.15$ Temperature:

 $N_0 = 6.0221367 \text{ x } 10^{23} \text{ mol}^{-1}$ Avogadro's number:

 $R = 8.3145101 \text{ J mol}^{-1} \text{ K}^{-1} = 0.0820578 \text{ atm L K}^{-1} \text{ mol}^{-1}$ Ideal gas constant:

 $F = N_0 e = 9.6485309 \text{ x } 10^4 \text{ C mol}^{-1}$ Faraday constant: