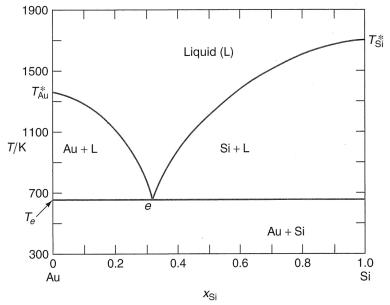
Chemistry 2290, Winter 2011, Dr. H. Georg Schreckenbach

Second Midterm Examination March 11, 2011

This exam has **4** (four) pages. *READ the question carefully*! Answer **ALL** questions, except possibly question 2, which is a bonus question that may earn you one extra mark. The questions may have *multiple* parts. Note that the questions aren't necessarily ordered by difficulty or by any other criteria. If you use *pencil*, your exam will not be remarked! For numerical problems, all mathematical steps must be shown. Please answer all questions *on* the question sheets. Use *reverse* side or extra paper if needed. On any extra sheet, indicate name and student ID number, please.

<u>1. Free energy calculation</u>

(a) Calculate ΔG for 1.00 mole of liquid water as the external pressure is increased from 1.00 bar to 2.00 bar at a constant temperature of 298.0K. *You may need some or all of the following information: molar mass of water:* 18.015 g mol⁻¹; density at 25.0°C: 997.05 kg m⁻³. (b) Calculate ΔG for 1.00 mole of an ideal gas as the external pressure is increased from 1.00 bar to 2.00 bar at a constant temperature of 298.0K.


2. Helmholtz free energy

Provide a molecular-level interpretation of the Helmholtz free energy. Justify your comments. Please be concise, though!

3. Phase change

Calculate the boiling point of water at 98.7kPa (*a typical barometric pressure at 275m altitude*)? *You may need some or all of the following information:* At standard conditions (373.15K; 1.00 atm), the heat of vaporization is 2258Jg⁻¹ (that's Joule per gram); the molar volume of liquid water is 18.78 cm³ mol⁻¹, and the molar volume of water vapor is 30.199 dm³ mol⁻¹. The molar mass of water is 18.015 g mol⁻¹.

4. Phase diagram

6 marks

Consider the following phase diagram (Au– Si; figure adapted from Laidler/ Meiser/ Sanctuary, Physical Chemistry, 4th edition).

(a) Using the phase rule, determine the number of thermodynamic degrees of freedom at the point marked "e".(b) What are "thermodynamic degrees of freedom" (definition)?

(c) Consider a Au/Si mixture at 1100K with a mole fraction $x_{Si} = 0.60$.

(i) Determine the number of number of thermodynamic degrees of freedom present under these conditions; (ii) determine the composition(s) of the phase(s) present; (iii) if there is more than one phase present, determine the relative amounts in these phases.

5 marks

1 bonus mark

4 marks