UNIVERSITY OF MANITOBA DEPARTMENT OF CHEMISTRY

Chemistry 2290, Winter 2012, G. Schreckenbach

PROBLEM SET 2, Jan. 25, 2012

Due date: The solved problem set is due on Wednesday, February 1, 2012, at the time of the lecture.

Questions to be marked: A *pre-selected* (*by me*) set of **five** (5) out of the six questions will be marked.

1. 1.35 mol of an ideal gas underwent a reversible isothermal expansion until the volume was doubled. If the work performed during the process was w = -2.50 kJ, what was the temperature of the gas? What are q, ΔU and ΔH ?

2. A sealed flask with a capacity of 1.05L contains 3.20g of carbon monoxide (assumed to behave ideally; molar mass: $M = 28.01 \text{ g mol}^{-1}$; heat capacity: $C_{p,m} = 28.41 \text{ J K}^{-1} \text{ mol}^{-1}$, assumed to be independent of temperature).

The system is initially at a temperature of 25.00°C. The flask is so weak that it will burst if the pressure exceeds 6.50×10^5 Pa. The flask is heated slowly.

(a) At what temperature (bursting temperature) will the pressure of the gas reach the bursting pressure?

(b) What are the change in internal energy, ΔU , and the change in enthalpy, ΔH , for heating the gas from 25.0°C to the "bursting temperature" of part (a)?

(c) The molar heat capacity is, in fact, *not* temperature independent. The temperature dependence can be described as $C_{p,m} = d + eT + fT^{-2}$ where T is the temperature (in K) and the constants are: $d = 28.41 \text{ J K}^{-1} \text{ mol}^{-1}$; $e = 4.10 \text{ x} 10^{-3} \text{ J K}^{-2} \text{ mol}^{-1}$; $f = -4.6 \text{ x} 10^4 \text{ J K mol}^{-1}$. Given these values, calculate ΔU for the process described in part (b).

3. A sample of 2.55 mol of a monoatomic ideal gas (which, from kinetic-molecular theory, means $C_{V,m} = \frac{3}{2}R$) is originally at 50.0°C and 1.03atm pressure. Its pressure is being reduced at

constant volume until the temperature has fallen to 25.0°C. For this process, calculate q, w, ΔU and ΔH . Assume reversible conditions.

4. Ethanol and propane are both used as fuel for fireplaces.

- (a) Write balanced equations for the combustion of 1.00 mole of (liquid) ethanol and (gaseous) propane, respectively.
- (b) Use appropriate heats of formation data to derive the heat associated with each combustion reaction.
- (c) Which fuel produces the most energy per gram? Per mole?

5. A container with 1.50L of water is placed outside in the winter, such that the temperature of the water is lowered from 30.0°C to -25.0°C. How much heat is given off by the water?

- 6. Two (2.00) moles of oxygen gas are initially at 273 K in a volume of 11.35 L. Consider the gas as ideal; heat capacity $C_{p,m} = 29.4 \text{ J K}^{-1} \text{ mol}^{-1}$. The gas is heated reversibly at constant pressure to 373 K:
 - (a) What is the final volume?
 - (b) How much work is done on the system?
 - (c) How much heat is supplied to the system?
 - (d) What is the change in enthalpy?
 - (e) What is the change in internal energy?

Comment: This is essentially problem LM11 of the sample problems posted.