Chemistry 2290, Winter 2012, G. Schreckenbach Practice problems –4–

Second Law: Calculation of Entropy Changes

Practice problems from Laidler/ Meiser

(Problems adapted from Laidler, Meiser, Sanctuary, Physical Chemistry, 4th ed., Houghton Mifflin)

LM18. Calculate the entropies of vaporization (in units of J K⁻¹ mol⁻¹) of the following substances from the following data:

	Boling Point (K)	$\Delta_{vap}H (kJ mol^{-1})$
C_6H_6	353	30.8
CHCl ₃	334	29.4
H_2O	373	40.6
C ₂ H ₅ OH	351	38.5

In terms of the structure of the liquids, suggest reasons for the higher values observed for the last two compounds in the table.

- LM19. One mole (1.00 mol) of a monoatmic ideal gas ($C_{v,m} = 3/2R$) is heated (a) at constant pressure, and (b) at constant volume from 298K to 353K. Calculate ΔS for the system in each case.
- LM20. One mole each of N₂ and O₂ and 1/2 mol of H₂, at 25.0°C and 1.00 atm pressure, are mixed isothermally; the final total pressure is 1.00 atm. Calculate Δ S, on the assumption of ideal behavior.
- LM21. Initially 1 mol of oxygen gas is contained in a 1-Liter vessel, and 5 mol of nitrogen gas are in a 2-Liter vessel; the two vessels are connected by a tube with a stopcock. If the stopcock is opened and the gases mix, what is the entropy change?
- LM22. Calculate the entropy of mixing per mole of air, taking the composition by volume to be $79\% N_2$, 20% O₂, and 1% Ar.
- LM23. (a) One mole of a monoatomic ideal gas ($C_{V,m} = 3/2R$) at 25°C is allowed to expand reversibly and isothermally from 1 dm³ to 10 dm³. What is ΔS for the gas, and what is ΔS for the surroundings?

(b) The same gas is expanded adiabatically and irreversibly from 1 dm³ to 10 dm³ with no work done. What is the final temperature of the gas? What is ΔS for the gas, and what is ΔS for the surroundings? What is the net ΔS ?

- LM24. One mole of liquid water at 0.00°C and 1.00 atm pressure is turned into steam at 100.0 °C and 1.00 atm pressure by the following two paths:
- (a) Heated at constant pressure to 100.0 °C and allowed to boil into steam ($\Delta_{vap}H^o = 40.67 \text{ kJ}$ mol⁻¹ at this temperature.)
- (b) Pressure lowered to 0.00602 atm so that water evaporates to steam at 0.00° C (Δ_{vap} H^o = 44.92 kJ mol⁻¹ at this temperature), heated at the constant pressure of 0.00602 atm to 100.0 °C and compressed at 100.0 °C to 1 atm pressure.

- Calculate the entropy along each path and verify that they are the same, thus verifying that ΔS° is a state function. Use $C_{p,m} = 75.48 \text{ J K}^{-1} \text{ mol}^{-1}$ for liquid water, and $C_{p,m} = 30.54 \text{ J K}^{-1} \text{ mol}^{-1}$ for steam (assumed constant this is a simplification).
- LM25. Initially 5.0 mol of an ideal gas with $C_{v,m} = 12.5 \text{ J K}^{-1} \text{ mol}^{-1}$ are at a volume of 5.00 dm³ and a temperature of 300K. If the gas is heated to 373K and the volume changed to 10.0 dm³, what is the entropy change?
- LM26. One mole of water (1.00 mol) is placed in surroundings at -3.0 °C, but at first it does not freeze (it remains as supercooled water). Suddenly it freezes. Calculate the entropy change in the system during freezing, making use of the following data: $C_{p,m}$ (water) = 75.3 J K⁻¹ mol⁻¹, $C_{p,m}$ (ice) = 37.7 J K⁻¹ mol⁻¹, $\Delta_f H$ (ice \rightarrow water) = 6.02 kJ mol⁻¹ at 0°C. The two heat capacities can be taken as independent of temperature. Also, calculate the entropy change in the surroundings and the net entropy change in the system and surroundings.
- LM27. One mole of liquid water at 0.0°C is placed is placed in a freezer having a temperature of -12.0 °C. The water freezes and the ice cools to -12.0 °C. Making use of the data in Problem LM26, calculate the entropy change in the system, the surroundings (the freezer), and the net entropy change.
- LM28. Two moles (2.00 mol) of water at 60 °C are added to 4.00 mol at 20 °C. Calculate the entropy change, assuming that there is no loss of heat to the surroundings. Use the value for the heat capacity of water from Problem LM26.