Solutions to LM problems, part 2

---- Solutions to problems from part 5 ----

<u>Comments</u>: (i) Typos and errors are always possible – please point out any issues and errors, so that I can fix them! (ii) I have copied the answers from the Laidler/ Meiser solution manual, and I may have not always paid full attention to the proper number of significant figures.

LM29 -w = 3.06 kJ mol^{-1} ; $\Delta H = 40.6 \text{ kJ mol}^{-1}$; $\Delta U = 37.5 \text{ kJ mol}^{-1}$; $\Delta G = 0$; $\Delta S = 109 \text{ J K}^{-1} \text{ mol}^{-1}$

LM30 $\Delta U = \Delta H = 0$; $\Delta S = 19.1 \text{ J K}^{-1} \text{ mol}^{-1}$; $\Delta A = -5.71 \text{ kJ mol}^{-1} = \Delta G$

LM31 (a) $\Delta G = -34.1 \text{ kJ mol}^{-1}$; (b) $\Delta G = 16.9 \text{ kJ mol}^{-1}$; (c) $\Delta G = 85.0 \text{ kJ mol}^{-1}$; T = 501 K

LM32 Net: $\Delta H = 44.0 \text{ kJ mol}^{-1}$; $\Delta S = 214.5 \text{ J K}^{-1} \text{ mol}^{-1}$; $\Delta G = -19.9 \text{ kJ mol}^{-1}$

LM33 (a) ΔU ; ΔH (b) ΔS (c) none (d) ΔG (e) ΔU (f) none

LM34 $\Delta G_m = 1.485 \text{ kJ mol}^{-1}$.

LM35 $\Delta G_{\rm m} = -4.28 \text{ kJ mol}^{-1}$. May require to look up an integral.

LM36 $\Delta U = \Delta H = 0$; $\Delta S = 5.76 \text{ J K}^{-1} \text{ mol}^{-1}$; $\Delta G = -1.73 \text{ kJ mol}^{-1} = w_{rev} = -q_{rev}$. I have an older handwritten note here that there might be sign error in some of these numbers – I did not double-check this.