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Abstract: The paper deals with two approaches to optimizing pavement condition surveys for the urban pavement
network of the City of Winnipeg, Manitoba. First, a nonparametric statistical test was applied to assess the transverse
variability of the data. The test compared the ratings for one lane with those of all lanes of each segment. The test
concluded that the medians of the two groups are equal at a 92% confidence interval and that there are observed biases
in the data. The bias can be eliminated if the surveyed lane is selected randomly. The second approach was to predict
visual survey scores from automated (laser-based) measurement of rut depth and international roughness index (IRI). A
resilient back-propagation algorithm was selected, and the Kappa coefficient was used to examine the strength of the
agreement. The results showed that only moderate agreement was achieved and that additional data elements are required
to improve the predictive ability of the model.

Key words: international roughness index (IRI), rutting, cracking, spalling, pavement management system (PMS),
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Résumé : Le présent article aborde deux approches pour optimiser les relevés de l’état des chaussées pour le réseau
de chaussées urbaines de la ville de Winnipeg, au Manitoba. Premièrement, un test statistique non paramétrique a été
utilisé pour évaluer la variabilité transverse des données. Le test comparait les cotes d’une voie aux cotes de toutes les
voies de chaque segment. Le test concluait que les médianes des deux groupes étaient égales à un intervalle de
confiance de 92 %, et que certaines données sont biaisées. Ces biais peuvent être éliminés si la voie étudiée est
sélectionnée au hasard. La deuxième approche consistait à prédire les cotes des relevés visuels à partir de mesures
automatisées (au laser) de la profondeur des ornières et de l’indice de rugosité international (IRI). Un algorithme de
rétropropagation résilient a été choisi et le coefficient Kappa a été utilisé pour examiner le degré de corrélation. Les
résultats ont montré que seule une conformité modérée a été atteinte et que des données additionnelles sont requises
pour améliorer la valeur de prévision du modèle.

Mots-clés : indice de rugosité international (IRI), formation d’ornières, fissuration, effritement, système de gestion
routière, coefficient Kappa, relevés des dommages importants.
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Introduction

A pavement management system (PMS) can facilitate the
efficient and cost-effective planning of maintenance and

rehabilitation activities at both the network and project levels
and encourage decision-making based on present and future
predicted conditions and life-cycle cost. The system can
generate alternate scenarios based on various levels of funding
and different management approaches. Pavement condition
surveys are the foundation of the PMS of the City of Winnipeg.
The PMS makes use of visual ratings of surface condition
that is reported as general condition scores, cracking scores,
and joint spalling scores.

The City of Winnipeg road network consists of a re-
gional road network of urban arterials and a residential
street network of collectors and local streets. Both net-
works have been surveyed by rating crews for a number of
years. One concern with the visual inspection of the re-
gional street network is that it involves undesirable expo-
sure to heavy traffic volumes operating at posted speeds of
up to 80 km/h. Using two-person rating crews, the visual in-
spection of the regional street network requires four crews
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working for 8 weeks each to survey only representative
segments of each road. The data are typically collected on
an annual basis.

Many highway agencies are adopting automated laser-based
surveys because they can be conducted more productively
and without exposing the rating crews to heavy or high-
speed traffic. The surveys are conducted from a vehicle travel-
ling at highway speed and without interfering with traffic
flows. Another benefit is that the entire road including all
lanes of travel can be surveyed. The data are typically
reported at 10–100 m intervals. The City of Winnipeg is
examining the potential for replacing visual rating of regional
streets with automated laser scanning surveys. The purpose
of this research is to determine if the manual survey ratings
can be inferred from the automated data. Although visual
surveys can be biased as a result of differences between data
collection personnel and varying lighting and weather condi-
tions that affect the ability to perceive certain distresses,
there is a large historical database of visual condition ratings,
and it is desired to retain as much information as possible on
cracking and joint spalling because they tend to drive main-
tenance programs and performance models.

Two methods of reducing the volume of collected data are
evaluated. The first is to down-sample by collecting data on
fewer lane-kilometres of the network. Sampling can often
provide sufficient data for the network-level PMS but not for
project-level analysis and design. The analysis of the trans-
verse variability of pavement distresses is conducted to
determine if a single lane can be taken as representative of
all of the lanes of urban multilane segments, and therefore
reduce the volume of collected data.

The second method of minimizing data collection needs is
to collect fewer data elements. This is achieved by eliminating
the collection of elements that are of little use and elements
that can be reasonably estimated from other variables. Arti-
ficial neural networks (ANNs) were constructed to predict
manual ratings of cracking and spalling based on the auto-
mated international roughness index (IRI) and rut depth data
and to determine if the manual ratings could be predicted
from laser-based automated data. Advancements have been
made in the automated collection of surface distress data
including spalling and cracking, and there may be the poten-
tial to directly collect those data elements with high-speed
visual surveys using event keyboards. The intent of this
research, however, is to determine if cracking and spalling
data could be inferred from IRI and rut depth, which are not
visually acquired and are not biased by time of day or lighting
conditions.

Data sources

Parallel automated and manual surveys of the regional
street network were conducted in 2002. The automated survey
was conducted by a consultant using laser-based equipment,
and the city crews carried out the visual condition surveys.
The regional street network comprises all of the arterial streets
and several of the high-volume collector streets within the
city limits. This 626 km of multilane street network utilizes
three pavement types. The prevailing pavement type is termed
asphalt over portland cement concrete (APC), which accounts

for 72% of the network. APC is a composite pavement in
which an old concrete pavement has been overlaid with
asphalt concrete. Portland cement concrete (PCC) pavement
makes up an additional 22% of the regional network and is
generally jointed plain concrete pavement. The remaining
6% of the network is asphalt concrete (AC). This paper
utilizes data collected on the APC and PCC segments only
because of the limited volume of data on AC pavements.
Thus, 94% of the network is included in the analysis.

Visual rating data elements

Pavement surface condition ratings are collected by two-
person crews according to a well-defined surface condition
rating manual. Crews assign each segment three rating scores
based on general condition, cracking, and spalling.

General condition
The four categories of general condition are new, good,

fair, and poor. New streets are those which are new or were
recently overlaid. Good streets usually require minor main-
tenance, fair streets usually require major maintenance or
rehabilitation, and poor streets need reconstruction and are
thus only maintained to ensure the safety of the travelling
public, and not to prevent further deterioration.

For cracking and spalling data, rating crews select a gauging
area that is representative of the prevailing conditions of the
control section. The gauging area is chosen so that items
such as railway crossings, manholes, and utility patches are
excluded unless they are prevalent over the segment. The
rating crew conducts a detailed survey of 10 slabs per lane in
the representative gauging area.

Cracking and joint spalling data
The rating crew collects the number of cracks in each

slab, the severity of cracks, and the number of cracked slabs
in the gauging area. Cracks that extend across the full width
or length of the slab are considered to be working cracks and
are included in the rating, whereas shrinkage cracks are not
included in the rating. Each slab is assigned a crack type
based on the number of pieces the slab is broken into and a
crack severity based on the size of the cracks and the condi-
tion of the sealant. Table 1 provides definitions of each crack
type and severity. For example, a slab containing two un-
sealed cracks with an average width of 20 mm has a crack-
ing label of BS (i.e., branch type with slight severity). The
same rating system is used for APC and PCC pavements.

The extent of cracking and joint spalling in a segment is
based on the number of cracked slabs and spalled joints in
the segment as defined in Table 2. Each segment receives a
cracking score and a joint spalling score based on the pre-
dominant distress and the extent. For example, a segment in
which 60% of the slabs are cracked and most of the cracked
slabs have two or three cracks of extreme severity has a
cracking score of BX3. A segment in which 15% of the
joints have some type of spalling and where the predominant
spall has a slight severity has a joint score of S1.
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Automated data collection of international
roughness index and rut depth

Roughness and rut data were collected for the entire length
of one lane per direction in each segment. In all multilane
segments, the second lane from the curb was surveyed and
in this paper is termed the automated survey lane. An inertial
profiler collected a longitudinal profile of each wheel path.
Profile elevations are then processed and summarized as IRI,
which was reported at 20 m intervals. Rut depth data were
collected for each wheel path. The rutting index used was a
simulated 1.8 m straightedge. Rut depth was mathematically
calculated from a measured transverse profile and reported
at the same 20 m intervals as IRI.

Transverse variability of surface distress

Analysis of the transverse variability of surface distress is
useful for determining data collection needs of manual and
automated pavement surveys. In 2002, manual distress data

were collected for all lanes of the regional street network,
whereas the automated data were collected for only the second
lane from the curb. The datasets compared in this analysis
are the manually collected data for all lanes and the man-
ually collected data for the second lane from the curb. The
second lane from the curb was selected because it is the only
lane that is also surveyed using the automated process.

An analysis of the transverse variability was conducted to
examine the difference between the distresses in the two
datasets. The objective of the analysis is to determine if a
single lane can be representative of all of the lanes of multi-
lane segments, and therefore reduce data needs.

Sampling and analysis

The analysis sample includes 54 randomly selected sections
with a total length of 49 km. Twenty-five sections were two-
lane, 16 were three-lane, and 13 were four-lane. For each
section and each survey (second lane from the curb and all
lanes), the percentage of each type and severity of distress
were calculated. Figure 1 shows a comparison of cracking
data, and Fig. 2 a comparison of spalling data.

The data indicate that there is a slight shift in the type of
cracking, with more slabs having no cracking on the auto-
mated survey lane and more slabs having pattern cracking
on all lanes. There is also a shift in the crack severity, with
more prevalent slight and extreme cracking on all lanes and
more new cracks on the automated survey lane. There are
more joints with moderate and extreme spalling on all lanes
and more joints with new or slight spalling on the automated
survey lane.

Statistical hypothesis testing

A nonparametric statistical analysis was conducted to
determine if the medians of the two populations are the
same. Paired data samples consisted of the manual rating for
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Label Definition

Crack type
N (none) No cracking
R (random) Slab has cracked into two pieces
B (branch) Slab has cracked into three or four pieces
P (pattern) Slab has cracked into five or more pieces

Crack severity
N (new) Cracks that are sealed with 75% or more of the sealant in good condition
S (slight) Cracks are not sealed or more than 25% of the sealant is damaged; width <25 mm
M (moderate) Cracks are not sealed or more than 25% of the sealant is damaged; 25 < width < 40 mm
X (extreme) Fully developed cracks are not sealed or more than 25% of the sealant is damaged; vertical or horizontal

displacement >40 mm

Joint spall severity
N (new) Joints are tight and may have a few minor aggregate pop-outs adjacent to the joint
S (slight) Parallel cracks adjacent to the joint with some of the cracks forming small pieces, which are tight, or aggregate

pop-outs adjacent to the joint for more than 25% of its length
M (moderate) Cracks have formed into a pattern and the pieces are loose or missing; the spall is less than 25% of the joint length
X (extreme) Pieces are extremely loose or missing, and the full depth of the spall can be seen; the spall is more than 25% of

the joint length

Table 1. Definition of distress types and severities.

Extent Lower (%) Upper (%)

Cracking
0 0 ≤5
1 5 ≤20
2 20 ≤35
3 35 ≤100

Joint spalling
0 0 ≤5
1 5 ≤20
2 20 ≤40
3 40 ≤100

Table 2. Crack and spall extent
definitions.



all lanes and the manual rating for the second lane from the
curb, the automated survey lane. A sample of the difference
between the lanes is obtained by subtracting the percentage
of each distress on the automated survey lane from the dis-
tress on all lanes. A positive difference indicates more dis-
tress on all lanes than on the second lane from the curb. If a
confidence interval is entirely positive, then all of the lanes
had more distress than the automated survey lane at the
given confidence level. Conversely, if a confidence interval
is entirely negative, then the automated survey lane had
more distress than all of the lanes.

Two hypotheses were set up: the null hypothesis (H0) that
the two datasets have the same median amount of distress,
and the alternative hypothesis (Ha) that the two datasets have
different median amounts of distress. A binomial distribu-
tion can be used to calculate a confidence interval on the
median of a population without any assumptions regarding
the statistical distribution of the data (Salvia 1990). There is
a 50% probability that any single randomly selected sample
will fall below the median. For a sample size of 54, the
probability that any number of samples lie below the popula-
tion median is calculated using the binomial distribution as
follows:

[1] f x
n

x
p p n x( ) ( )=









 − −x 1

where f(x) is the probability that exactly x number of ele-
ments are below the population median, n is the sample size,
x is the number of elements below the median, and p is the
probability that a single element is below the median. For
example, the probability that exactly 20 of the 54 samples
lie below the median is calculated as
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For a sample size of 54, there is 92.4% probability that the
median of the population lies between the 21st and 34th ele-
ments. The 92.4% probability for this confidence interval is
calculated as

[2] probability 1
20 54

= − −
= =
∑ ∑f x f x
x x1 34

( ) ( )

Alternative confidence intervals that could have been used
include the median lying between the 20th and 35th ele-
ments with 96.0% probability or the 22nd and 33rd elements
with 86.6% probability.

Influence of transverse variability on crack
and joint score

The differences between the lanes on the aggregate level
appear to be relatively small. Some individual segments had
significant differences, however, which become evident when
the rating scores are analyzed. Of the 54 randomly selected
segments that were analyzed, 30 received the same crack
score on all lanes as that from the manual rating of the
second lane from the curb (automated survey lane). The dif-
ferences in the 24 segments that had different scores are
summarized in Table 3. It can be seen that the source of the
difference is the dominant crack type in 12 cases, of which
five segments had the automated survey lane rated as better
and seven as worse than when all lanes were surveyed. Simi-
larly, the table includes the differences in crack severity,
crack extent, spall severity, and spall extent.

Whereas the conditions between adjacent lanes are the
same to a statistically significant degree on an aggregate
level, a detailed survey is required at the project level for all
lanes. For network-level planning purposes, automated data
collected for one lane are sufficient to represent the entire
segment. Therefore, given that data for multiple lanes do not
provide significantly more information and given the cost
associated with these data, it is recommended that auto-
mated survey data only be collected for a single lane. It is
further recommended that this lane be chosen randomly to
eliminate the bias in the spalling scores, as spalling data are
used to drive maintenance and rehabilitation programs for
the APC and PCC roadways. This recommendation should
apply only to multilane roadways where the traffic patterns
do not differ significantly between lanes.

Predicting manual ratings from automated
surveys

Artificial neural networks (ANNs) are composed of many
single units operating in parallel and are inspired by biological
nervous systems. ANNs learn through a training process that
utilizes training data to adjust the weights and biases of the
connections between elements to achieve the desired output
(Bishop 1995). Learning methods based on ANNs have been
used extensively in transportation and pavement engineering
applications. For example, Mohammadian and Miller (2002)
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Fig. 1. Percentage of slabs with each type and severity of cracking.

Fig. 2. Percentage of slabs with each severity of joint spalling.



assessed the ability of ANNs to predict household vehicle
choice. Fernandes et al. (2001) used neural networks for the
programming of maintenance and rehabilitation of unpaved
roads, and Abdallah et al. (2001) used ANNs in real time to
predict pavement layer thicknesses and moduli based on
deflection and seismic data.

In this paper, it is desired to use IRI and rut depth as indi-
cators of various distresses that are collected manually in the
current system. IRI and rut depth were selected because they
are independent of each other, and the methods used for data
collection are more reliable, more widely used, and less
expensive than those required for collecting surface distresses.
There are also substantial historical IRI and rut depth data in
many agencies.

Neural network architecture

Determining the neural network architecture requires
significant effort, including the determination of input and
output variables, number of hidden layers, and number of
hidden neurons in each hidden layer. In practice, most neural
network applications use only one hidden layer, and trial and
error is employed to select the number of neurons for the
hidden layer. Yang et al. (2003) found that processing time
increases significantly when two hidden layers are used. In
addition, one hidden layer is sufficient to simulate any poly-
nomial function.

Multilayer perceptrons (MLP) were utilized to predict the
classes of distress for segments based on IRI and average rut
depth. The training of an MLP is usually accomplished by a
back-propagation algorithm that involves two phases, the
forward phase and the backward phase. During the forward
phase the network weights and biases are fixed as the inputs
are passed through the network and the outputs are calcu-
lated. The error is computed as the difference between the
desired response and the actual response:

[3] e d yi i i= −

where ei is the error for the ith element, di is the desired
response, and yi is the calculated network output. During the
backward phase, ei is passed backward through the network
and the network weights and biases are adjusted to minimize
ei, usually as represented by root mean square (RMS) error
(Haykin 1994).

The MATLAB® (The MathWorks, Inc., Natick, Mass.)
neural network processing toolbox (Demuth and Beale 2002)
was used to train and test the multilayer perceptrons. The
resilient back-propagation algorithm and sigmoid transfer

functions are used in the selected network architecture, and
both are suitable for pattern recognition problems. The initial
bias and layer weights are randomly selected, which can
lead to different decision boundaries each time the network
is trained. To overcome this problem, the network was trained
100 times for 500 epochs each. An epoch is defined as a
single iteration of the training process where the error is
calculated and back-propagated to adjust the transfer func-
tions. The error and the decision space (weights and biases
of transfer functions) had stabilized after 500 epochs. Only
the training run (of the 100 processed) that achieved the
lowest RMS error was retained. A randomly selected 80% of
the segments of each pavement type was used to train the
network, and the remaining 20% of the data was used to test
the effectiveness of the decision space.

The analysis uses neural networks with one hidden layer,
with the number of neurons in the hidden layer selected to
maximize the potential for learning while minimizing the
risk of overfitting the model. A neural network with too few
hidden neurons is incapable of sufficiently learning from the
training set, and one with too many hidden neurons will
attempt to memorize the training set and perform poorly for
previously unseen data. The selection of a network with too
many hidden neurons is analogous to the fitting of a poly-
nomial of too high an order; overfitted models are unable to
generalize to new data.

Two network architectures were used as shown in Fig. 3.
Each neural network utilizes IRI and rut depth as inputs, five
neurons in the hidden layer, and sigmoid transfer functions
at each layer and is fully connected. Artificial neural net-
work 1 (ANN1) uses four output neurons and thus an output
in the form of a four-element vector. The target output
vector is {1, 0, 0, 0} for new streets, {0, 1, 0, 0} for good
streets, {0, 0, 1, 0} for fair streets, and {0, 0, 0, 1} for poor
streets. Artificial neural network 2 (ANN2) uses a single
output neuron. The potential disadvantage of this network is
that there are far fewer weights to adjust between the hidden
layer and the output layer; however, utilizing the ordinal
nature of the data is an advantage; the classes of each cate-
gory are ordered and so are the target outputs. For general
condition, the classes are {new, good, fair, poor} and the
targets for the classes are {0.125, 0.375, 0.625, 0.875}.

To avoid overfitting the neural network by using too
many hidden neurons, a number of networks were trained,
with varying numbers of hidden neurons, and the RMS er-
ror of the training and test data was calculated for each net-
work. The results of these trials for the prediction of
general condition of APC streets based on IRI and rut
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Difference in score
Crack
type

Crack
severity

Crack
extent

Spall
severity

Spall
extent

Similar condition 12 10 11 5 4
Automated survey lane was better 5 6 8 7 8
Automated survey lane was worse 7 8 5 0 0
Total 24 24 24 12 12

Note: A total of 24 of the 54 sample segments did not have the same crack score, and 12 of the 54 sample
segments did not have the same joint spalling score.

Table 3. Distress score differences between the automated survey lane and all lanes.



depth are shown in Fig. 4. In this figure, the error for the
training set decreases with increasing numbers of hidden
neurons as the network attempts to memorize the training
data. The RMS error for the test data reaches a minimum at
five hidden neurons, after which point the model becomes
overfitted and the error for the test data increases. Subse-
quently, ANNs with a single hidden layer of five neurons
were selected for this research.

Strength of agreement between manual and
automated ratings

The Kappa coefficient (Cohen 1960) is a method for
assessing agreement that accounts for chance agreement.
The Kappa coefficient was used to assess the agreement
between the visual survey and the neural network output
computed according to the following equation:

[4] κ = −
−

observed accuracy chance agreement
1 chance agreement

Kappa is interpreted according to the criteria developed by
Landis and Koch (1977) and shown in Table 4. Landers et
al. (2003) used the Kappa coefficient for quality assurance
of manual pavement surveys by assessing the agreement
between pavement raters. Goodman (2001) also used the
Kappa coefficient to evaluate the variability between multiple
visual pavement distress surveys.

Table 5 summarizes the neural network classification
results for APC and PCC segments. For the classifications
based on neural network 1, the Kappa coefficients ranged
from 0.15 to 0.48 (agreement was 15%–48% better than
chance), at best a moderate agreement between the ratings

and the classification method. For the classification based on
neural network 2, the Kappa coefficients ranged from –0.42
to 0.40. The negative Kappa coefficient represents disagree-
ment between the two methods. A comparison of the agree-
ment is shown in Fig. 5 for the APC segments and in Fig. 6
for the PCC segments. ANN1 performed slightly better in
both cases; however, it is suggested by the authors that a
substantial level of agreement (Kappa > 0.7) would be necessary
to consider the replacement of the manual ratings with
neural network based ratings.

The results suggest that manual and automated data are to
some extent correlated but are not directly interchangeable.
It is suggested that incorporating additional independent data
elements, such as pavement age, material properties, and
traffic, may improve the predictive power of the neural net-
work model. Although this was not attempted in this research,
it should also be noted that with the addition of new data
elements the dimensionality of the model is also increased.
The higher dimensionality has negative profound impacts on
the model complexity and its learning ability, particularly if
the variability is not explained by the data. The balance
between the number of model inputs, size of the dataset, and
model complexity is essential.

Conclusions

The objective of this paper is to discuss the optimization
of data collection needs by minimizing the quantity of data
collected while maintaining data quality and consistency. An
analysis of the transverse variability of surface distresses
collected manually in 2002 for the automated survey lane
and all lanes showed that a survey of one lane of a segment
is representative of the entire segment to a statistically
significant level. The nonparametric statistical analysis showed
that the medians of the two datasets are equivalent with 92%
confidence. The analysis also showed that the lane to be
surveyed in future automated surveys should be randomly
selected to eliminate bias in cracking and joint scores and
that one lane is sufficient for network-level pavement manage-
ment purposes. There was little overall difference in crack
and joint scores; however, a few segments exhibited signifi-
cant differences between the lanes, which affects decision
making at the project level.

Artificial neural networks (ANNs) were used to predict
the manual rating scores based on international roughness
index (IRI) and rut depth only. A randomly selected 80% of
the segments of each pavement type were used for training
the ANNs. The remaining 20% of the data were used to test
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Fig. 3. Neural network architectures: (a) neural network 1
(ANN1); (b) neural network 2 (ANN2).

Fig. 4. Training and test RMS errors for the prediction of gen-
eral condition of APC segments (ANN1).

Kappa Strength of agreement

<0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect

Note: From Landis and Koch (1977).

Table 4. Interpretation of agreement
from the Kappa coefficient.



the ability of the classifier to predict manual ratings based
on IRI and rut depth. Agreement between the manual ratings
and the predicted ratings was assessed with the Kappa co-
efficient. The Kappa coefficients showed at best moderate
agreement for ANN1 and ANN2.

Although the results indicate that there exists a rela-
tionship between manual and automated ratings, ANN
classification based on IRI and rut depth alone is not rec-

ommended. The classification may require the addition of
other independent data elements such as pavement age,
structural adequacy, or traffic indicators to improve the
predictions.
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Fig. 5. Strength of agreement for classification of APC segments
based on IRI and rut depth.

Fig. 6. Strength of agreement for classification of PCC segments
based on IRI and rut depth.

Parameter
Chance
agreement (%)

Observed
agreement (%)

Kappa
coefficient

Interpretation of
agreement

APC ANN1
General condition 38 48 0.16 Slight
Crack type 40 59 0.32 Fair
Crack severity 31 44 0.18 Slight
Crack extent 55 76 0.48 Moderate
Joint severity 41 50 0.15 Slight
Joint extent 62 80 0.48 Moderate

PCC ANN1
General condition 21 57 0.45 Moderate
Crack type 39 64 0.41 Moderate
Crack severity 39 50 0.18 Slight
Crack extent 32 54 0.32 Fair
Joint severity 29 46 0.25 Fair
Joint extent 46 68 0.40 Fair

APC ANN2
General condition 38 59 0.34 Fair
Crack type 40 52 0.20 Slight
Crack severity 31 41 0.14 Slight
Crack extent 55 35 –0.42 Poor
Joint severity 41 56 0.26 Fair
Joint extent 62 61 –0.02 Poor

PCC ANN2
General condition 21 39 0.23 Fair
Crack type 39 43 0.06 Slight
Crack severity 39 50 0.18 Slight
Crack extent 32 32 0.00 Poor
Joint severity 29 57 0.40 Fair
Joint extent 46 61 0.27 Fair

Table 5. Neural network classification for APC and PCC segments.
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